Actions

Summer School on Global Sustainability-Lectures: Difference between revisions

From Santa Fe Institute Events Wiki

No edit summary
No edit summary
Line 57: Line 57:




==Joellen Russell, University of Arizona, Biogeochemical Dynamics ==
'''''Southwest Climate, the Westerly Winds and Climate Model Projections'''''
Climate projections for the Southwest are essential for residents, politicians, engineers, and planners. Will we get more winter rain or less? Will our monsoon get stronger or weaker? How hot will it get? The latest round of coupled climate model projections prepared for the Intergovernmental Panel on Climate Change (IPCC) are widely varying, but some general conclusions can be drawn.  In particular, as the westerly winds move poleward, they are moving away the winter storms that are a critical source of water to the Southwest, so improving the global climate models’ ability to simulate the westerly jet has become critical to the discovery of the links between global climate change and Southwest impacts. We will discuss the integration of global and regional models of Southwest climate.
'''''The Once and Future Battles of Thor and the Midgard Serpent, or: The Westerlies and the Antarctic Circumpolar Current in Global Climate'''''<br>


Dominated by the Antarctic Circumpolar Current (ACC), the vast Southern Ocean can influence large-scale surface climate features on various time scales. Its climatic relevance stems in part from it being the region where most of the transformation of the World Ocean’s water masses occurs. In climate change experiments that simulate greenhouse gas–induced warming and ozone depletion, the response of the Southern Ocean circulation patterns to the change in the Westerlies make it a region where much of the future oceanic heat storage takes place, though the magnitude of that heat storage is one of the larger sources of uncertainty associated with the transient climate response in such model projections. These links are explored here in a climate model context by analyzing a suite of experiments produced in support of the Intergovernmental Panel on Climate Change’s Fourth Assessment Report. The influence of the predicted change in Southern Ocean circulation over the rate of global atmospheric warming will be examined, as well as potential impacts on polar and global marine ecosystems.
   
   
==Donald L. Paul, Executive Director, University of Southern California Energy Institute and William M. Keck Chair of Energy Resources==
==Donald L. Paul, Executive Director, University of Southern California Energy Institute and William M. Keck Chair of Energy Resources==
Line 96: Line 88:


-      Measures of sustainability and prospects for the future
-      Measures of sustainability and prospects for the future
==Joellen Russell, University of Arizona, Biogeochemical Dynamics ==
'''''Southwest Climate, the Westerly Winds and Climate Model Projections'''''
Climate projections for the Southwest are essential for residents, politicians, engineers, and planners. Will we get more winter rain or less? Will our monsoon get stronger or weaker? How hot will it get? The latest round of coupled climate model projections prepared for the Intergovernmental Panel on Climate Change (IPCC) are widely varying, but some general conclusions can be drawn.  In particular, as the westerly winds move poleward, they are moving away the winter storms that are a critical source of water to the Southwest, so improving the global climate models’ ability to simulate the westerly jet has become critical to the discovery of the links between global climate change and Southwest impacts. We will discuss the integration of global and regional models of Southwest climate.
'''''The Once and Future Battles of Thor and the Midgard Serpent, or: The Westerlies and the Antarctic Circumpolar Current in Global Climate'''''<br>
Dominated by the Antarctic Circumpolar Current (ACC), the vast Southern Ocean can influence large-scale surface climate features on various time scales. Its climatic relevance stems in part from it being the region where most of the transformation of the World Ocean’s water masses occurs. In climate change experiments that simulate greenhouse gas–induced warming and ozone depletion, the response of the Southern Ocean circulation patterns to the change in the Westerlies make it a region where much of the future oceanic heat storage takes place, though the magnitude of that heat storage is one of the larger sources of uncertainty associated with the transient climate response in such model projections. These links are explored here in a climate model context by analyzing a suite of experiments produced in support of the Intergovernmental Panel on Climate Change’s Fourth Assessment Report. The influence of the predicted change in Southern Ocean circulation over the rate of global atmospheric warming will be examined, as well as potential impacts on polar and global marine ecosystems.

Revision as of 20:31, 8 June 2009

Summer School on Global Sustainability

These are the outlines for the scheduled lectures.


Ottmar Edenhofer, Potsdam Institute for Climate Impact Research

Can dangerous Climate Change be avoided? Causes and Impacts of Climate Change
Why the climate is changing: the mechanics of global warming. Evidence from the past and recent projections: temperature, sea level rise, precipitation. Tipping points. Impacts for developed and developing countries. The link between energy and food prices.

The Economics of Atmospheric Stabilization
Greenhouse gas emissions: where are we currently, we are we heading, where should we be heading to avoid dangerous climate change? Fossil fuel resources, reserves, and the coal renaissance. The scale of the challenge: emission trajectories to avoid dangerous climate change, maybe. Energy system modeling: finding the right wedges. The role of biomass. Hybrid modeling. Mitigation costs: model comparison IMCP shows it does not cost the world to save the planet.

Towards a Global Contract on Climate Change
Regional mitigation costs – results from two recent model comparison exercises. International burden sharing: the role of the quota allocation rule and of tradable fossil fuel resources. The costs of delay and the gains of fast-movers. International climate policy: the Kyoto Protocol and the road to Copenhagen. The pillars of a global contract: carbon markets, technology, adaptation, reduced deforestation.

Matthew England, University of New South Wales

Climate Change - Overview, History, GHG's, Radiative Forcing
Climate Change - Observations (Atmosphere, Cryosphere, Oceans) and Paleoclimate
Climate Change - Models, Projections, Detection & Attribution

Arnulf Grubler, International Institute for Applied Systems Analysis

Climate Change and Urbanization
Climate Change and Industrial Production
Climate Change: Rates of Change and Constraints for Adaptation and Mitigation Measures

Chuck Kutscher, National Renewable Energy Laboratory

The Urgency of Climate Change and How to Address It With Renewable Energy and Energy Efficiency (the American Solar Energy Society study).
Concentrating Solar Power (CSP)


Dennis Meadows, University of New Hampshire

Obstacles to Effective Climate Policy
Although most national leaders profess a concern about climate change and a desire to reduce greenhouse gas emissions, CO2 concentrations in the atmosphere keep going up. And they are going up in almost every nation, irrespective of whether it signed the Kyoto Accord. To explain this unfortunate fact, this session will describe four common misconceptions about climate change dynamics that are preventing effective response to the threats of climate change.

Fishbanks: A Strategic Game about Renewable Resource Use
In this session participants will work in small teams to manage fishing companies that decide on ways to deploy and build up their assets. The challenge is to develop strategies that sustain the resource while maximizing profits of the individual firms.

The Structural Foundations of Sustainable Resource Use
The concept of sustainability is profoundly different depending on whether it is applied to a renewable or to a nonrenewable resource. We will discuss those differences. This session will identify, reflect on, and apply the lessons from the Fishbanks session. It will also provide information on oil depletion, as an important example of nonrenewable resource use.



Donald L. Paul, Executive Director, University of Southern California Energy Institute and William M. Keck Chair of Energy Resources

Understanding The Global Energy System

The presentation will build a deeper understanding of the nature and dynamics of the global energy system and what factors will affect the future evolution of one of the world’s largest systems. Topics will include:

- Scale and complexity

- “History and the future always co-exist”

- The interaction of demand, supply, technology, and geo-politics

- Energy scenarios – differing world views


Energy Technology And The Implications For Sustainability
Technology development has always been integral to the evolution of energy supply and use, from the discovery and development at scale of new sources to the creation of major use infrastructures such as automotive transport. The presentation will build a deeper understanding of the drives and systems that enable energy technology development, the factors that affect the implementation at scale, and the implications for system sustainability. Topics will include:

- The energy technology “eco-system”

- Commercialization and implementation at scale

- Diversifying marketplaces: fuel and transport as a case study

- Measures of sustainability and prospects for the future


Joellen Russell, University of Arizona, Biogeochemical Dynamics

Southwest Climate, the Westerly Winds and Climate Model Projections

Climate projections for the Southwest are essential for residents, politicians, engineers, and planners. Will we get more winter rain or less? Will our monsoon get stronger or weaker? How hot will it get? The latest round of coupled climate model projections prepared for the Intergovernmental Panel on Climate Change (IPCC) are widely varying, but some general conclusions can be drawn. In particular, as the westerly winds move poleward, they are moving away the winter storms that are a critical source of water to the Southwest, so improving the global climate models’ ability to simulate the westerly jet has become critical to the discovery of the links between global climate change and Southwest impacts. We will discuss the integration of global and regional models of Southwest climate.

The Once and Future Battles of Thor and the Midgard Serpent, or: The Westerlies and the Antarctic Circumpolar Current in Global Climate

Dominated by the Antarctic Circumpolar Current (ACC), the vast Southern Ocean can influence large-scale surface climate features on various time scales. Its climatic relevance stems in part from it being the region where most of the transformation of the World Ocean’s water masses occurs. In climate change experiments that simulate greenhouse gas–induced warming and ozone depletion, the response of the Southern Ocean circulation patterns to the change in the Westerlies make it a region where much of the future oceanic heat storage takes place, though the magnitude of that heat storage is one of the larger sources of uncertainty associated with the transient climate response in such model projections. These links are explored here in a climate model context by analyzing a suite of experiments produced in support of the Intergovernmental Panel on Climate Change’s Fourth Assessment Report. The influence of the predicted change in Southern Ocean circulation over the rate of global atmospheric warming will be examined, as well as potential impacts on polar and global marine ecosystems.