RepMod.java.wp: Difference between revisions
From Santa Fe Institute Events Wiki
No edit summary |
No edit summary |
||
(9 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<pre> | [[WikiPeerCode]] | ||
/* | <pre>/* | ||
* RepMod.java | * RepMod.java | ||
* | * | ||
* Created on January 22, 2005, 6:11 PM | * Created on January 22, 2005, 6:11 PM | ||
* Modified June | * Modified June 19, 2006 18:20 by Jack | ||
* Modified June 22, 2006 00:16 by Andrew | |||
* Modified June 22, 2006 16:40 by Jack | |||
*/ | */ | ||
Line 35: | Line 37: | ||
//import uchicago.src.sim.gui.Object2DDisplay; | //import uchicago.src.sim.gui.Object2DDisplay; | ||
import uchicago.src.sim.util.*; | import uchicago.src.sim.util.*; | ||
import java.util.Collections; | |||
import java.util.Comparator; | |||
import uchicago.src.sim.network.NetUtilities; | import uchicago.src.sim.network.NetUtilities; | ||
Line 48: | Line 52: | ||
// model variables | // model variables | ||
public int numAgents = 16; | public int numAgents = 16; | ||
public ArrayList agentList = new ArrayList (numAgents); | public ArrayList<CustomNode> agentList = new ArrayList<CustomNode> (numAgents); | ||
public int worldXSize = 400; | public int worldXSize = 400; | ||
public int worldYSize = 400; | public int worldYSize = 400; | ||
Line 54: | Line 58: | ||
public Schedule schedule; // Schedules Events | public Schedule schedule; // Schedules Events | ||
public | public CompNodeRep compNodes; // compares node reputations | ||
// The P parameter for regular lattice -> small world rewiring | // The P parameter for regular lattice -> small world rewiring | ||
Line 75: | Line 79: | ||
NetUtilities netCalculator = new NetUtilities(); | NetUtilities netCalculator = new NetUtilities(); | ||
// the degree to weight the voter's historical opinion vs. new opinion | |||
public double histWeight; | |||
// weight of current reputation in new opinion | |||
public double repWeight; | |||
// voteType, whether to use democratic or meritocratic votes | |||
// 0 = democratic | |||
// 1 = meritocratic | |||
//public int voteType; | |||
// intVoteValue, the intrinsic value of an agent's vote | |||
// vote weight = intVoteValue + (1-intVoteValue)*reputation | |||
// now have continuous scale between democratic and meritocratic, | |||
// and also avoid divide by zero for zero rep agents voting. | |||
// 1 = democratic | |||
// 0 = complete meritocratic | |||
public double intVoteValue; | |||
//public int opScheme; // opinion scheme: 1 = old, 2 = new (AS rep feedback) | |||
// the (negative of) slope of skill vs variance of noise | |||
public double noiseSlope; | |||
public int numTopAgents = 5; // Andrew hacking TopRep calculation | |||
/** Creates a new instance of RepMod */ | /** Creates a new instance of RepMod */ | ||
Line 99: | Line 131: | ||
parametersMap.put( "nT", "netType"); | parametersMap.put( "nT", "netType"); | ||
parametersMap.put( "pUI", "pajekUpdateInterval"); | parametersMap.put( "pUI", "pajekUpdateInterval"); | ||
//parametersMap.put( "vT", "voteType"); | |||
parametersMap.put( "iVV", "intVoteValue"); | |||
//parametersMap.put( "oS", "opScheme"); | |||
parametersMap.put( "hW", "histWeight"); | |||
parametersMap.put( "rW", "repWeight"); // still not sure what this does... | |||
parametersMap.put( "nS", "noiseSlope"); | |||
parametersMap.put( "nTA", "numTopAgents"); | |||
} | } | ||
Line 107: | Line 146: | ||
public String[] getInitParam () { | public String[] getInitParam () { | ||
String[] params = { "numAgents", "connectRadius", | String[] params = { "numAgents", "connectRadius", | ||
"reconnectProb", "netType", | "reconnectProb", "netType", "voteType", | ||
"histWeight", "noiseSlope", | |||
"numTopAgents", // AS added for top agents param | |||
/*"opScheme", // AS for new opinion scheme*/ | |||
"repWeight", // AS for new opinion scheme | |||
"intVoteValue", | |||
// these are from the super class: | // these are from the super class: | ||
"rDebug", "seed"}; | "rDebug", "seed"}; | ||
Line 124: | Line 168: | ||
public int getNumAgents() {return numAgents;} | public int getNumAgents() {return numAgents;} | ||
public void setNumAgents(int i) { | public void setNumAgents(int i) {numAgents = i;} | ||
public double getReconnectProb() {return reconnectProb;} | public double getReconnectProb() {return reconnectProb;} | ||
public void setReconnectProb(double i) {reconnectProb = i;} | public void setReconnectProb(double i) {reconnectProb = i;} | ||
Line 134: | Line 177: | ||
public void setNetType(int i) {netType = i;} | public void setNetType(int i) {netType = i;} | ||
public int getNetType() {return netType;} | public int getNetType() {return netType;} | ||
/* | |||
public void setVoteType(int i) { | |||
voteType = i; | |||
CustomNode.setVoteType(i); | |||
} | |||
public int getVoteType() {return voteType;} | |||
*/ | |||
public void setIntVoteValue(double i) { | |||
intVoteValue = i; | |||
CustomNode.setIntVoteValue(i); | |||
} | |||
public double getIntVoteValue() {return intVoteValue;} | |||
//public void setOpScheme(int i) {opScheme = i;} | |||
//public int getOpScheme() { return opScheme;} | |||
public void setHistWeight(double i) { | |||
histWeight = i; | |||
CustomNode.setHistWeight(i); | |||
} | |||
public double getHistWeight() {return histWeight;} | |||
public void setRepWeight(double w) { | |||
repWeight = w; | |||
CustomNode.setRepWeight(w); | |||
} | |||
public double getRepWeight() {return repWeight;} | |||
public void setNoiseSlope(double i) { | |||
noiseSlope = i; | |||
CustomNode.setNoiseSlope(i); | |||
} | |||
public double getNoiseSlope() {return noiseSlope;} | |||
public int getUpdateInterval() {return updateInterval;} | public int getUpdateInterval() {return updateInterval;} | ||
Line 139: | Line 218: | ||
public int getPajekUpdateInterval() {return pajekUpdateInterval;} | public int getPajekUpdateInterval() {return pajekUpdateInterval;} | ||
public void setPajekUpdateInterval(int i) {pajekUpdateInterval = i;} | public void setPajekUpdateInterval(int i) {pajekUpdateInterval = i;} | ||
// AS added for top agents param | |||
public int getNumTopAgents() {return numTopAgents;} | |||
public void setNumTopAgents(int n) {numTopAgents = n;} | |||
////////////////////////////////////////////////////////// | ////////////////////////////////////////////////////////// | ||
Line 150: | Line 232: | ||
buildModelStart(); | buildModelStart(); | ||
// set static parameters in node class | |||
CustomNode.setHistWeight(histWeight); | |||
CustomNode.setRepWeight(repWeight); // AS for new op scheme | |||
//CustomNode.setVoteType(voteType); | |||
CustomNode.setIntVoteValue(intVoteValue); | |||
CustomNode.setNoiseSlope(noiseSlope); | |||
CustomNode.setModel(this); | |||
// setup the network class | // setup the network class | ||
net = new Network(numAgents, connectRadius, reconnectProb); | net = new Network(numAgents, connectRadius, reconnectProb); | ||
net.setModel(this); | net.setModel(this); | ||
// have the network class build the network | // have the network class build the network | ||
Line 163: | Line 251: | ||
// setup the gamemaster | // setup the gamemaster | ||
compNodes = new CompNodeRep(); | |||
// prepare pajek file | // prepare pajek file | ||
Line 169: | Line 257: | ||
System.out.printf("Build Model End\n"); | System.out.printf("Build Model End\n"); | ||
// some post-load finishing touches | |||
startReportFile(); | |||
// you probably don't want to remove any of the following | |||
// calls to process parameter changes and write the | |||
// initial state to the report file. | |||
// NB -> you might remove/add more agentChange processing | |||
applyAnyStoredChanges(); | |||
//stepReport(); | |||
//getPlaintextReportFile().flush(); | |||
} | } | ||
Line 228: | Line 327: | ||
} | } | ||
////////////////////////////////////////////////////////////// | ////////////////////////////////////////////////////////////// | ||
Line 262: | Line 343: | ||
// These are overwritten by inputted values, if any | // These are overwritten by inputted values, if any | ||
numAgents = 64; | numAgents = 64; | ||
updateInterval = | updateInterval = 1; | ||
pajekUpdateInterval = | pajekUpdateInterval = 1000000; | ||
worldXSize = 400; | worldXSize = 400; | ||
worldYSize = 400; | worldYSize = 400; | ||
Line 271: | Line 352: | ||
reconnectProb = 0.1; | reconnectProb = 0.1; | ||
//voteType = 0; | |||
intVoteValue = 1; | |||
histWeight = 0; | |||
noiseSlope = 1; | |||
repWeight = 0; | |||
// AS added for top agents param | |||
numTopAgents = 5; | |||
CustomNode.resetNextID(); | CustomNode.resetNextID(); | ||
agentList = new ArrayList (numAgents); | agentList = new ArrayList (numAgents); | ||
super.setup(); // Reads in input values | super.setup(); // Reads in input values | ||
schedule = new Schedule (1); | schedule = new Schedule (1); | ||
} | } | ||
Line 294: | Line 376: | ||
// governs what happens at each step | // governs what happens at each step | ||
public void step(){ | public void step(){ | ||
stepNodes(); | stepNodes(); | ||
} | } | ||
//////////////////////////////////////////////////////////////// | |||
// stepNodes | |||
// Steps each node. | |||
// Has each vote for neighbors, then has each calculation | |||
// own reputation. | |||
public void stepNodes(){ | |||
/*if (opScheme == 2) { // new opinion scheme | |||
for(CustomNode node : agentList) { // that's syntax I don't know... | |||
node.voteAll2(); | |||
} | |||
for(CustomNode node : agentList) { | |||
node.calcReputation(); | |||
} | |||
} else {*/ | |||
for(CustomNode node : agentList){ | |||
node.voteAll(); | |||
} | |||
for(CustomNode node : agentList){ | |||
node.calcReputation(); | |||
} | |||
//} | |||
} | |||
///////////////////////////////////////////////////////////// | ///////////////////////////////////////////////////////////// | ||
// addAgent | // addAgent | ||
Line 329: | Line 433: | ||
return sum/(double) numAgents; | return sum/(double) numAgents; | ||
} | } | ||
///////////////////////////////////////////////////////////// | |||
// calcTopRepSkills | |||
// inputs: int x, the number of top agents include | |||
// outputs: double, the reputation of the top x agents | |||
// This calculates the sum of the skils of the top x agents | |||
// AS: could be changed to just use numTopAgents directly, | |||
// but I'm gonna change it at call time only-- | |||
// lower impact if I fuck something up. | |||
public double calcTopRepSkills(int x){ | |||
ArrayList<CustomNode> tempList = new ArrayList<CustomNode>(); | |||
tempList.addAll(agentList); | |||
Collections.sort(tempList, compNodes); | |||
double skillSum = 0; | |||
CustomNode node; | |||
for (int i = numAgents -x; i < numAgents; i++){ | |||
node = tempList.get(i); | |||
skillSum += node.getSkill(); | |||
} | |||
return skillSum; | |||
} | |||
////////////////////////////////////////////////////////////// | |||
// calcRepSkillMatch | |||
// inputs: none | |||
// outputs: double, the fraction of cases that a Rep and Skill match | |||
// (High/Low) | |||
public double calcRepSkillMatch(){ | |||
double count = 0; | |||
for(CustomNode node : agentList){ | |||
if (node.getReputation() <= 0.5 & node.getSkill() <= 0.5){ | |||
count ++; | |||
} | |||
else if (node.getReputation() > 0.5 & node.getSkill() > 0.5){ | |||
count ++; | |||
} | |||
} | |||
return count / ((double) numAgents); | |||
} | |||
/////////////////////////////////////////////////////////////////////// | /////////////////////////////////////////////////////////////////////// | ||
Line 342: | Line 486: | ||
public void stepReport () { | public void stepReport () { | ||
String s; | String s; | ||
s = String.format("%f", | s = String.format("%f %f %f", | ||
schedule.getCurrentTimeDouble()); | schedule.getCurrentTimeDouble(), calcTopRepSkills(numTopAgents), | ||
calcRepSkillMatch()); | |||
//writeLineToReportFile ( "<stepreport>" + s + "</stepreport>" ); | //writeLineToReportFile ( "<stepreport>" + s + "</stepreport>" ); | ||
Line 364: | Line 509: | ||
writeLineToReportFile( "</comment>" ); | writeLineToReportFile( "</comment>" ); | ||
writeLineToPlaintextReportFile( " #time" ); | writeLineToPlaintextReportFile( " #time topSkill RepSkillMatch" ); | ||
} | } | ||
Line 444: | Line 589: | ||
this.fireStopSim(); | this.fireStopSim(); | ||
} | } | ||
//******************************************************************* | |||
// Inner classes | |||
private class CompNodeRep implements Comparator{ | |||
public CompNodeRep(){ | |||
} | |||
public int compare(Object o1, Object o2){ | |||
CustomNode nodei = (CustomNode) o1; | |||
CustomNode nodej = (CustomNode) o2; | |||
if (nodei.getReputation() < nodej.getReputation()) | |||
return -1; | |||
else if (nodei.getReputation() > nodej.getReputation()) | |||
return 1; | |||
else | |||
return 0; | |||
} | |||
} | |||
} | } | ||
</pre> | </pre> |
Latest revision as of 22:42, 22 June 2006
/* * RepMod.java * * Created on January 22, 2005, 6:11 PM * Modified June 19, 2006 18:20 by Jack * Modified June 22, 2006 00:16 by Andrew * Modified June 22, 2006 16:40 by Jack */ package RepMod; import java.awt.Color; import java.util.ArrayList; import java.util.List; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import uchicago.src.sim.engine.BasicAction; import uchicago.src.sim.engine.Schedule; //import uchicago.src.sim.engine.SimModelImpl; //import uchicago.src.sim.gui.DisplaySurface; //import uchicago.src.sim.gui.Network2DDisplay; import uchicago.src.sim.gui.OvalNetworkItem; //import uchicago.src.sim.network.NetworkFactory; //import uchicago.src.sim.network.NetworkRecorder; //import uchicago.src.sim.network.Node; //import uchicago.src.sim.util.Random; import uchicago.src.sim.util.SimUtilities; //import uchicago.src.sim.network.DefaultDrawableNode; //import uchicago.src.sim.network.DefaultDrawableEdge; //import uchicago.src.sim.gui.CircularGraphLayout; //import uchicago.src.sim.gui.KamadaGraphLayout; //import uchicago.src.sim.gui.AbstractGraphLayout; //import uchicago.src.sim.space.Object2DGrid; //import uchicago.src.sim.gui.Object2DDisplay; import uchicago.src.sim.util.*; import java.util.Collections; import java.util.Comparator; import uchicago.src.sim.network.NetUtilities; /** * * @author Jack Waddell */ public class RepMod extends ModelParameters{ // model variables public int numAgents = 16; public ArrayList<CustomNode> agentList = new ArrayList<CustomNode> (numAgents); public int worldXSize = 400; public int worldYSize = 400; public Schedule schedule; // Schedules Events public CompNodeRep compNodes; // compares node reputations // The P parameter for regular lattice -> small world rewiring // Also used as the probability in the random network public double reconnectProb; // the connection radius of the regular lattice public int connectRadius; // selects which network type to use in Network.java public int netType; // Stores how frequently, in units of time steps, to update... public int updateInterval; // The report file public int pajekUpdateInterval; // The pajek files Network net; // The network class // The following class performs calculations on the network NetUtilities netCalculator = new NetUtilities(); // the degree to weight the voter's historical opinion vs. new opinion public double histWeight; // weight of current reputation in new opinion public double repWeight; // voteType, whether to use democratic or meritocratic votes // 0 = democratic // 1 = meritocratic //public int voteType; // intVoteValue, the intrinsic value of an agent's vote // vote weight = intVoteValue + (1-intVoteValue)*reputation // now have continuous scale between democratic and meritocratic, // and also avoid divide by zero for zero rep agents voting. // 1 = democratic // 0 = complete meritocratic public double intVoteValue; //public int opScheme; // opinion scheme: 1 = old, 2 = new (AS rep feedback) // the (negative of) slope of skill vs variance of noise public double noiseSlope; public int numTopAgents = 5; // Andrew hacking TopRep calculation /** Creates a new instance of RepMod */ public RepMod() { } ///////////////////////////////////////////////// // begin // builds model-required elements public void begin () { buildModel (); buildSchedule (); } /////////////////////////////////////////////////////// // addModelSpecificParameters // Maps the input parameters. public void addModelSpecificParameters () { parametersMap.put( "size", "numAgents"); parametersMap.put( "ui", "updateInterval"); parametersMap.put( "rP", "reconnectProb"); parametersMap.put( "cR", "connectRadius"); parametersMap.put( "nT", "netType"); parametersMap.put( "pUI", "pajekUpdateInterval"); //parametersMap.put( "vT", "voteType"); parametersMap.put( "iVV", "intVoteValue"); //parametersMap.put( "oS", "opScheme"); parametersMap.put( "hW", "histWeight"); parametersMap.put( "rW", "repWeight"); // still not sure what this does... parametersMap.put( "nS", "noiseSlope"); parametersMap.put( "nTA", "numTopAgents"); } ////////////////////////////////////////////////////// // getInitParam // Controls what appears the the GUI parameter panel public String[] getInitParam () { String[] params = { "numAgents", "connectRadius", "reconnectProb", "netType", "voteType", "histWeight", "noiseSlope", "numTopAgents", // AS added for top agents param /*"opScheme", // AS for new opinion scheme*/ "repWeight", // AS for new opinion scheme "intVoteValue", // these are from the super class: "rDebug", "seed"}; return params; } ////////////////////////////////////////////////////////// // getters and setters // ******************** Note ************************* // Specific format required if using inputted parameters // (either through batch or gui) public int getWorldXSize () {return worldXSize;} public void setWorldXSize (int size) {worldXSize = size;} public int getWorldYSize () {return worldYSize;} public void setWorldYSize (int size) {worldYSize = size;} public int getNumAgents() {return numAgents;} public void setNumAgents(int i) {numAgents = i;} public double getReconnectProb() {return reconnectProb;} public void setReconnectProb(double i) {reconnectProb = i;} public int getConnectRadius() {return connectRadius;} public void setConnectRadius(int i) {connectRadius = i;} public void setNetType(int i) {netType = i;} public int getNetType() {return netType;} /* public void setVoteType(int i) { voteType = i; CustomNode.setVoteType(i); } public int getVoteType() {return voteType;} */ public void setIntVoteValue(double i) { intVoteValue = i; CustomNode.setIntVoteValue(i); } public double getIntVoteValue() {return intVoteValue;} //public void setOpScheme(int i) {opScheme = i;} //public int getOpScheme() { return opScheme;} public void setHistWeight(double i) { histWeight = i; CustomNode.setHistWeight(i); } public double getHistWeight() {return histWeight;} public void setRepWeight(double w) { repWeight = w; CustomNode.setRepWeight(w); } public double getRepWeight() {return repWeight;} public void setNoiseSlope(double i) { noiseSlope = i; CustomNode.setNoiseSlope(i); } public double getNoiseSlope() {return noiseSlope;} public int getUpdateInterval() {return updateInterval;} public void setUpdateInterval(int i) {updateInterval = i;} public int getPajekUpdateInterval() {return pajekUpdateInterval;} public void setPajekUpdateInterval(int i) {pajekUpdateInterval = i;} // AS added for top agents param public int getNumTopAgents() {return numTopAgents;} public void setNumTopAgents(int n) {numTopAgents = n;} ////////////////////////////////////////////////////////// // buildModel // Does what it says public void buildModel(){ if(rDebug > 0) System.out.printf("Build Model Begin\n"); // CALL FIRST -- defined in super class -- it starts RNG, etc buildModelStart(); // set static parameters in node class CustomNode.setHistWeight(histWeight); CustomNode.setRepWeight(repWeight); // AS for new op scheme //CustomNode.setVoteType(voteType); CustomNode.setIntVoteValue(intVoteValue); CustomNode.setNoiseSlope(noiseSlope); CustomNode.setModel(this); // setup the network class net = new Network(numAgents, connectRadius, reconnectProb); net.setModel(this); // have the network class build the network net.buildAdjacencyMatrix(netType); // first build the adjacency matrix net.buildAgentList(); // then the agent list agentList = net.getAgentList(); // setup the gamemaster compNodes = new CompNodeRep(); // prepare pajek file net.startPajekFile(0); System.out.printf("Build Model End\n"); // some post-load finishing touches startReportFile(); // you probably don't want to remove any of the following // calls to process parameter changes and write the // initial state to the report file. // NB -> you might remove/add more agentChange processing applyAnyStoredChanges(); //stepReport(); //getPlaintextReportFile().flush(); } ////////////////////////////////////////////////////////// // buildSchedule // Sets what is to happen, when. public void buildSchedule () { // schedule the current BatchModel's step() function // to execute every time step starting with time step 0 schedule.scheduleActionBeginning( 0, this, "step" ); // Schedule to stop at a particular time, StopT. Rem out // to run indefinitely schedule.scheduleActionAt(getStopT(), this, "processEndOfRun"); // Only run every updateInterval steps schedule.scheduleActionAtInterval(updateInterval, new BasicAction() { public void execute() { System.gc(); // garbage collect stepReport(); // write step report } }, Schedule.LAST); // Only run every pajekUpdateInterval steps schedule.scheduleActionAtInterval(pajekUpdateInterval, new BasicAction() { public void execute() { nextPajekNetwork(); // write pajek file and open new one } }, Schedule.LAST); // Execute at step 1 only schedule.scheduleActionAt(1, new BasicAction() { public void execute() { stepReport(); nextPajekNetwork(); } }, Schedule.LAST); } ///////////////////////////////////////////////////////////////////////// // printProjectHelp // this could be filled in with some help to get from running with // -help parameter public void printProjectHelp() { // print project help System.out.printf( "\n%s -- \n", getName() ); System.out.printf( "\n **** Add more info here!! **** \n" ); System.out.printf( "\n" ); printParametersMap(); System.exit( 0 ); } ////////////////////////////////////////////////////////////// // Setup // Prepares the model, or resets it after the reset button is pressed // in GUI model public void setup () { if ( rDebug > 0 ) System.out.printf( "<== Model setup() done.\n" ); // Clean up previous instances schedule = null; System.gc (); // Set default values // These are overwritten by inputted values, if any numAgents = 64; updateInterval = 1; pajekUpdateInterval = 1000000; worldXSize = 400; worldYSize = 400; netType = 0; connectRadius = 2; reconnectProb = 0.1; //voteType = 0; intVoteValue = 1; histWeight = 0; noiseSlope = 1; repWeight = 0; // AS added for top agents param numTopAgents = 5; CustomNode.resetNextID(); agentList = new ArrayList (numAgents); super.setup(); // Reads in input values schedule = new Schedule (1); } ///////////////////////////////////////////////////////////// // step // governs what happens at each step public void step(){ stepNodes(); } //////////////////////////////////////////////////////////////// // stepNodes // Steps each node. // Has each vote for neighbors, then has each calculation // own reputation. public void stepNodes(){ /*if (opScheme == 2) { // new opinion scheme for(CustomNode node : agentList) { // that's syntax I don't know... node.voteAll2(); } for(CustomNode node : agentList) { node.calcReputation(); } } else {*/ for(CustomNode node : agentList){ node.voteAll(); } for(CustomNode node : agentList){ node.calcReputation(); } //} } ///////////////////////////////////////////////////////////// // addAgent // Input: CustomNode agent // Output: none // Adds a new agent to the agent list public void addAgent(CustomNode agent){ agentList.add(agent); } ///////////////////////////////////////////////////////////// // delAgent // Input: CustomNode agent // Output: none // Deletes an agent from the agent list public void delAgent(CustomNode agent){ agentList.remove(agentList.indexOf(agent)); System.gc(); } ////////////////////////////////////////////////////////////////////// // calcAvgReputation() public double calcAvgReputation(){ double sum = 0; for(int i = 0; i < numAgents; i++){ CustomNode node = (CustomNode) agentList.get(i); sum += (double) node.getReputation(); } return sum/(double) numAgents; } ///////////////////////////////////////////////////////////// // calcTopRepSkills // inputs: int x, the number of top agents include // outputs: double, the reputation of the top x agents // This calculates the sum of the skils of the top x agents // AS: could be changed to just use numTopAgents directly, // but I'm gonna change it at call time only-- // lower impact if I fuck something up. public double calcTopRepSkills(int x){ ArrayList<CustomNode> tempList = new ArrayList<CustomNode>(); tempList.addAll(agentList); Collections.sort(tempList, compNodes); double skillSum = 0; CustomNode node; for (int i = numAgents -x; i < numAgents; i++){ node = tempList.get(i); skillSum += node.getSkill(); } return skillSum; } ////////////////////////////////////////////////////////////// // calcRepSkillMatch // inputs: none // outputs: double, the fraction of cases that a Rep and Skill match // (High/Low) public double calcRepSkillMatch(){ double count = 0; for(CustomNode node : agentList){ if (node.getReputation() <= 0.5 & node.getSkill() <= 0.5){ count ++; } else if (node.getReputation() > 0.5 & node.getSkill() > 0.5){ count ++; } } return count / ((double) numAgents); } /////////////////////////////////////////////////////////////////////// // stepReport // each step write out: // time expectivity // // Note: update the writeHeaderCommentsToReportFile() to print // lines of text describing the data written to the report file. public void stepReport () { String s; s = String.format("%f %f %f", schedule.getCurrentTimeDouble(), calcTopRepSkills(numTopAgents), calcRepSkillMatch()); //writeLineToReportFile ( "<stepreport>" + s + "</stepreport>" ); writeLineToPlaintextReportFile( s ); // flush the buffers so the data is not lost in a "crash" //getReportFile().flush(); getPlaintextReportFile().flush(); } ///////////////////////////////////////////////////////////////////////// // writeHeaderCommentsToReportFile // customize to match what you are writing to the report files in // stepReport. public void writeHeaderCommentsToReportFile () { writeLineToReportFile( "<comment>" ); writeLineToReportFile( " " ); writeLineToReportFile( " time expectivity " ); writeLineToReportFile( "</comment>" ); writeLineToPlaintextReportFile( " #time topSkill RepSkillMatch" ); } public Schedule getSchedule () { return schedule; } public String getName () { return "Network"; } public ArrayList<CustomNode> getAgentList() {return agentList;} public static void main (String[] args) { uchicago.src.sim.engine.SimInit init = new uchicago.src.sim.engine.SimInit (); RepMod model = new RepMod (); init.loadModel (model, null, false); } // The following are some debugging methods public static void printVector(double[] vector){ System.out.printf("\n"); for(int i = 0; i < vector.length; i++){ System.out.printf("%f ", vector[i]); } System.out.printf("\n"); } public static void printVector(int[] vector){ System.out.printf("\n"); for(int i = 0; i < vector.length; i++){ System.out.printf("%d ", vector[i]); } System.out.printf("\n"); } public void printAgentList(){ System.out.printf("Printing agentList, size = %d\n", agentList.size()); CustomNode node; CustomNode inode; for(int i = 0; i < (agentList.size()); i++){ node = (CustomNode) agentList.get(i); ArrayList <CustomNode> outNodes = node.getToNodes(); System.out.printf("Node %d points to (%d objects): ", node.getID(), outNodes.size()); for(int j = 0; j < (outNodes.size()); j++){ inode = (CustomNode) outNodes.get(j); System.out.printf(" %d ", inode.getID()); } System.out.printf("\n"); } System.out.printf("\n"); } ///////////////////////////////////////////////////////// // nextPajekNetwork // closes the current pajek file and opens the new one. public void nextPajekNetwork(){ net.writePajekNetwork(agentList); net.endPajekFile(); net.startPajekFile((int) schedule.getCurrentTime()/pajekUpdateInterval + 1); } ///////////////////////////////////////////////////////////////////// // processEndOfRun // ends process public void processEndOfRun ( ) { long finalStep = (long) schedule.getCurrentTime(); if ( rDebug > 0 ) System.out.printf("\n\n===== Model processEndOfRun =====\n\n" ); applyAnyStoredChanges(); stepReport(); endReportFile(finalStep); net.writePajekNetwork(agentList); net.endPajekFile(); this.fireStopSim(); } //******************************************************************* // Inner classes private class CompNodeRep implements Comparator{ public CompNodeRep(){ } public int compare(Object o1, Object o2){ CustomNode nodei = (CustomNode) o1; CustomNode nodej = (CustomNode) o2; if (nodei.getReputation() < nodej.getReputation()) return -1; else if (nodei.getReputation() > nodej.getReputation()) return 1; else return 0; } } }