Sayres logstic M-code: Difference between revisions
From Santa Fe Institute Events Wiki
mNo edit summary |
m (really hard to properly format MATLAB code!) |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
< | <code> | ||
function X = logistic(R, N, X0); | function X = logistic(R, N, X0); | ||
% Compute the logistic equation given a control parameter R, | % Compute the logistic equation given a control parameter R, | ||
% a number of iterations N and an initial state X0. | % a number of iterations N and an initial state X0. | ||
% | % | ||
% X = logistic(R, [N=10], [X0=0.5]); | % X = logistic(R, [N=10], [X0=0.5]); | ||
% | % | ||
% | % | ||
% ras, 06/02/08. | % ras, 06/02/08. | ||
if nargin < 1, error('Need conrol param R'); end | if nargin < 1, error('Need conrol param R'); end | ||
if notDefined('N'), N = 10; end | if notDefined('N'), N = 10; end | ||
if notDefined('X0'), X0 = 0.5; end | if notDefined('X0'), X0 = 0.5; end | ||
X(1) = X0; | X(1) = X0; | ||
for n = 2:N | for n = 2:N | ||
X(n) = R * X(n-1) * (1 - X(n-1)); | |||
end | end | ||
return | return | ||
</ | </code> |
Latest revision as of 20:04, 2 June 2008
function X = logistic(R, N, X0);
% Compute the logistic equation given a control parameter R,
% a number of iterations N and an initial state X0.
%
% X = logistic(R, [N=10], [X0=0.5]);
%
%
% ras, 06/02/08.
if nargin < 1, error('Need conrol param R'); end
if notDefined('N'), N = 10; end
if notDefined('X0'), X0 = 0.5; end
X(1) = X0;
for n = 2:N
X(n) = R * X(n-1) * (1 - X(n-1));
end
return