Actions

CSSS 2008 Santa Fe-Readings

From Santa Fe Institute Events Wiki

Revision as of 01:25, 20 May 2008 by Rockmore (talk | contribs) (Week Two: Ecology/Evolution/Molecular Biology/Disordered Systems)
CSSS Santa Fe 2008

Week One: Modeling/Nonlinear Dynamics

Liz Bradley: Non-Linear Dynamics I-IV

Nonlinear Dynamics

Owen Densmore & Steve Guerin: Modeling

Before the modeling class (afternoon the first day!) you should:

  • Download the most recent versions of both NetLogo and NetLogo 3D from http://ccl.northwestern.edu/netlogo/
  • Run some of the Model Library examples for both NetLogo and NetLogo 3D:
    • Start the application
      • Click Model Library in the File menu, try these:
      • NetLogo: Art > Diffusion Graphics
      • NetLogo 3D: 3D > Sample Models > Raindrops 3D
        Note: move the 3D raindrop world by click & drag
      • To run most of the models, click "Setup" then "Go"
      • To see the code, click on the Procedures tab
  • Finally, under the "Help" menu, click "User Manual" and explore!

Week Two: Ecology/Evolution/Molecular Biology/Disordered Systems

Aaron Clauset: MCMC for Simulation and Inference

The following three references cover a wide variety of details related to Markov chain Monte Carlo (MCMC) methods. The second and third are general references, written for physics and machine learning audiences. (The Newman and Barkema book should be available through the SFI Library.) The first shows an application of MCMC methods in the context of learning the large-scale structure of networks.

Jennifer Dunne: Foodwebs

Jennifer Dunne is a Research Fellow at the Santa Fe Institute, and is Co-Director of the Pacific Ecoinformatics and Computational Ecology Lab in Berkeley, CA. Dr. Dunne will lecture on ecological network structure and recommends the following article (Williams and Martinez, 2000) as a starting point for learning about such research. Her lectures will use this Nature paper as a jumping off point for discussing recent advances in research on food-web topology and robustness.

Williams and Martinez, 2000 Nature [1]

For more info about ecological networks, go to http://www.foodwebs.org

Dr. Dunne’s SFI [http://www.santafe.edu/profiles/?pid=67ml/ web page

Dan Stein: Disordered Systems, Quenched Order

This course is designed to introduce the participant to the study of systems with quenched disorder, which are fascinating systems in their own right but which also helped introduce many of the ideas and concepts that have become central to complexity studies. These ideas have found applications to problems from fields as diverse as biology, computer science, and economics, and we will explore some of these as well.

The course presupposes no prior knowledge of physics or statistical mechanics, and math will be kept to a minimum. If you'd like a flavor of some of the things we'll be discussing, you can take a look at D.L. Stein, ``Spin Glasses, Scientific American v. 261, pp. 52--59 (1989). Despite the passage of time, many of the issues and questions discussed in that article remain open!

For those who would like to access the subject on a more technical level (which is unnecessary for this course), here are some references:

K. Binder and A.P. Young, ``Spin Glasses, Rev. Mod. Phys. v. 58, p. 801 (1986).

M. Mezard, G. Parisi, and M. Virasoro, ``Spin Glass Theory and Beyond (World Scientific, 1986).

J.A. Hertz and K.H. Fischer, ``Spin Glasses (Cambridge, 1989).

C.M. Newman and D.L. Stein, ``Topical Review: Ordering and Broken Symmetry in Short-Ranged Spin Glasses, Journal of Physics: Condensed Matter 15, R1319--R1364 (2003).

The last of these can be accessed from my Web page