From Topology to Response: Difference between revisions
From Santa Fe Institute Events Wiki
Line 1: | Line 1: | ||
=Linking Topology to Dynamical Response in Small Networks: the original proposal= | ==Linking Topology to Dynamical Response in Small Networks: the original proposal== | ||
Imagine a small (3-7 nodes) network where every node represents a protein species, and every (directed) edge the activation relation between the proteins (i.e. A ---> B means that the protein A can react with B and activate it). Furthermore, | |||
assume that there are two numbers associated with every node: the total number of protein molecules of the given type and the fraction of the active forms. Finally, let two nodes, R and E, be special and call them the Receptor and the Effector. What you have is a crude model of intracellular signalling. | |||
This [http://www.cosbi.eu/templates/cosbi/php/get_paper.php?id=147 paper] considers such models and exhaustively classifies all the possible topologies (i.e. wirings) with respect to the activation pattern of the Effector in response to a standardized signal sent by the Receptor. The goal of our project would be to do the same experiment using different tools, and potentially obtain different results. The main difference would be to use stochastic (rather than deterministic) dynamics to determine the response. As the signalling systems operate with relatively low numbers of molecules, stochastic effects may be important. If we do this and have time left, we can try pushing it further and consider the issues of robustness and evolvability of these networks. | |||
To put a nasty spin on the project, I propose that we use an obscure computational technique called [http://en.wikipedia.org/wiki/Model_checking model checking] to get the response profile of a network; partly just because we can, but partly also because it nicely deals away with the need of explicitely simulating and averaging of stochastic models. | |||
Now, a couple of final remarks: | |||
* Don't think of it as a network project. All networks involved will be rather trivial. | |||
* The project group should include a biologist (to do sanity checks) and somebody familiar with parallel computing. | |||
* Model checking is (very) expensive computationally, we will probably need a cluster. | |||
* I have all the original results from the paper mentioned. | |||
* The tool to use would probably be [http://www.prismmodelchecker.org/ PRISM]. | |||
[[Marek Kwiatkowski]] | |||
==Project Membership== | |||
* [[Rosemary Braun]] | |||
* [[Marek Kwiatkowski]] |
Revision as of 02:21, 14 June 2009
Linking Topology to Dynamical Response in Small Networks: the original proposal
Imagine a small (3-7 nodes) network where every node represents a protein species, and every (directed) edge the activation relation between the proteins (i.e. A ---> B means that the protein A can react with B and activate it). Furthermore, assume that there are two numbers associated with every node: the total number of protein molecules of the given type and the fraction of the active forms. Finally, let two nodes, R and E, be special and call them the Receptor and the Effector. What you have is a crude model of intracellular signalling.
This paper considers such models and exhaustively classifies all the possible topologies (i.e. wirings) with respect to the activation pattern of the Effector in response to a standardized signal sent by the Receptor. The goal of our project would be to do the same experiment using different tools, and potentially obtain different results. The main difference would be to use stochastic (rather than deterministic) dynamics to determine the response. As the signalling systems operate with relatively low numbers of molecules, stochastic effects may be important. If we do this and have time left, we can try pushing it further and consider the issues of robustness and evolvability of these networks.
To put a nasty spin on the project, I propose that we use an obscure computational technique called model checking to get the response profile of a network; partly just because we can, but partly also because it nicely deals away with the need of explicitely simulating and averaging of stochastic models.
Now, a couple of final remarks:
- Don't think of it as a network project. All networks involved will be rather trivial.
- The project group should include a biologist (to do sanity checks) and somebody familiar with parallel computing.
- Model checking is (very) expensive computationally, we will probably need a cluster.
- I have all the original results from the paper mentioned.
- The tool to use would probably be PRISM.