Actions

CustomNode.java.2.wp

From Santa Fe Institute Events Wiki

Revision as of 04:20, 27 June 2006 by AndrewStout (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

WikiPeerCode

/*
 * CustomNode.java
 *
 * Created on January 22, 2005, 2:41 PM
 * Modified on June 18, 2006, 13:55 by Jack
 * Modified June 22, 2006 00:16 by Andrew
 * Modified June 22, 2006 16:40 by Jack
 * Modified June 26, 2006 22:14 by Andrew
 *
 * This class contains the parameters and methods
 *  for an agent acting on the network
 */

package RepMod;
import uchicago.src.sim.gui.NetworkDrawable;
import uchicago.src.sim.network.DefaultDrawableNode;
import uchicago.src.sim.gui.DrawableNonGridNode;
import uchicago.src.sim.util.Random;
import uchicago.src.sim.gui.OvalNetworkItem;
import java.awt.Color;
import uchicago.src.sim.gui.ColorMap;
import uchicago.src.sim.engine.CustomProbeable;
import java.util.ArrayList;


/**
 *
 * @author Jack Waddell
 *
 */

// DefaultDrawableNode lets us draw it in the GUI
// CustomProbeable lets us define which attributes appear when
//  probed in the GUI
public class CustomNode extends DefaultDrawableNode implements CustomProbeable {
    //***********************************
    // Static Parameters

    // tracks next unique id
    public static int                   nextID = 0;      
    
    public static GUIModel              guiModel = null;
    public static RepMod           model;

    // voteType, whether to use democratic or meritocratic votes
    // 0 = democratic
    // 1 = meritocratic
    // public static int    voteType; 

	// intVoteValue, the intrinsic value of an agent's vote
	// vote weight = intVoteValue + (1-intVoteValue)*reputation
	// now have continuous scale between democratic and meritocratic,
	// and also avoid divide by zero for zero rep agents voting.
	// 1 = democratic
	// 0 = complete meritocratic
	public static double intVoteValue;

    // the degree by which the historical opinion is weighted
    public static double histWeight;
		// weight of current reputation of focus when assigning new opinion
		public static double repWeight;     

    // the (negative of) slope of skill vs variance of noise
    public static double noiseSlope;


    //********************************8**
    // Instance parameters

    // Two colormaps are generated for color-coding the nodes in GUI
    public static ColorMap              centerColorMap;    
    public static ColorMap              edgeColorMap;
    public static final int             colorMapSize = 16;
    public static final int             colorMapMax = colorMapSize - 1;
    
    


    private int   id;                   // uniquely ids node
    public Color  myColor;              // used to draw color in GUI
    public String myPajekColor = "Red"; // color to appear in Pajek output
    public double reputation;              // current wealth or stored reputation
    public double skill;          // skill parameter
    //public int    numVotes;              // the number of vote rounds 
    

       

    //public double success;              // most recent success

    
    ///////////////////////////////////////////////////////////////
    // constructor
    // Inputs: NetworkDrawable drawable, to draw in GUI
    //         double skill, the skill parameter
    public CustomNode (NetworkDrawable drawable, double skill) {
	super(drawable);
	id = nextID++;              // set id and iterate to next
	this.skill = skill;
	reputation = 0.5;	            // Generalize.  Currently hard-coded
	if (guiModel != null)
	    setNodeEdgeColorFromSkill();
	//numVotes = 0;
	//success = 0;
    }
     
    ///////////////////////////////////////////////////////////
    // getProbedProperties
    // Required to implement CustomProbeable
    // Inputs: none
    // Outputs: array of strings holding parameter names
    public String[] getProbedProperties(){
	return new String[] {"id", "reputation", "skill"};
    }
     
    //////////////////////////////////////////////////////////
    // step
    // Input:  none
    // Output: none
    // (Can be) Called by main model to have nodes execute a single step
    public void step(){
    }

    //////////////////////////////////////////////////////////
    // setNodeColorFromReputation
    // Input:  maxReputation, the highest reputation from all agents
    // Output: none
    // Sets the node color to the colormap leval depending on reputation
    public void setNodeColorFromReputation(double maxReputation){
	int i = (int) Math.round(colorMapMax*(reputation)/ (maxReputation));
	this.setColor(centerColorMap.getColor(i));
    }
    
    //////////////////////////////////////////////////////////
    // setNodeEdgeColorFromSkill
    // Input:  none
    // Output: none
    // Sets the node edge color to the colormap level depending on skill
    public void setNodeEdgeColorFromSkill(){
	int i = (int) Math.round(colorMapMax*skill);
	this.setBorderColor(edgeColorMap.getColor(i));
	this.setBorderWidth(3);
    }


    ///////////////////////////////////////////////////////
    // getDegree
    // Input: none
    // Output: int degree
    // Calculates the degree of the node (assuming symmetric)
    public int getDegree(){	
	return (this.getOutNodes()).size();
    }

    

///////////////////////////////////////////////////////
    // formOpinion
    // Input: double success, the focus' real skill
    // Output: double vote, the voter's estimate of focus' skill
/*
    public double formOpinion(double fSkill, double prevOp, double fRep){
	double op = fSkill + model.getNormalDouble(0, getNoiseFromSkill(this.skill));
	op = histWeight*prevOp + repWeight*fRep + (1 - histWeight- repWeight)*op;
	return op;
    }
*/		
	// it should /really/ be (arguably, of course):
	// opinion = (1 - weight) * (focus' real skill + noise)
	//  + weight * [opinion-weighted average of common nbrs opinions of focus]
	public double formOpinion(CustomEdge fEdge){
		CustomNode focus = (CustomNode) fEdge.getTo();
		double signal = focus.getSkill() + 
				model.getNormalDouble(0, getNoiseFromSkill(this.skill));
		double myOpinion = histWeight*fEdge.getOpinion() + (1-histWeight)*signal;
		double localWeightedOpFeedback = 0;
		ArrayList nbrEdges = this.getOutEdges();
		// form opinion-weighted average of common nbrs opinions of focus
		for(int ni = 0; ni < nbrEdges.size(); ni++){
			CustomEdge nbrEdge = (CustomEdge) nbrEdges.get(ni);
			CustomNode nbr = (CustomNode) nbrEdge.getTo();
			ArrayList nbrNbrEdges = nbr.getOutEdges();
			boolean foundFocus = false;
			for(int nni = 0; nni < nbrNbrEdges.size(); nni++){
				CustomEdge nnEdge = (CustomEdge) nbrNbrEdges.get(nni);
				if(((CustomNode)nnEdge.getTo()).getID() == focus.getID()) { // if nbr knows focus
					// weight feedback by opinion; balance with own opinion
					localWeightedOpFeedback +=
							nbrEdge.getOpinion()*nnEdge.getOpinion() +
							(1-nbrEdge.getOpinion())*myOpinion;
					foundFocus = true;
					break; // break the inner for loop--we're done with this common nbr
				}
			}
			if(!foundFocus){
				// this neighbor didn't know focus
				localWeightedOpFeedback += myOpinion;
			}
		}
		localWeightedOpFeedback = 
				localWeightedOpFeedback/(double)nbrEdges.size();
		double op = repWeight*localWeightedOpFeedback + (1-repWeight)*myOpinion;
		// here I truncate to [0,1] -- this is open to further discussion
		if (op > 1) op = 1; // must...not...write...Python...
		if (op < 0) op = 0; // too many languages in one head!
		return op;
	}


/*
///////////////////////////////////////////////////////
    // formOpinion
    // Input: double success, the focus' real skill
    // Output: double vote, the voter's estimate of focus' skill
    public double formOpinion(double fSkill, double prevOp){
	double op = fSkill + model.getNormalDouble(0, getNoiseFromSkill(this.skill));
	op = histWeight*prevOp + (1-histWeight)*op;
	return op;
    }

	// new formOpinion
	public double formOpinion2(double fSkill, double fRep){
		// opinion = (1- repweight) * (focus' real skill + noise)
		//  + repweight * focus' reputation
		double op = fSkill+model.getNormalDouble(0,getNoiseFromSkill(this.skill));
		op = repWeight*fRep + (1-repWeight)*op;
		// here I truncate to [0,1] -- this is open to further discussion
		if (op > 1) op = 1; // must...not...write...Python...
		if (op < 0) op = 0; // too many languages in one head!
		return op;		
	}
	
	
*/
    ////////////////////////////////////////////////////////
    // voteAll
/*
    public void voteAll(){
	ArrayList edgeList = this.getOutEdges();
	double opinion = 0;
	int vote = 0;
	for (int i = 0; i < edgeList.size(); i++){
	    CustomEdge edge = (CustomEdge) edgeList.get(i);
	    CustomNode node = (CustomNode) edge.getTo();
	    opinion = formOpinion(node.getSkill(), edge.getOpinion(), node.getReputation());
	    edge.setOpinion(opinion);
	    if (opinion > 0.5)
		vote = 1;
	    else
		vote = 0;
	    edge.setVote(vote);
	}
    }
*/
	// new voteAll
	public void voteAll(){
		ArrayList edgeList = this.getOutEdges();
		double opinion = 0;
		int vote = 0;
		for (int i = 0; i < edgeList.size(); i++){
		// for each neighbor
	    CustomEdge edge = (CustomEdge) edgeList.get(i);
	    CustomNode node = (CustomNode) edge.getTo();
			// get opinion (truncated 0 to 1)
			opinion = formOpinion(edge);
			// set those opinions
			edge.setOpinion(opinion);
			// votes are opinions
			edge.setVote(opinion); // Java lines get semicolons, dipshit.
		}
	}

    ////////////////////////////////////////////////////////
    // calcReputation
    // Input: none
    // Ouput: none
    public void calcReputation(){
	ArrayList edgeList = this.getInEdges();
	double repSum = 0;
	double normSum = 0;
	for (int i = 0; i < edgeList.size(); i++){
	    CustomEdge edge = (CustomEdge) edgeList.get(i);
	    CustomNode node = (CustomNode) edge.getFrom();
		repSum += edge.getVote() *(intVoteValue + (1-intVoteValue)*node.getReputation());
		normSum += (intVoteValue + (1-intVoteValue)*node.getReputation());
		/*
	    if (voteType ==0){
		repSum += edge.getVote();
		normSum ++;
	    }
	    else if (voteType ==1){
		repSum += edge.getVote() * node.getReputation();
		normSum += node.getReputation();
	    }*/
	}
	reputation = repSum/normSum;
    }


    //***************************************************************
    // Getters and Setters
    public int      getID() {return id;}

    public void     setMyPajekColor(String i) {myPajekColor = i;}
    public String   getMyPajekColor() {return myPajekColor;}
    
    public double   getReputation() {return reputation;}
    public void     setReputation(double i) {reputation = i;}

    public double   getSkill() {return skill;}
    public void     setSkill(double i) {skill = i;}

    //public double   getSuccess() {return success;}
    //public void     setSuccess(double i) {success = i;}
    
    //***************************************************************
    // Static Methods

    public static void setModel(RepMod m) {model = m;}

    //////////////////////////////////////////////////////////
    // setUpNodeDrawing
    // Input: GUIModel m, a pointer to the GUIModel
    // Output: none
    public static void setUpNodeDrawing (GUIModel m) {
	guiModel = m;
	centerColorMap = new ColorMap();
	edgeColorMap   = new ColorMap();
	double minColor = 0.1;
	
	for (int i = 0; i < colorMapSize; i++){
	    double fracColor = minColor + ( (1.0-minColor)*i/colorMapMax );

	    centerColorMap.mapColor(i, 0, 0, fracColor);
	    edgeColorMap.mapColor(i, 0, fracColor, 0);
	}
    }

    ///////////////////////////////////////////////////////////
    // resetNextID
    // Inputs:  none
    // Outputs: none
    // Resets nextID.  Called when the model is reset, and a 
    //  new set of nodes is generated
    public static void resetNextID(){
	nextID = 0;
    }

    ///////////////////////////////////////////////////////////
    // getNoiseFromSkill
    // Inputs: double skill
    // Outputs: double, the noise variance
    public static double getNoiseFromSkill(double skill){
	return (1-skill)*noiseSlope;
    }


    //public static int getVoteType() {return voteType;}
    //public static void setVoteType(int i) {voteType = i;}

	public static double getIntVoteValue() {return intVoteValue;}
	public static void setIntVoteValue(double i) {intVoteValue = i;}

    public static double getHistWeight() {return histWeight;}
    public static void   setHistWeight(double i) {histWeight = i;}
		
		public static double getRepWeight() {return repWeight;}
		public static void setRepWeight(double w) {repWeight = w;}

    public static double getNoiseSlope() {return noiseSlope;}
    public static void   setNoiseSlope(double i) {noiseSlope = i;}
}