Actions

Complex Systems Summer School 2013-Projects & Working Groups

From Santa Fe Institute Events Wiki

Complex Systems Summer School 2013


Project proposals

How the ocean can help us heal complex chronic disease

The human body is its own ecosystem -- much like the ocean -- with resilience, hysteresis, synergistic properties, and multi-system dynamics that depend on matrix conditions. We can use our understanding of the ocean and ecosystems to help us heal? Can we model different scales -- an ocean, a human body, and a microbial community -- to explore ecosystem/human/microbial health in a holistic context that depends on shared key elements like flow & trace minerals as building blocks for function? As one example to think about, chronic illnesses like HIV/AIDS or Lyme disease disrupt the immune system and human body functions (e.g., methylation pathways, detox pathways), preventing optimal function that weakens the human body and makes it vulnerable to other infections. It’s a downward spiral of negative feedbacks, analogous to a backed-up, atrophying ocean or estuary that causes fish kills, destroys coral reefs, etc... analogous to microbial communities that shift when environmental/matrix condition change. I suspect our knowledge of the ocean & large ecosystems, which we can see and visualize, can inform new thinking about system dynamics for health & recovery at the scale of a human body and at the scale of individual microbes & microbial communities...

Anyone else interested? – Kristen Honey

> This sounds like a really nice idea. It would be interesting to understand how the disease-mediated degradation of immune/metabolic networks (the loss or alteration of edges and nodes?) affects the response of these networks to further perturbations (e.g. asymptotic stability and resilience, transient reactivity, cascading effects of node loss, etc.). I have little knowledge of the medical literature, but I am experienced in ecological network analysis including information theoretic analyses of food webs. -- Ashkaan

GDELT

I'd love to play around with the new Global Data on Events, Location and Tone (GDELT) dataset, which has 200+ million timestamped and geocoded political events. Here's a writeup of it in Foreign Policy -- David

Research Network Formation

I'd be interested in collecting some data from CSSS attendants. Some kind of way to study social network formation. -- Todd

Perhaps we could collect survey questions people might be interested in looking at in a Google Doc? -- Molly

My new crazy idea, inspired by these guys, is doing something with computer vision. Maybe there's a way to photograph sitting arrangements and extract data from that? -- David

Self-consistent networks for socio-economic institutions

Pablo and I started to discuss a project where we could use cross-impact balances (CIB) to investigate the implications of alternative hypotheses for interrelationships between various socio-economic/political factors. We began discussing this from the perspective of testing competing political economic theories to see what types of institutions (e.g. styles and stability of governance) would be self-consistent according to the theories. However, I would be open to other topics, including research questions inspired by GDELT. If there is interest to learn more about the CIB technique, I could put together a tutorial. --Vanessa


Genetic algorithms to evaluate network formation or real-world data I have an ill-defined, wacky idea to possibly use genetic algorithms to evaluate the formation of networks as either following preferential attachment or homophily (aka similarity) rules. This short Nature paper looks at the debate between preferential attachment and similarity/homophily dynamics. I don't have a clear idea of what this would look like, but I think it might be fun to think about ways to use genetic algorithms to solve network problems. Talk to me if you think this remotely interesting and we can evolve an idea together? -- Molly

Another possibility would be using genetic algorithms or attachment algorithms to compare to models of real-world data to understand how these networks likely formed and predict future edges.


CARIBOU MANAGEMENT DYNAMICS: This project would model caribou management dynamics in a prototype NW Alaska community during a caribou shortage. Agents in the model would be informed by data from household subsistence surveys and from management history. The goal would be to evaluate the abilities of different management strategies to achieve biological harvest goals while maximizing economic efficiencies in the community. This is a real-world problem with near-term applications. Caribou cycle on 30-to-50 year periods. The Western Arctic Caribou Herd is currently in decline. During the last caribou “crash” in this region, the state management system attempted to reorganize caribou production, which generated considerable political and social disruption, precipitated widespread passive resistance among Native peoples, and left a legacy of contempt for both management (among some Inuit) and for Inuit hunters (among some sport users). The hope is to reduce conflicts during the expected nadir of the population. Comments and cooperators welcome! Jim

'Evolving synchronized flashes in fireflies

I was thinking about how some, but not all, species of fireflies can synchronize their flashes, as was mentioned in both lectures today (June 4). The mechanism is fairly simple, it seems, so we should be able to evolve it using a simple genetic algorithm, right? This is only half-baked at the moment, and I haven't checked to see if it has been done already, but I thought it would be neat to explore the space around these biological phenomena. More of a fun project than a serious "lets publish this!" type of project. Bonus points if we can work some neural network stuff into it. Bryn_Gaertner