Actions

CustomNode.java.wp: Difference between revisions

From Santa Fe Institute Events Wiki

No edit summary
 
No edit summary
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
[[WikiPeerCode]]
<pre>
/*
/*
  * CustomNode.java
  * CustomNode.java
  *
  *
  * Created on January 22, 2005, 2:41 PM
  * Created on January 22, 2005, 2:41 PM
  * Modified on June 14, 2006
  * Modified on June 18, 2006, 13:55 by Jack
* Modified June 22, 2006 00:16 by Andrew
* Modified June 22, 2006 16:40 by Jack
  *
  *
  * This class contains the parameters and methods
  * This class contains the parameters and methods
Line 39: Line 43:
     public static GUIModel              guiModel = null;
     public static GUIModel              guiModel = null;
     public static RepMod          model;
     public static RepMod          model;
    // voteType, whether to use democratic or meritocratic votes
    // 0 = democratic
    // 1 = meritocratic
    // public static int    voteType;
// intVoteValue, the intrinsic value of an agent's vote
// vote weight = intVoteValue + (1-intVoteValue)*reputation
// now have continuous scale between democratic and meritocratic,
// and also avoid divide by zero for zero rep agents voting.
// 1 = democratic
// 0 = complete meritocratic
public static double intVoteValue;
    // the degree by which the historical opinion is weighted
    public static double histWeight;
// weight of current reputation of focus when assigning new opinion
public static double repWeight;   
    // the (negative of) slope of skill vs variance of noise
    public static double noiseSlope;


     //********************************8**
     //********************************8**
Line 57: Line 83:
     public double reputation;              // current wealth or stored reputation
     public double reputation;              // current wealth or stored reputation
     public double skill;          // skill parameter
     public double skill;          // skill parameter
     public int    numVotes;              // the number of vote rounds  
     //public int    numVotes;              // the number of vote rounds  
   
 
     


     public double success;              // most recent success
     //public double success;              // most recent success


      
      
Line 70: Line 99:
id = nextID++;              // set id and iterate to next
id = nextID++;              // set id and iterate to next
this.skill = skill;
this.skill = skill;
reputation = 50;             // Generalize.  Currently hard-coded
reputation = 0.5;             // Generalize.  Currently hard-coded
if (guiModel != null)
if (guiModel != null)
    setNodeEdgeColorFromSkill();
    setNodeEdgeColorFromSkill();
numVotes = 0;
//numVotes = 0;
success = 0;
//success = 0;
     }
     }
      
      
Line 83: Line 112:
     // Outputs: array of strings holding parameter names
     // Outputs: array of strings holding parameter names
     public String[] getProbedProperties(){
     public String[] getProbedProperties(){
return new String[] {"id", "reputation", "skill", "success"};
return new String[] {"id", "reputation", "skill"};
     }
     }
      
      
Line 125: Line 154:
     }
     }


     ///////////////////////////////////////////////////////
      
     // vote
 
     // Input: double success, the focus' real success
///////////////////////////////////////////////////////
     // Output: double vote, the voter's estimate of focus' success
     // formOpinion
     public double vote(double fSuccess){
     // Input: double success, the focus' real skill
if (fSuccess > skill)
     // Output: double vote, the voter's estimate of focus' skill
    return Math.min(1, 1.1*fSuccess);
     public double formOpinion(double fSkill, double prevOp, double fRep){
else
double op = fSkill + model.getNormalDouble(0, getNoiseFromSkill(this.skill));
    return fSuccess;
op = histWeight*prevOp + repWeight*fRep + (1 - histWeight- repWeight)*op;
return op;
     }
     }
// it should /really/ be (arguably, of course):
// opinion = (1 - weight) * (focus' real skill + noise)
//  + weight * [opinion-weighted average of common nbrs opinions of focus]


    ///////////////////////////////////////////////////////
/*
     // updateReputation
///////////////////////////////////////////////////////
     // Input: double, rep Latest reputation vote
     // formOpinion
     // Output: none
     // Input: double success, the focus' real skill
     public void updateReputation(double rep){
     // Output: double vote, the voter's estimate of focus' skill
double preRep = reputation * (double) numVotes;
     public double formOpinion(double fSkill, double prevOp){
numVotes ++;
double op = fSkill + model.getNormalDouble(0, getNoiseFromSkill(this.skill));
reputation = (preRep + rep) / ((double) numVotes);
op = histWeight*prevOp + (1-histWeight)*op;
return op;
     }
     }


    ///////////////////////////////////////////////////////
// new formOpinion
    // challenge
public double formOpinion2(double fSkill, double fRep){
    // Input: double difficulty
// opinion = (1- repweight) * (focus' real skill + noise)
     // Output: none
//  + repweight * focus' reputation
     public void challenge(double difficulty){
double op = fSkill+model.getNormalDouble(0,getNoiseFromSkill(this.skill));
if (difficulty > skill)
op = repWeight*fRep + (1-repWeight)*op;
    success = 0;
// here I truncate to [0,1] -- this is open to further discussion
else
if (op > 1) op = 1; // must...not...write...Python...
    success = skill - difficulty;
if (op < 0) op = 0; // too many languages in one head!
return op;
}
*/
    ////////////////////////////////////////////////////////
     // voteAll
     public void voteAll(){
ArrayList edgeList = this.getOutEdges();
double opinion = 0;
int vote = 0;
for (int i = 0; i < edgeList.size(); i++){
    CustomEdge edge = (CustomEdge) edgeList.get(i);
    CustomNode node = (CustomNode) edge.getTo();
    opinion = formOpinion(node.getSkill(), edge.getOpinion(), node.getReputation());
    edge.setOpinion(opinion);
    if (opinion > 0.5)
vote = 1;
    else
vote = 0;
    edge.setVote(vote);
}
     }
     }


// new voteAll
/*
public void voteAll2(){
ArrayList edgeList = this.getOutEdges();
double opinion = 0;
int vote = 0;
for (int i = 0; i < edgeList.size(); i++){
// for each neighbor
    CustomEdge edge = (CustomEdge) edgeList.get(i);
    CustomNode node = (CustomNode) edge.getTo();
// get opinion (truncated 0 to 1)
opinion = formOpinion2(node.getSkill(), node.getReputation());
// (optionally) locally normalize - omitted for now
// set those opinions
edge.setOpinion(opinion);
// votes are opinions
edge.setVote(opinion); // Java lines get semicolons, dipshit.
}
}*/
    ////////////////////////////////////////////////////////
    // calcReputation
    // Input: none
    // Ouput: none
    public void calcReputation(){
ArrayList edgeList = this.getInEdges();
double repSum = 0;
double normSum = 0;
for (int i = 0; i < edgeList.size(); i++){
    CustomEdge edge = (CustomEdge) edgeList.get(i);
    CustomNode node = (CustomNode) edge.getFrom();
repSum += edge.getVote() *(intVoteValue + (1-intVoteValue)*node.getReputation());
normSum += (intVoteValue + (1-intVoteValue)*node.getReputation());
/*
    if (voteType ==0){
repSum += edge.getVote();
normSum ++;
    }
    else if (voteType ==1){
repSum += edge.getVote() * node.getReputation();
normSum += node.getReputation();
    }*/
}
reputation = repSum/normSum;
    }




Line 172: Line 273:
     public void    setSkill(double i) {skill = i;}
     public void    setSkill(double i) {skill = i;}


     public double  getSuccess() {return success;}
     //public double  getSuccess() {return success;}
     public void    setSuccess(double i) {success = i;}
     //public void    setSuccess(double i) {success = i;}
      
      
     //***************************************************************
     //***************************************************************
Line 207: Line 308:
nextID = 0;
nextID = 0;
     }
     }
    ///////////////////////////////////////////////////////////
    // getNoiseFromSkill
    // Inputs: double skill
    // Outputs: double, the noise variance
    public static double getNoiseFromSkill(double skill){
return (1-skill)*noiseSlope;
    }
    //public static int getVoteType() {return voteType;}
    //public static void setVoteType(int i) {voteType = i;}
public static double getIntVoteValue() {return intVoteValue;}
public static void setIntVoteValue(double i) {intVoteValue = i;}
    public static double getHistWeight() {return histWeight;}
    public static void  setHistWeight(double i) {histWeight = i;}
public static double getRepWeight() {return repWeight;}
public static void setRepWeight(double w) {repWeight = w;}
    public static double getNoiseSlope() {return noiseSlope;}
    public static void  setNoiseSlope(double i) {noiseSlope = i;}
}
}
</pre>

Latest revision as of 22:41, 22 June 2006

WikiPeerCode

/*
 * CustomNode.java
 *
 * Created on January 22, 2005, 2:41 PM
 * Modified on June 18, 2006, 13:55 by Jack
 * Modified June 22, 2006 00:16 by Andrew
 * Modified June 22, 2006 16:40 by Jack
 *
 * This class contains the parameters and methods
 *  for an agent acting on the network
 */

package RepMod;
import uchicago.src.sim.gui.NetworkDrawable;
import uchicago.src.sim.network.DefaultDrawableNode;
import uchicago.src.sim.gui.DrawableNonGridNode;
import uchicago.src.sim.util.Random;
import uchicago.src.sim.gui.OvalNetworkItem;
import java.awt.Color;
import uchicago.src.sim.gui.ColorMap;
import uchicago.src.sim.engine.CustomProbeable;
import java.util.ArrayList;


/**
 *
 * @author Jack Waddell
 *
 */

// DefaultDrawableNode lets us draw it in the GUI
// CustomProbeable lets us define which attributes appear when
//  probed in the GUI
public class CustomNode extends DefaultDrawableNode implements CustomProbeable {
    //***********************************
    // Static Parameters

    // tracks next unique id
    public static int                   nextID = 0;      
    
    public static GUIModel              guiModel = null;
    public static RepMod           model;

    // voteType, whether to use democratic or meritocratic votes
    // 0 = democratic
    // 1 = meritocratic
    // public static int    voteType; 

	// intVoteValue, the intrinsic value of an agent's vote
	// vote weight = intVoteValue + (1-intVoteValue)*reputation
	// now have continuous scale between democratic and meritocratic,
	// and also avoid divide by zero for zero rep agents voting.
	// 1 = democratic
	// 0 = complete meritocratic
	public static double intVoteValue;

    // the degree by which the historical opinion is weighted
    public static double histWeight;
		// weight of current reputation of focus when assigning new opinion
		public static double repWeight;     

    // the (negative of) slope of skill vs variance of noise
    public static double noiseSlope;


    //********************************8**
    // Instance parameters

    // Two colormaps are generated for color-coding the nodes in GUI
    public static ColorMap              centerColorMap;    
    public static ColorMap              edgeColorMap;
    public static final int             colorMapSize = 16;
    public static final int             colorMapMax = colorMapSize - 1;
    
    


    private int   id;                   // uniquely ids node
    public Color  myColor;              // used to draw color in GUI
    public String myPajekColor = "Red"; // color to appear in Pajek output
    public double reputation;              // current wealth or stored reputation
    public double skill;          // skill parameter
    //public int    numVotes;              // the number of vote rounds 
    

       

    //public double success;              // most recent success

    
    ///////////////////////////////////////////////////////////////
    // constructor
    // Inputs: NetworkDrawable drawable, to draw in GUI
    //         double skill, the skill parameter
    public CustomNode (NetworkDrawable drawable, double skill) {
	super(drawable);
	id = nextID++;              // set id and iterate to next
	this.skill = skill;
	reputation = 0.5;	            // Generalize.  Currently hard-coded
	if (guiModel != null)
	    setNodeEdgeColorFromSkill();
	//numVotes = 0;
	//success = 0;
    }
     
    ///////////////////////////////////////////////////////////
    // getProbedProperties
    // Required to implement CustomProbeable
    // Inputs: none
    // Outputs: array of strings holding parameter names
    public String[] getProbedProperties(){
	return new String[] {"id", "reputation", "skill"};
    }
     
    //////////////////////////////////////////////////////////
    // step
    // Input:  none
    // Output: none
    // (Can be) Called by main model to have nodes execute a single step
    public void step(){
    }

    //////////////////////////////////////////////////////////
    // setNodeColorFromReputation
    // Input:  maxReputation, the highest reputation from all agents
    // Output: none
    // Sets the node color to the colormap leval depending on reputation
    public void setNodeColorFromReputation(double maxReputation){
	int i = (int) Math.round(colorMapMax*(reputation)/ (maxReputation));
	this.setColor(centerColorMap.getColor(i));
    }
    
    //////////////////////////////////////////////////////////
    // setNodeEdgeColorFromSkill
    // Input:  none
    // Output: none
    // Sets the node edge color to the colormap level depending on skill
    public void setNodeEdgeColorFromSkill(){
	int i = (int) Math.round(colorMapMax*skill);
	this.setBorderColor(edgeColorMap.getColor(i));
	this.setBorderWidth(3);
    }


    ///////////////////////////////////////////////////////
    // getDegree
    // Input: none
    // Output: int degree
    // Calculates the degree of the node (assuming symmetric)
    public int getDegree(){	
	return (this.getOutNodes()).size();
    }

    

///////////////////////////////////////////////////////
    // formOpinion
    // Input: double success, the focus' real skill
    // Output: double vote, the voter's estimate of focus' skill
    public double formOpinion(double fSkill, double prevOp, double fRep){
	double op = fSkill + model.getNormalDouble(0, getNoiseFromSkill(this.skill));
	op = histWeight*prevOp + repWeight*fRep + (1 - histWeight- repWeight)*op;
	return op;
    }
	// it should /really/ be (arguably, of course):
	// opinion = (1 - weight) * (focus' real skill + noise)
	//  + weight * [opinion-weighted average of common nbrs opinions of focus]

/*
///////////////////////////////////////////////////////
    // formOpinion
    // Input: double success, the focus' real skill
    // Output: double vote, the voter's estimate of focus' skill
    public double formOpinion(double fSkill, double prevOp){
	double op = fSkill + model.getNormalDouble(0, getNoiseFromSkill(this.skill));
	op = histWeight*prevOp + (1-histWeight)*op;
	return op;
    }

	// new formOpinion
	public double formOpinion2(double fSkill, double fRep){
		// opinion = (1- repweight) * (focus' real skill + noise)
		//  + repweight * focus' reputation
		double op = fSkill+model.getNormalDouble(0,getNoiseFromSkill(this.skill));
		op = repWeight*fRep + (1-repWeight)*op;
		// here I truncate to [0,1] -- this is open to further discussion
		if (op > 1) op = 1; // must...not...write...Python...
		if (op < 0) op = 0; // too many languages in one head!
		return op;		
	}
	
	
*/
    ////////////////////////////////////////////////////////
    // voteAll
    public void voteAll(){
	ArrayList edgeList = this.getOutEdges();
	double opinion = 0;
	int vote = 0;
	for (int i = 0; i < edgeList.size(); i++){
	    CustomEdge edge = (CustomEdge) edgeList.get(i);
	    CustomNode node = (CustomNode) edge.getTo();
	    opinion = formOpinion(node.getSkill(), edge.getOpinion(), node.getReputation());
	    edge.setOpinion(opinion);
	    if (opinion > 0.5)
		vote = 1;
	    else
		vote = 0;
	    edge.setVote(vote);
	}
    }

	// new voteAll
	/*
	public void voteAll2(){
		ArrayList edgeList = this.getOutEdges();
		double opinion = 0;
		int vote = 0;
		for (int i = 0; i < edgeList.size(); i++){
		// for each neighbor
	    CustomEdge edge = (CustomEdge) edgeList.get(i);
	    CustomNode node = (CustomNode) edge.getTo();
			// get opinion (truncated 0 to 1)
			opinion = formOpinion2(node.getSkill(), node.getReputation());
			// (optionally) locally normalize - omitted for now
			// set those opinions
			edge.setOpinion(opinion);
			// votes are opinions
			edge.setVote(opinion); // Java lines get semicolons, dipshit.
		}
	}*/

    ////////////////////////////////////////////////////////
    // calcReputation
    // Input: none
    // Ouput: none
    public void calcReputation(){
	ArrayList edgeList = this.getInEdges();
	double repSum = 0;
	double normSum = 0;
	for (int i = 0; i < edgeList.size(); i++){
	    CustomEdge edge = (CustomEdge) edgeList.get(i);
	    CustomNode node = (CustomNode) edge.getFrom();
		repSum += edge.getVote() *(intVoteValue + (1-intVoteValue)*node.getReputation());
		normSum += (intVoteValue + (1-intVoteValue)*node.getReputation());
		/*
	    if (voteType ==0){
		repSum += edge.getVote();
		normSum ++;
	    }
	    else if (voteType ==1){
		repSum += edge.getVote() * node.getReputation();
		normSum += node.getReputation();
	    }*/
	}
	reputation = repSum/normSum;
    }


    //***************************************************************
    // Getters and Setters
    public int      getID() {return id;}

    public void     setMyPajekColor(String i) {myPajekColor = i;}
    public String   getMyPajekColor() {return myPajekColor;}
    
    public double   getReputation() {return reputation;}
    public void     setReputation(double i) {reputation = i;}

    public double   getSkill() {return skill;}
    public void     setSkill(double i) {skill = i;}

    //public double   getSuccess() {return success;}
    //public void     setSuccess(double i) {success = i;}
    
    //***************************************************************
    // Static Methods

    public static void setModel(RepMod m) {model = m;}

    //////////////////////////////////////////////////////////
    // setUpNodeDrawing
    // Input: GUIModel m, a pointer to the GUIModel
    // Output: none
    public static void setUpNodeDrawing (GUIModel m) {
	guiModel = m;
	centerColorMap = new ColorMap();
	edgeColorMap   = new ColorMap();
	double minColor = 0.1;
	
	for (int i = 0; i < colorMapSize; i++){
	    double fracColor = minColor + ( (1.0-minColor)*i/colorMapMax );

	    centerColorMap.mapColor(i, 0, 0, fracColor);
	    edgeColorMap.mapColor(i, 0, fracColor, 0);
	}
    }

    ///////////////////////////////////////////////////////////
    // resetNextID
    // Inputs:  none
    // Outputs: none
    // Resets nextID.  Called when the model is reset, and a 
    //  new set of nodes is generated
    public static void resetNextID(){
	nextID = 0;
    }

    ///////////////////////////////////////////////////////////
    // getNoiseFromSkill
    // Inputs: double skill
    // Outputs: double, the noise variance
    public static double getNoiseFromSkill(double skill){
	return (1-skill)*noiseSlope;
    }


    //public static int getVoteType() {return voteType;}
    //public static void setVoteType(int i) {voteType = i;}

	public static double getIntVoteValue() {return intVoteValue;}
	public static void setIntVoteValue(double i) {intVoteValue = i;}

    public static double getHistWeight() {return histWeight;}
    public static void   setHistWeight(double i) {histWeight = i;}
		
		public static double getRepWeight() {return repWeight;}
		public static void setRepWeight(double w) {repWeight = w;}

    public static double getNoiseSlope() {return noiseSlope;}
    public static void   setNoiseSlope(double i) {noiseSlope = i;}
}