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Universal Alignment Probabilities and Subset
Selection for Ordinal Optimization'

T. W. EDwaARD Lau? anp Y. C. HO?

Abstract. We examine in this paper the subset selection procedure in
the context of ordinal optimization introduced in Ref. 1. Major concepts
including goal softening, selection subset, alignment probability, and
ordered performance curve are formally introduced. A two-parameter
model is devised to calculate alignment probabilities for a wide range
of cases using two different selection rules: blind pick and horse race.
Our major result includes the suggestion of quantifiable subset selection
sizes which are universally applicable to many simulation and modeling
problems, as demonstrated by the examples in this paper.
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1. Introduction

Consider a standard optimization problem,
min J(0), 1)

6e®
where © is the design space and J(-) is a performance measure defined on
the design space. By design space we mean a collection of alternatives or
designs available to a designer. For example, a design space can be a subset
of the Euclidean space, and designs are simply points in the subset (there are
infinitely many of them). As another example, in the well-known travelling
salesman problem (TSP), the design space is the collection of all possible
routes formed by all cities [total number of routes is (n—1)! for an n-city
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problem]. As one more example, in a decision problem, the design space
can be the strategy space formed by all possible strategies.* A performance
measure, on the other hand, is usually a scalar function of the designs in
the design space.’ It can be deterministic in nature, such as the tour length
of a route in the TSP, or it can be the expected value of a random quantity,
such as the average sojourn time of a customer in a queueing system. In the
latter case, J(0) in (1) can be written as

J(8)=E[L(X(0, »))], )]

where o represents all randomness or noise and X(6, ) is a trajectory for
design 6 generated according to @. We refer to problems in the form of Eq.
(2) as stochastic optimization,® which is our main focus in this paper.
Although many interesting methods have successfully been developed, and
references are widely available, most solution techniques, as we attempt to
contrast in this paper, serve the objective of finding the optimizer (if possible)
or at least some near-optimal solutions. Yet, the problem remains very
challenging, analytically as well as computationally, owing to at least three
kinds of difficulties. First, the design space could be horrendously immense
in many complicated problems. For instance, combinatorial explosion of
the design space due to increasing problem size is a classical topic in complex-
ity theory (e.g., NP-completeness). Second, the design space could have very
little structure or even no structure for the efficient use of existing techniques.
This can be related to a proper representation of the search space for efficient
search. Third, performance evaluations may be corrupted by very large
noise. Noise could be part of the inherent random nature of the system,
which makes the performance measure a random quantity. Usually, a large
number of replications is required in order to obtain sound statistical results.
For example, many lengthy simulations may be needed so as to bring down
the variance of any performance estimates, and consequently they inflate the
computing budget incredibly. These three kinds of difficulties are commonly
found in designing systems such as production facilities, communication
networks, and other human-made systems collectively known as discrete
event dynamic systems (DEDS).

In this paper, we will explain a broader viewpoint for the search problem
using a framework called ordinal optimization (Ref. 2). We submit that two

*The maximum number of strategies is the cardinality of the decision space (e.g., controls)
raised to the power of the cardinality of the information space (e.g., states).

*We do not consider multicriteria optimization in this paper.

°Some authors use the term “stochastic optimization” for iterative procedures, such as
simulated annealing, which involve generation of successive solutions by means of chance
mechanism. This is different from what we consider here, in the sense that randomness is an
inherent feature of the design problem.
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concepts are fundamental, not only in this paper, but indeed to all optimiza-
tion problems: the good enough subset and the selected subset. Informally,
a good enough subset is a subset of the search space in which the members
satisfy some design criteria set forth by the designer. Oftentimes, a good
enough subset is easy to specify but difficult to obtain.” On the other hand,
the selected subset is a subset of ® in which the members are picked out by
the designer using certain evaluation scheme (algorithms, heuristics, crystal
ball gazing, and so on) as the outcome for the design process. Every optimi-
zation problem can, in principle, be conceived as the goal of matching a
selected subset with the good enough subset. As a matter of fact, most
traditional ways of describing an optimization problem ask for the good
enough subset and the selected subset both to be singleton, i.e., to pick one
design (selected singleton) with target at the true optimum (good enough
singleton) in the design space.

To illustrate this further, consider again the minimization problem (1).
Suppose that © is the line segment [—10, 10] on the real line and that

J(@)=0%*  0e[-10,10].

We would normally ask for the point(s) in ® corresponding to the true
optimum of J(-) as member(s) of the good enough subset. In this case, we
know easily that the good enough subset (in fact, the global minimum) is
located exactly at 6 =0. Using the gradient descent method or other means,
the algorithm may also output =0 as the selected subset, a singleton {0}
in this case. For this particular example, the good enough subset happens
to be identical to the selected subset. Nevertheless, most design problems
are so complicated that expecting such perfect match between the good
enough subset and the selected subset may be too optimistic. For example,
if J(-) has many local minima, then the gradient descent method could
easily trap the selected subset in a local minimum other than the true opti-
mum; therefore, it will never be matched with the good enough subset. The
situation is made even worse if performance evaluations and other auxiliary
entities such as gradients, Hessians, etc. (if they exist) are subject to large
noise. Meanwhile, although many interesting techniques were developed in
order to circumvent this problem [see, for example, Ahlswede (Ref. 3),
Zhigljavsky (Ref. 4)], should the designer insist on getting singletons for
both the good enough subset and the selected subset (of the true optimum),
mismatches between the two sets will likely be inevitable. An appropriate
analogy drawn here would be that of “hitting one speeding bullet with
another.”

"We use the term “good enough,” because any suboptimal solution indeed carries the flavor
of “good enough”. Momentarily, a more precise interpretation of “good enough” will be
given.
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In ordinal optimization, proposed by Ho et al. (Ref. 1), a more liberal
point of view is taken for both the good enough subset and the selected
subset. Briefly speaking, the basic idea is the softening of the membership
criteria for the good enough subset and the selected subset, while maintaining
reasonable matching outcomes with efficiency and confidence. For example,
the membership criterion for the good enough subset can be chosen as the
top n-percentile of the design space. We refer to this as goal softening, The
merit of taking such a viewpoint is that of the economy of computation. To
see this, suppose we can obtain a set of representative samples from the
design space, in the sense that the samples are drawn from a big urn of all
designs, each with equal probability. Then, softening » from n=0.005 to
n=3 can provide a reduction factor of 1,000 for the sample size."

Meanwhile, we consider picking not only one but a set of designs to
form the selected subset from the set of representative samples. Notice that,
in the absence of noise, we essentially need to pick only the smallest evaluated
design for the selected subset. When the performance estimate is noisy, as
it is in this paper, it becomes necessary to include more than one design in
order to secure with higher confidence a certain degree of matching, or
alignment, between the selected subset and the good enough subset. The
degree of matching is called the alignment level, and the confidence of achiev-
ing a certain alignment level is referred to as the alignment probability. Both
concepts will be made precise in the subsequent section. The goal of this
paper is to determine the appropriate size of a selected subset under appro-
priate conditions where the desired level of alignment and alignment prob-
ability are given.

At this point, alert readers may raise a legitimate concern that the top
n% of a very large search space is still a large portion. We hasten to supply
an explanation. It should be emphasized that it is the top #% of the designs
that ordinal optimization is concerned about, but not the top #% of the
performance values. There can be a big difference in some problems. How-
ever, value is never the intent of our approach, and the very connotation
“ordinal” precludes anything that one can say about cardinal notions, We
should also emphasize that the goal of ordinal optimization is not to replace
but to complement many existing techniques for optimization and search
problems. Our approach helps in speeding the process of narrowing down
potentially promising and manageable subsets of designs on which one can
lavish further attention using other means, including traditional ones. This
is a crucial step during the initial phases in many search problems that
involve: (i) search space which is immense and even structureless; and (ii)

®This can be seen by considering the probability of obtaining at least one good enough design
of n% in a total of N samples, which is given by 1~ (1 —n%)".
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performance evaluation which is corrupted by large noise. A difficult prob-
lem, such as that of a needle in a haystack, will always be hard without
sufficient knowledge or clue to the solution. Getting within the top n% of
such problem may not be very satisfactory (1% of a 10'° search space is
10%th from the optimum). However, because of the efficient narrowing down
process promised by ordinal optimization, a designer can learn from a one-
step application of ordinal optimization the properties of good solutions,
such as which portion of the design space is to be explored next, or what a
better representation of the problem should be. Both the paper by Ruml et
al. (Ref. 5) and the paper by Deng and Ho (Ref. 6) illustrate this point.
In the latter, they have concluded from successful application of ordinal
optimization that

new search representation (or region)
=f(old search representations (or regions)),

in the sense of traditional hill climbing. Determining the function f(-) in
the above step is a rich and barely explored subject which is outside the
scope of the paper. Adaptive search schemes such as genetic algorithms or
other man-machine interactions in many artificial intelligence based
methods are strongly implied. On top of these, as demonstrated by Vakili
et al. (Ref. 7) and Patsis et al. (Ref. 8), the generation and simulation of
the representative samples is also an area where modern massively parallel
computing technologies can be exploited.

In this paper, we investigate an important step involved in the imple-
mentation of ordinal optimization procedures: the subset selection problem.
Although similar problems are discussed in the statistics literature, usually
called ranking and selection procedures [see the extensive references by
Gupta and Panchapakesan (Ref. 9), Santner and Tamhane (Ref. 10), and
also a recent survey by Goldman and Nelson (Ref. 11)], the problem that
we are dealing with here has two major differences. First, the ranking and
selection procedures deal with selection from a set of samples which has size
of usually less than a hundred, while we consider subset selection from a set
of representative samples of size in the thousands or more. Second, the
notions of softened criterion and ordinal comparison are not represented in
the ranking and selection procedures. For example, one important quantity
used in these procedures, called the indifference zone, which is the distance
between the best and the rest in the design space, is nevertheless a cardinal
concept. Furthermore, the probability of the observed best being the actual
best is often too small to be useful, while the probability that one of the
observed top 50 is actually among the true top 50 can be close to one for
various problems, even with large estimation noise. As our results will show,
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it is the softening of goals that makes ordinal optimization ideas efficient in
narrowing down choices. Therefore, our objective in this paper is to provide
quantitative results for search reduction in ordinal optimization via align-
ment probability calculation.

This paper is organized as follows. Section 2 introduces formally the
notions of good enough subset and selected subset, and discusses alignment
probabilities with special attention to the case where we pick blindly from
the search space. Section 3 examines the horse race selection and proposes
a model to describe different shapes of performance profile. The results of
subset selection based on Monte Carlo studies are summarized and shown
in Section 4. The use of these results in search reduction is illustrated in
Section 5. We conclude in Section 6.

2. Ordered Performance Curves and Alignment Probability

2.1. OPC, Good Enough Subset, and Representative Samples. Let us
begin with a thought experiment. Suppose that we evaluate for all designs
in ® their performance values exactly, and that we plot these values from
the smallest to the largest with the corresponding design labels (names) laid
down and spaced equally on the abscissa axis. In such a way, we have
created (by definition) a nondecreasing curve, which we term the ordered
performance curve (OPC, Fig. 1). Notice that we have assumed the search

Ordered performance values

Ordered designs

Fig. 1. Examples of ordered performance curves: flat, neutral, steep, and general.
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space @ to be finitely denumerable with bounded performance values.® Con-
ceptually, it is possible to envision an ordered performance curve for every
optimization problem, and if the OPC were available, then any optimization
problem, whether to minimize or to maximize, could be solved directly by
reading off from the OPC. Unfortunately, most problems in real life do not
lend us such luxury, because exact performance evaluation can be very costly
and time consuming due to the challenges mentioned in the previous section.
Nevertheless, the concept of OPC does motivate our definition of good
enough subset.

Definition 2.1. A good enough subset G(®) of a design space is the
subset consisting of the top n% elements in the design space.

How we choose the value n depends on the softness of our goal in the
optimization problem as well as certain background knowledge. We will
discuss some related issues at the end of the paper. Using the above defini-
tion, the good enough subset G(®) is the set containing the smallest (i.e.,
top) n% elements in ®. Graphically, the good enough subset is #% of the
leftmost domain in the OPC abscissa axis. An important distinction here is
that G(®) is defined as a portion of the search space, and it does not depend
on how the performance values are distributed. In other words, construction
of G(®) bears no dependence on the shape of OPC or the range of perform-
ance values, but only on the fact that designs are ranked according to the
nondecreasing property of OPC. As a result, the good enough subset is a
concept based on ordinal comparison, rather than cardinal differences. It
also makes apparent the use of the term ““ordinal optimization.”

Next, we consider a set of representative samples drawn from the design
space which forms the basis of our selection process. We rely on the following
important assumption.

Assumption 2.1. Uniform Sampling. We can sample the design space
©® uniformly; i.e., each 6e® can be obtained with equal chance by some
sampling scheme.

It is a statistical fact that, under independent uniform sampling, we can
obtain a set of representative samples from the design space [David (Ref.
12)]. The validity of Assumption 2.1 could be problem dependent, however.
At the end of this paper, we will discuss some issues pertinent to uniform
sampling. Holding Assumption 2.1 valid, we then need to decide on the

°There is no restriction, however, to the size of the search space. In fact, we assume that
|®] ~ o0 and |®} < c0. If the design space is a continuum of the Euclidean space, then proper
discretization would be needed. We omit further details here.
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number of representative samples, denoted by N, used in the selection pro-
cess. This is our first occasion to apply the theme of goal softening in ordinal
optimization. With respect to the good enough subset of the design space
0, we are concerned about the event that at least one of the N samples falls
into the top n-percentile of ®. The probability of such event is given by

P=1-Prob{all N samples not in the top n-percentile of @}

=1-(1-n%)". (3)
For N=1,000 and n=35, we have (1—5%)"°°~5.29 x 1072, which makes
P~ 1. In other words, we have practically a very slim chance (of order 10™2)
that none of the 1,000 uniformly generated samples belongs to the top 5%
of the design space. Thus, throughout this paper, we consider a representa-
tive set of 1,000 design samples. Note that N=1,000 and n=35 are by no
means the only choices, nor the most general, but are used for illustrative
purposes in this paper. Perhaps, the reader is still bothered by questions
such as “Why not N=2,000 or N=1 x 10%”” However, we contend, that
while for fixed confidence (i.c., P) n is approximately inversely proportional
to N,'® increasing the number of samples unjustifiably in order to squeeze
out a smaller # does not agree with the premise of goal softening in ordinal
optimization, which aims at efficiently locating some good enough solutions
with high confidence. Lastly, if the reader still wants to obtain alignment
results for other values of N, some analytical results reported in Ho and
Deng (Ref. 13) will be helpful. These results provide building blocks for
calculating alignment probability (to be defined in the next subsection) when
N is a multiple of 1,000,

2.2. Alignment Probability and Blind Picking Lower Bounds. Our sub-
set selection process begins now with a representative set of 1,000 design
samples, obtained under the assumption in the previous section. We shall
denote this set by ® with the understanding that |®| = N =1,000. The designs
are 0,c0, i=1,...,N, and their corresponding performance values are
J;=J(6,). Notice that we have replaced the optimization problem (1) on ®
with a selection problem on ®,

reneig J(0). 4

With respect to , a good enough subset G(®) can be defined as previously.
In particular, we are interested in the top g designs of ® where''

g=1G(®)| =[N x n%].

"°A quick examination of (3) gives that n%=1—¢!'/M"°80 = = Npx100 log(1 — P).

""Should there be a tie situation of more than g possible choices, we arbitrarily select those
which tie with each other; and once selected, they will be fixed as members of G(®) from
then on.



JOTA: VOL. 93, NO. 3, JUNE 1997 463

The ordered performances Jip,i=1,..., N, are obtained by reordering the
Ji such that

Jn<Jp < <,
and the corresponding ordered design samples are

9[1], 9[2], ey e[N],
where'?

Jin=J(01)-
In this light, the OPC for ® is the graph of the ordered pairs
(69, J1a), i=1, ..., N. Notice that the group {6, 0p3), .. ., O} is a per-
mutation of the designs 6, 8., ..., 5. Consequently, the good enough
subset can be directly written as

G(O)={6u, Oz, ., O }-

Notice that, with respect to ®, we have summoned goal softening once
again. Our objective now is to pick out a selected subset S(®) from @, based
on certain selection rule, so as to achieve a reasonable degree of matching
with G(®). Since our focus is now switched to ®, then for typographical
simplicity, we shall use G and S in lieu of G(®) and S(®), should there be
no confusion.

We shall make precise the meaning of “reasonable degree of matching”
as follows. By matching or alignment, we mean the intersection of the good
enough subset and the selected subset. We are then interested in the align-
ment probability of {G n S}, defined by

P.,=Prob{|Gn S| >k}, %)
where k is called the alignment level. Notice that

1 <k <min(]G|, |S)),
and we let

Pa=1, when k=0.
Alignment probability depends on the alignment level &, as well as:

(i)  size of the good enough subset (i.e., g or n%);

(ii) size of the selected subset size (| S| =s);

(iii) subset selection rule;

(iv) noise characteristics during performance evaluations;
(v) OPC of ©.

In fact, Ju <Jin < - - <Jim form the order statistics from the performance density of the
design space. See the Appendix for detailed explanation.
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The subset sizes [items (i) and (ii)] are parameters chosen by the designer
according to certain softened criteria. These subset sizes are suggestions that
the authors aim at providing in this paper. Item (iii), i.e., the selection rule,
determines how S is picked, and we will examine two selection rules in this
paper: blind picking (BP) and horse race rule (HR). Other possible selection
rules such as round-robin tournament, pairwise elimination, and seeded
competition are commonly found in sport games. Determining the appropri-
ate choice of selection rule could sometimes be assisted by certain specific
knowledge of the problem such as the form of solution, structure of search
space (if applicable), some asymptotic or limiting behavior, and above all
common sense.

Meanwhile, noise characteristics and the underlying OPC [items (iv)
and (v)] are not choices for the designer, but rather relate to general know-
ledge about the selection problem, such as whether there would be a large
proportion of good designs, or bad designs, or intermediate designs, etc.
This general knowledge could be guessed by the designer based on very
crude performance evaluations, or even a priori, and this can often be easily
done. More about this will be examined in the next section. As explained
at the beginning of this section, the actual OPC is hard to obtain due to
noisy performance evaluation. The determination of the OPC and noise
characteristics is a separate estimation problem, and this will be investigated
in a future paper; see the Appendix for related ideas.”” On the other hand,
should there be absolutely no knowledge regarding how to select from the
search space, then the designer is in no better position than to blindly pick
out a selected subset. We refer to blind picking as the procedute which
involves selecting a subset S from the representative set ®: (a) randomly,
(b) without replacement, and (c) without comparison. This is an interesting
case because:

(A) it is by itself a selection rule [item (iii)];
(B) itis equivalent to the case where OPC is absolutely flat [item (v)];
(C) it is equivalent to the case where noise is infinite [item (iv)].

Either (B) or (C), or both, would warrant the blind picking situation,
because every design has the same tendency to be evaluated to any rank '
in ©. In addition, the alignment probability for this special case admits a

Nevertheless, to pinpoint the exact noise characteristics is often of secondary concern so long
as we can be conservative with the alignment results.

'“The reason why BP is equivalent to the case of an absolutely flat OPC is that the designer is
blindfolded and therefore is not able to perform any comparisons of the picked designs during
the picking process. It is as if the OPC is absolutely flat, exhibiting no detectable difference
among all designs.
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closed form expression, i.c.,
Pk, s, g| BP)=Prob{|Gn S| =k}

g||N-¢
min{g.s) l 5— l

=X

SN

which is the hypergeometric distribution (the reader is reminded that N=
1,000). Equation (6) was reported in Ho et al. (Ref. 1) and Ho and Deng
(Ref. 13), and we shall call it here the blind picking lower bound (BPLB)
alignment probability. It is a lower bound because, when the OPC is not
absolutely flat and noise is not infinite (i.e., when there is relevant knowledge,
however approximate), the alignment situation will certainly be improved.'*

Equation (6) can also give us suggestions on the subset size s when
the desired confidence 2. and alignment level k are given. Notice that
no performance evaluation is required when we select by using the BPLB
probabilities, except for spinning a lottery device to get s designs from 0.
Figure 2 shows the required subset sizes versus the desired alignment levels
for the special case when g=s and three BPLB probability values: 0.99,
0.95, 0.90. To understand these curves, consider alignment level k=1.
According to the curves, if we blindly pick out 67 designs from @ (again,
with no performance evaluation), then we are guaranteed with probability
0.99 that at least one of the 67 designs is indeed among the top 67 designs
out of N=1,000 (a 15-fold reduction from ®). Similarly, if we spin out 48
designs from the lottery device, then with 90% confidence we can be sure
that at least one of the 48 that we have picked belongs actually to the true
top 48 designs (a 20-fold reduction). The results are surprising, because we
have absolutely no knowledge about ® and we have done no performance
evaluation. These results are analogous to the famous example of the
birthday paradox.'®

(6)

3. Observed Performance under Horse Race Rule

3.1. Horse Race Rule and Ordered Noisy Performance. Departing
from the blind picking situation, our subset selection will need to be based

"We assume here that the inherent randomness of all designs is independent and identically
distributed ; see Assumption 3.1 in the next section.

'The birthday paradox states that, with more than 50% chance, there would be a birthday
matched among a handful of 23 people, and for merely 50 people, the chance of matching
is increased to 97%.
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Fig. 2. Subset size versus alignment level for BPLB=0.99, 0.95, 0.90.

on some estimates of design performance, however crude or inaccurate. In
particular, we consider the horse race rule (HR) in comparing the perform-
ance estimates. The HR rule can be pictured as having all designs in ©
competing at the same time, very much similar to N horses running a race
in which some designs could be leading at a certain moment in the evaluation
process, but could also be falling behind at another instant. The positions
of the designs are determined by their estimated performance values. The
running is stopped simultaneously, and the performance estimates at the
stopping time determine a rank for each design, on which our subset selection
is based. Such picture of simultaneous racing can be naturally generated
when the evaluation process is carried out in the modern massively parallel
computing environment, although any sequential method of performance
evaluation can also give us the necessary snapshots.

The performance estimate J(,) of each design 6,€® is the true perform-
ance J(0;) corrupted with additive noise. Mathematically, we have, for /=
L,..., N,

jiEj(gi)=-]i+wi’ Q)
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where J;=J(0;) and o, summarizes all randomness involved in evaluating
design 8;. The following assumption will be imposed:

Assumption 3.1. Noise Independence. The w; are independent and
identically distributed with probability density £(-).

Despite the required Assumption 3.1 for our results, Deng, Ho, and
Hu (Ref. 14) showed that, under reasonable assumption on noise,'” correla-
tions can in fact enhance the identification of the good enough designs in
the simulation process. Furthermore, notice that any ordinal comparison of
the 0, based on the J; will be unaffected even if £(-) has nonzero mean,
because all performance estimates are equally shifted. Therefore, without
loss of generality, we further impose, for all i=1,..., N,

E(w;)=0, Var(w,) = 0%, (8)

where o7 < 0. However, the reader may notice that, because of the noise
effect, it becomes impossible for us to identify the design label 6; with the
true performance value J; or the observed performance value J;. What we
actually collect at the end of the horse race are the reordered version of the
observed performances, or the ordered noisy performances, given by

Jn<J < <.

Here, Jj; stands for the ith smallest observed performance value. It should
be emphasized that the bracketed subscript [/] bears no direct relationship
with the design label 6, or J;. This is because, for each design 6;, the additive
noise can displace J(0;) to a different position, say i, in the list of ordered
noisy performances. Let the random variable for the ith observed design be
gm, i=1,..., N. Then, we have

Jiy=J(8)=J(6)),

for some j. In the worst case, when observed performances are very perverse,
the 6; corresponding to the smallest J; can be displaced to the last positions,
i.e., reordered as realization of Gm or G-y, etc.

Subset selection for the HR rule is based on the ordered noisy perform-
ances, and the selected subset is defined as
S={6)li<s, Jin=J;+ w;, for some j}

={0n), 02, ..., 01},

""Essentially, noise is normally distributed.
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where s=|5] is the size of the selected subset. The following summarizes the
selection process using the HR selection rule:

Design samples of ® 0,..., On @Diyern, On Noise samples ~£(+)
Y Y

Performances J(8,) Jivoo, v > T T Noisy performances
Y Y

Reordering Reordering

Y Y

Ordered performances  Jyy, . .., I Jiys.o.»Jm  Ordered noisy performances
¢

Ordered design samples 8y, ..., Oim By .., 0y Observed design labels
4 U

Good enough designs G {6y, .. ., Ol } {8y, ..., 8} Selected designs S

The alignment probability for the HR rule is defined in the same way as in
(5), i.e.,

P,=Prob{|Gn S| 2k} =2,(k, s, glHR).

However, unlike the blind pick selection rule, it does not admit a closed-
form solution but can be calculated via simple Monte Carlo methods. We
have carried out a number of Monte Carlo studies, and the results are shown
in the next section. Meanwhile, notice from the above diagram that the HR
alignment probabilities depend upon the underlying OPC of ® and the noise
density &(-). In view of the conditions imposed in (8), we can consider
parametrizing £ () by o-é under some functional form. Thus in characteriz-
ing alignment probabilities for the HR rule, what remains is to devise appro-
priate models for various OPCs.

3.2. Shapes of OPCs. The OPC of ® is determined by the spread of

the ordered performances Jj, Jiz), . . ., Jivy. Without loss of generality, let
us normalize the J; into the range [0, 1]; ie., fori=1,..., N,
yi=Uu=Jm)/Um—Jm). ®)

Meanwhile, we also consider mapping the ordered design samples, spaced
equally, into the range [0, 1]; i.e., we have a mapping x: ®— [0, 1] such that,
for all i=1,..., N,

x(O)=x=(—-1)/(N-1). (10)

Such normalization facilitates comparisons between different types of OPCs
and between different noise characteristics. For the former, we consider five
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general categories of OPC models:

(i) lots of good designs;

(if) lots of good and lots of bad designs, but few intermediate ones;
(iii) equally distributed good, bad, and intermediate designs;

(iv) lots of intermediate designs, but few good and few bad designs;
(v) lots of bad designs.

The readers may recall that the exact shape of an OPC is usually unavailable
because of noisy performance evaluation. However, it is reasonable to sup-
pose that, if a designer is able to guess from one of the above five categories
what the search space is likely to be, then he/she would be able to further
improve alignment results in the subset selection process. This guessing could
be achieved by comparing very crude performance estimates, or by some
general knowledge that is related to the designer expertise in solving the
problem. Here, man-machine interaction could play a role in some artificial
intelligence based search schemes. Meanwhile, a natural question is: Would
the five categories be sufficient in describing most scenarios in optimization?
To this end, it is often reasonable to ask the designer to classify problems
into five types; then, we need to show that we can use one typical shape in
these classes to compute the alignment probability without causing too much
error. We shall demonstrate this via numerical results in the next section
that these five categories are indeed sufficient.

Notice that the graph of (x;, y;) given by (9) and (10) is nondecreasingly
piecewise linear. In order to accommodate the five OPC types using the
smallest number of parameters, we consider modeling the OPC by a smooth
curve y= A(x) for xe[0, 1], with the properties that A(0)=0, A(1)=1, and
A(-) is nondecreasing. We shall call A(-) the standardized OPC. The func-
tion that we are going to employ for A(-) is the inverse mapping of the
incomplete beta function, parametrized by a pair of numbers @ and . More
precisely, for beta density f(y| a, #), @ >0, and >0,

fOla, By=C* "' (1—p)yFf, (11)
where
C=T(a+B)/T()(B)

and I'(-) is the gamma function, we have the cumulative distribution func-
tion, or the incomplete beta function, given by

F(yla,ﬂ)=f f(z|la, B)dz.
0
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Then, the standardized OPC is determined by
A(x|a, B)=F'(x|a, B)=F(x|1/a, 1/B), (12)

where F(-|-, ") can be evaluated'® via numerical approximation formulas
(Ref. 15). The density function f(y|-, ) plays the role of the so-called
standardized performance density of ®. In the Appendix, we will show that
performance density and OPC are mutually equivalent concepts. Meanwhile,
this two-parameter model does provide us the flexibility in describing the
five OPC categories by varying a and B. In particular, & and B correspond
to the flatness of A(-) near the regions of low and high performance values.
For example, when a<«1, the standardized OPC near the origin is very
flat, which implies that there is a larger proportion of small-valued designs,
whereas for > 1 the standardized OPC near [1, 1] is very steep, and conse-
quently there are only few large-valued designs. When a1 and =1, the
standardized OPC is close to the 45° straight line, which means that the
performance values for all designs in ® are relatively equally separated. In
the limiting case where either ¢ =0 or =0, we have an absolutely flat
OPC, which corresponds to the blind picking phenomenon. The relationship
between a, B, and A(-) is summarized in Fig. 3.

Standardized OPCs

Flat U-Shaped Neutral Bell Steep
Alx) Ax) A A Ax)

1 1 1 1 1

0 T X g T %0 T X0 1% 0 T ox

Standardized Performance Densities

a<l,f>1 a<l,f<l a=1,=1 a>1,0>1 a>1,8<1
fy) fty) f(y) fty) fy)

0 1 Yo 1Y 0 T Yo v Yo 1

Fig. 3. Examples of beta densities and corresponding standardized OPCs.

""The last equality in (12) can be easily seen when either a =1 or f=1; otherwise, the equality
is observed graphically.
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Fig. 4. Partitions of the ab-plane for five OPC categories.

Let us now relate the parameters ¢ and S with the five categories of
OPC models. It is actually easier to see the relationship between the af-
pair and the five OPC categories in the ab-plane, where a=log @ and 6=
log B. In particular, the origin of the ab-plane corresponds to the linear OPC
(i.e., when a and B both equal to 1). The limiting case of absolutely flat
OPC is represented by either a or b approaching co or —oo. The relative
locations of the five OPC categories in the ab-plane are displayed in Fig, 4.
The partitioning boundaries in the ab-plane are nevertheless for approxima-
tion only, since the distinction of lots of good designs, etc., could be subjec-
tively varied. A fuzzifying approach may also be applied, but will not be
considered in this paper.

4. Numerical Results for Selected Subsets

A natural question from the user point of view is: If the user would
give an estimate of the underlying OPC class %, as well as the noise situation
&(+), then how many from the N designs should the user pick so that, with
probability 2,,, at least k designs of the true top g ones are included in the
selected subset? Our objective in this section is to provide an answer to the
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above question by giving suggestions on the selected subset size. Formally,
the required subset sizes are given by the function

Z=Z(g,k;N,(€,§('),g’,y), (13)

where € is one of the five generic OPC classes and £ (- ) is the noise character-
istics, both supplied by the user. In this paper, we consider only N=1,000
and 2.,=0-95; therefore, the dependence on N and £, will be dropped for
notational convenience. Notice that Z(g, k) is decreasing in g and increasing
in k. Closed-form expressions for (13) cannot be easily obtained, except for
the blind pick selection rule mentioned earlier and a few other special cases."
However, we can estimate Z( -, - ) by running Monte Carlo simulations using
a certain choice of £(-). Let us discuss our ideas as follows.

Using the two-parameter OPC model introduced in the previous section,
we studied a total of 88 OPCs indexed by a and f as follows:

a=1{0.15, 0.25, 0.40, 0.65, 1.00, 1.50, 2.00, 3.00, 4.50, 8.00},
B=1{0.15,0.25, 0.40, 0.65, 1.00, 1.50, 2.00, 3.00, 4.50, 8.00} .

These parameters are marked on the ab-plane as shown in Fig. 5. The actual
OPCs are grouped into each class, and they sufficiently represent the five
types of OPC considered, which can be confirmed by the grid points in Fig.
5. Comparing Fig. 5 with Fig. 4, we ascribe the 10 OPCs in the third quadrant
of the ab-plane as the U-shaped class, the 19 OPCs near the origin as the
neutral class, and the 15 OPCs in the first quadrant as the bell-shaped class.
The rest of the 88 cases in the second and fourth quadrants of the ab-plane
belong respectively to the flat and steep classes.

As for noise characteristics, we employed in this study the uniform
noise density £ (- )~ U[—W, W], which has a variance Gé = W?/3. In par-
ticular, we considered three values: W=0.5, 1.0, 2.5. Notice that, for W=
0.5, the range of noise is in fact equal to the range of the OPC, which with
nonzero probability can result in swapping the ranks of some good enough
designs with the worst designs. The noise range for W= 1.0 is twice as large
as the range of OPC values. We therefore ascribe these respectively as
medium and large noise ranges. The case W=2.5 produces intermediate
alignment results between large noise and infinite noise, and we call this the
very large noise range.

"Those special cases are referred to as the least favorable configurations in the ranking and
selection literatures, and they are similar to the blind pick scenario, except that the good
enough subset is separated from the rest of the designs by a distance called the indifference
zone. See Gupta et al. (Ref. 9) and Santner et al. (Ref. 10) for further details. Nonetheless,
their treatments are not befitting of the premises of ordinal optimization, as explained in
Section 1.
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Fig. 5. Positions of the studied OPCs in the ab-plane.

In all of our Monte Carlo calculations, we simulated 10,000 realizations
of noisy OPC’s, and the alignment probabilities for g=|G| and s=|S| rang-
ing from 20 to 200 are recorded. Then, we interpolated the selected subset
sizes at alignment probability 2., = 0.95 for alignment levels k from 1 to 10.
Typical results for the case (¢, f)=(1.00, 1.00) are shown in Fig. 6. These
figures suggest that a low-order polynomial in & and g may be used to
approximate the subset sizes sufficiently well. Notice that the subset sizes
decrease in g and increase in k (with s=0 when k=0). We tried fitting
polynomials of various orders and found that the following functional form
suits well in all cases:

Z(k, g)=e*k’g" + 1, (14)

where Z,, p, v, 1 are constants depending on the OPC types and noise
characteristics. For each of the five OPC classes, we take the maximum of
the required subset sizes based on the simulated results from all OPCs
belonging to the same class. Then, we perform a regression on the MAXed
data, which in turn produces the coefficients appearing in (14). Together
with the blind pick selection rule [i.e., the alignment probabilities given by
(6)], we tabulate all coefficients in Table 1. It should be noted that the
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Fig. 6. Subset sizes interpolated from simulated data for OPC case ¢ = =1.00 and W=1.0.

subset sizes calculated by the coefficients above have a working range of
20<g<200, Z(-, )<180, and when the fraction k/g is small. We have
calculated the subset sizes for the five OPC classes using all noise cases, as
well as those of BP selection (i.e., absolutely flat OPC or infinite noise).
Figure 7 compares the subset selection sizes at different noise levels when
£=50. In the occasions when the noise factor is characterized to be within
these predetermined levels, proper interpolation of the subset sizes will
suffice.

5. Examples of Search Reduction

We demonstrate in this section the utility of the subset selection results
obtained previously. Let us also emphasize that the results are universally
applicable to problems of a wide range, such as in modeling and simulation,
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Table 1. Regressed values of Z,, p, v, n in Z(k, g).

. U[~0.5,0.5]
Noise ©
OPC class B-Pick Flat U-Shape Neutral Bell Steep
Z, 7.8189 8.1378 8.1200 7.9000 8.1998 7.7998
P 0.6877 0.8974 1.0044 1.0144 1.9164 1.5099
¥ —0.9550 —1.2058 —1.3695 —1.3995 —2.0250 -2.0719
n 0.00 6.00 9.00 7.00 10.00 10.00
Noise © U[-10, 1.0]
OPC class B-Pick Flat U-Shape Neutral Bell Steep
Z, 7.8189 8.4299 7.9399 8.0200 8.5988 7.5966
P 0.6877 0.7844 0.8989 0.9554 1.4089 1.9801
y —-0.9550 ~1.1795 —1.2358 -1.3167 —1.6789 —1.8884
n 0.00 2.00 7.00 10.00 9.00 10.00
Noise - U[-2.5, 2.5]
OPC class B-Pick Flat U-Shape Neutral Bell Steep
Z, 7.8189 8.5200 8.2232 8.4832 8.8697 8.2995
P 0.6877 0.8944 0.9426 1.0207 1.1489 1.3777
¥ —0.9550 —1.2286 -1.2677 —1.3761 —1.4734 —1.4986
n 0.00 5.00 6.00 6.00 7.00 8.00

Numeric ranges: ge€{20, 200], ke[1, 10], Z(-, - )< 180.

and the designer is required to supply only a minimal amount of information.
In particular, if the designer is unable to decide which particular OPC class
is to be considered, a fair guess using the neutral class would be sufficient
to begin the search. Moreover, there is always the blind pick selection size
to serve as fallback solution for the designer (upper bound of a selected
subset).

Example 5.1. Picking with an Approximate Model. The first example
concerns using a simple model to approximate a complex model. Consider
the following function defined on the range ® =10, 1]:

J(0)=a, sin(2npB) + a,0 +as, (15)
where
a|=3, a2=5, a3=2.

For p=1500, there are five hundred cycles in the range [0, !]. To estimate
the exact functional form of (15) may require extensive evaluation of the
entire domain [0, 1] and the proper choice of a fitting function. Similar
identification problems appear in many application areas. However, here we
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Fig. 7a. Subset selection sizes for the flat OPC class at different noise levels with g=50.

consider using a crude model to approximate (15). In particular, based on
the observation that there is a general rising trend in [0, 1], we use a linear
function,

J(8)=56. (16)
Notice that only the linear part of (15) is contained in the crude model (16),
which can be considered as a noisy version of the true model. In other
words,

J(0)=J(6) +error.

By generating 1,000 uniform samples from [0, 1], we have

O={0,...,000};
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Fig. 7b. Subset selection sizes for the U-shaped OPC class at different noise levels with
g=50.

the noise range can be estimated by
W=max(|J(6,) = J(6:)]) (7
;e

after adjusting for the mean values.

We selected the neutral OPC class for this example. Once the good
enough criterion g and the alignment level k are specified, the required
selected subset size s from the crude model (16) is given by Z(g, k| neutral,
W). Notice that these selected elements correspond to the first s members
of @, because of the monotone property of the crude model. Then, we
compare the selected subset with the true model to determine the number
of elements which indeed match with the good enough designs.

Accordingly, we have carried out 1,000 experiments, each with a differ-
ent ® generated, so as to validate the alignment probability against 2, =



478 JOTA: VOL. 93, NO. 3, JUNE 1997

200 1 1 T 1 T T T !

150

100

subset size

S =

50

0 1 | 1 1 | 1 1 1

1 2 4 6 8 10
k = alignment level

Fig. 7c. Subset selection sizes for the neutral OPC class at different noise levels with g=50.

0.95. We determined the alignments of each subset of size Z(g, k| neutral,
W), where g=20, ..., 200 and 1 <k <10. Some of the alignment probabilit-
ies are plotted in Fig. 8. Each line in Fig. 8 represents the fraction of the
1,000 experiments in which there are at least k of the g good enough designs
matched in the selected subset. Note that:

(i) the alignment probabilities are in general greater than 0.95, and
this can be attributed to the conservative estimates of Z(-, * );

(ii) some fluctuations of the alignment probabilities are observed, and
this is due to the residues of the regression functions of Z(-, -).

As seen from this example, by adopting a softened criterion, one can
indeed achieve good alignment results by employing a very crude model in
lieu of a complex model. This shows the importance of capturing the trend
or general behavior of a system prior to the study of essential details. Per-
haps, this also explains why a designer’s intuition is often more valuable in
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Fig. 7d. Subset selection sizes for the bell-shaped OPC class at different noise levels with
g=50.

the initial phase of a design process. Once a number of good enough designs
are singled out, detailed studies of these designs can be done in the subse-
quent stages of the design process.

Example 5.2. Picking in Running Short Simulations. In our second
example, we consider the cyclic server problem discussed in Ho et al. (Ref.
1). The system has 10 buffers (of unlimited capacity) for 10 arrival streams
modeled by Poisson processes with rates A;, ..., Ao respectively. There is
a single cyclic server serving the 10 buffers in a round-robin fashion: at
buffer i, m; jobs are served until the buffer becomes empty, whichever comes
first; then, the server moves from buffer i to buffer i+ 1 with a changeover
time of length J; (Fig. 9). A holding cost of C; units at buffer { is incurred.
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Fig. 7e. Subset selection sizes for the steep OPC class at different noise levels with g=>50.

The objective is to find a service policy (m;, ma, . .., my) such that it mini-
mizes the average holding cost per job per unit time in the system. We
assume that 0 <m; <10 for all /; in other words, no more than 10 jobs may
be served at each buffer for any policy. The design space @ is therefore the
lattice

O={m=(m,my, ..., mo)0<m<10,Vi}.
The cost coefficients and arrival rates are respectively
(Cla cees C10)=(19 13 15 10’ 15 50, ]a 1’ la 1)9

(Al9 see 32'10)=(19 ly la 1’ 1, 19 19 19 Is 1)9
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with a service rate of the server y =20, and the mean changeover time of §;
is

E(6:)=1/30, foralli.

All random quantities are exponentially distributed. Notice that buffer 4
and buffer 6 have much higher cost coefficients.

We have generated 1,000 policies (designs) from @ and run long simula-
tions for each policy to obtain their true ordering.”® After 16,753 jobs have
arrived the system, the best 20 ordered designs are

{601, By, - - ., Baoy ) = {761, 166, 843, 785, 417, 456, 205, 925, 234, 70,
586,91, 93, 493, 818, 565, 928, 250, 716, 840},

which will be taken as the true ordering of the top 20 designs. Assume that
we are interested in obtaining any of these top 20 designs; i.e., they form
the good enough subset from the 1,000 design samples; then, we could
have stopped the simulation at much earlier instants. Suppose that we had
terminated the simulation at the times when 161 and 330 jobs had arrived
in the system.z' Let us call these two time instants 7, and 7>, respectively,
and we have taken the corresponding noise levels to be large and medium.
Without any prior knowledge, we conjectured a neutral OPC for the 1,000
designs. Then, the required subset selection sizes at these two instants are
given as

st,=Z(20, 1| neutral, large) =65,
st,= Z(20, 1| neutral, medium) =47.
Let us first examine the 65 designs at 77,

Sy, = {201, 166, 565, 818, 702, 335, 487, 471, 73, 331, 843, 172,
139, 595, 945, 905, 156, 658, 649, 431, 969, 233, 130, 204,
307, 105, 840, 29, 179, 189, 58, 305, 40, 38, 9, 525, 31, 286,
17, 366, 982, 914, 529, 655, 567, 828, 640, 621, 53, 301,
527, 924, 165, 459, 126, 597, 285, 643, 761, 958, 681, 242,
379, 83, 927} ;

*Each policy is generated as follows: a buffer size between 0 and 10 inclusive is generated for
each m;,i=1,..., 10. Thus, each design is a point sampled from the lattice ®.

*The number of jobs 161,330 and 16,753 correspond respectively to 500, 1,000, and 50,000
standard clock ticks. Simulation up to 50,000 clock ticks is needed for the confidence intervals
of the performance values of all designs to separate from each other. A standard clock tick
is equivalent to an event happening to all 1,000 systems operating under all policies. See
Vakili (Ref. 16) for further details about the standard clock.
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we see that six designs (in italics) are included in S7,. At T,, the 47 selected
designs are

Sr,={761, 595, 565, 873, 843, 139, 525, 105, 166, 818, 477, 643,
567, 447, 417, 980, 969, 234, 928, 366, 686, 201, 702, 738,
704, 111, 255, 314, 982, 361, 785, 640, 773, 910, 901, 235,
455, 70, 914, 172, 928, 335, 897, 31, 456, 217, 176} ;

we see that ten designs (in italics) from the good enough subset have been
captured. It is also interesting to point out that, from our experiments, we
have observed a very fast convergence of design orders. Dai has shown in
his recent papers (Refs. [7-18) that ordinal comparisons indeed converge

at a much faster rate for several major types of discrete event simulation.

Similar results are also reported in Xie (Ref. 19).

Example 5.3. Picking in a Set of Random Processes. In this last
example, we consider N= 1,000 random processes driven by the dynamical
equation

X, (t+ ) =max{(1+r)X;() +o0,0}, i=1,...,N, (18)

where X;(¢) is the position of an object progressing in one direction (say,
to the right) with unknown rate r;. The object is constantly subject to bom-
bardments which cause the object to displace either to the left or to the
right. The bombardment is a Gaussian random variable with zero mean and
variance o2, hence the last term of (18) in which o is the standard Gaussian
random variable, The initial positions are X;(0) = xo >0 for all objects. More-
over, the objects will never pass to the left of the origin; i.c.,

X:(1) =0, foranyi=1,..., N and t>0.

Our good enough criterion is the set of g objects with the largest #;.
Notice that this is a maximization problem, but our selection results still
apply. Since we can only observe the positions X;(¢) and we assume that
the measurements are exact, one possibility is to wait long enough until a
time T* such that, for all £>T*, the growth of X,(f) dominates over the
magnitude of the bombardment; consequently, by comparing the positions
of X:(f), we can identify the good enough objects.> However, using the
selection results that we have calculated in the previous section, we can also
select a subset which contains some good enough objects at a much earlier
time.

*This differs from the second example above in the sense that the signal is becoming stronger
rather than the noise dissipating over time.
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Fig. 10. Positions of the 1,000 objects at 1= £y -

In our experiments, all the r; are chosen to be within 0.001 to 0.002
spaced equally; without loss of generality, we set the r; in decreasing order
such that »,=0.002 and ry=0.001. We also set 6°>=400 and xo=100.
Although we have determined that 7%>5,000 is needed, we considered
picking a subset using the neutral OPC and the large noise range at ¢=
tshort = 1,000. A realization snapshot showing the displacements of the 1,000
objects at fuore is shown in Fig. 10, Notice that the displacements have not
separated enough to give a good resolution of the good enough objects. The
realized alignment probabilities for g=30 and g= 50 are plotted in Fig. 11,
which are all within the range of 0.95, and again validates the correctness
of the subset selection sizes.

6. Conclusions

In this paper, we have suggested a quantitative approach for search
reduction using the framework of ordinal optimization. Subset sizes are
calculated based on a two-parameter model via Monte Carlo studies. We
have also demonstrated the uses of these quantitative results. The subset
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Fig. 11. Realized alignment probabilities for Example 5.3.

selection procedure is an important step in the initial search phase for many
optimization algorithms. While more studies on the modeling and uses of
subset sizes will require further research effort, other issues pertinent to the
successful implementation of ordinal optimization warrant some mention:

(i) Uniform Sampling. Assumption 2.1 is a first starting point of
studying various statistical issues in ordinal optimization. To truly perform
uniform sampling can itself be a difficult task. It amounts to a sound under-
standing of the structure and/or the representation of the system under
investigation. The simplest case, if possible, would be to reduce the search
space to a hypercube or hypersphere in the Euclidean space, and there exists
methods for uniform sampling in these cases [Zhigljavsky (Ref. 4)]. A more
difficult problem is to uniformly sample in a region with equality and/or
inequality constraints.

(ii) Good Enough Criterion. For minimization problems, if the
underlying OPC is flat, then it may be reasonable to adopt a greater top n%
as the good enough criterion, since there exist in fact more designs of rela-
tively low performance values. This will enhance the alignment probabilities.
On the other hand, if the performance curve is very steep, and thus it is very



486 JOTA: VOL. 93, NO. 3, JUNE 1997

Good enough criterion
l for steep OPC

L

1

Steep OPC

(7]
3
= Flat OPC
>
8
Good enough criterion
g | \ for flat OPC
= ;
E | X // |
(=% T AT e
g |
< | | Variable good enough
o | criterion according to
| type of OPCs
| | Designs

Fig. 12. Variable good enough criterion for different underlying OPCs.

difficult to obtain design samples of small performance values, then asking
for the top 0.1% (say) designs would incur heavy sampling costs. Therefore,
the good enough criterion should be flexibly chosen depending on the
designer’s knowledge of the underlying OPC, as suggested in Fig. 12. In
addition, the membership criterion for the good enough subset bears a natu-
ral extension to the membership function employed in the theory of fuzzy
sets. This may require future research attention in the artificial intelligence
area.

(iii) Different Subset Selection Rules. We have considered two selec-
tion rules in this paper, namely, blind pick and horse race. As mentioned
earlier, other possibilities such as round-robin tournament or pairwise com-
parison could induce different alignment results as well as costs of evaluation,
and these are yet to be studied. Moreover, combination of selection rules
(e.g., nested applications of selection rules during the course of simulation)
is an interesting area to be explored.

(iv) Adaptive Search Schemes. As we have emphasized in Section 1,
ordinal optimization is a useful complementary technique during the initial
phase of many search problems, and it aims at narrowing down potentially
promising and manageable subsets of solutions. Based on a selected subset,
a designer can examine the properties of the solutions from a single run of
ordinal optimization. Oftentimes, good insights can be obtained, which helps
improving the quality of solution further.® Therefore, adaptive search

A good example is discussed in Deng's recent work (Ref. 20).
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schemes can be devised using the gained knowledge. Existing techniques
such as genetic algorithms are natural candidates for this purpose. Strong
human-machine interaction is also a worthwhile dimension for development.
In this light, the alignment situations, i.e., the values g and &, could serve
as important parameters in the adaptive schemes.

7. Appendix: OPC and Performance Density

Assume that the performance values of all designs 8 in ® (or ®) are
bounded above and below. As a result, there exists Juin and Jy,x which are
the minimum and maximum values of J(8) attained respectively by some @
and 0 in ®. Again, in our thought experiment, suppose that we had evaluated
for all 8 the performances J(#) and we had constructed a histogram by
appropriately tallying all J( - )s between Jiin and Jiax . We call this histogram
the performance density, denoted by (), Jmin <y <Jmax. Ho and Deng
(Ref. 13) reported some performance densities for different instances of the
travelling salesman problem. When the number of designs is very large, the
performance density function can be approximated by a continuous curve,
Notice that y(y)=0 for y <Jmin and y>Ji... Next, consider shifting the
curve from J,i, to 0 on the abscissa axis, and scaling the abscissa axis
by 1/(Jmax —Jmin)- By multiplying w(-) by the appropriate normalization
constant, we can reduce the area under this transformed density function to
unity, obtaining the standardized performance density function f(y). The
integral of f(-) is the standardized performance distribution, denoted by
F(-), ie.,

F(}))-‘-f f(2) dz, (19)
0

where F(y) is defined only for ye[0, 1]. Notice that
f(y)=dF(y)/dy,  forye(0,1).

We can now draw the relationship between a standardized OPC A(x) and
a standardized performance distribution F(y); notice that both are approxi-
mate models. For the latter, F(y) is the proportion of design space, say x,
which has scaled performance value less than or equal to y; i.e.,

x=F(y), for0<x<1.
Since the standardized OPC A(-) is defined on [0, 1], we quickly see that
y=Ax)=F'(x), (20)



488 JOTA: VOL. 93, NO. 3, JUNE 1997

for x€[0, 1]. In other words, the ordered performance curve and the per-
formance distribution are inverse mappings of each other.

An interesting property related to the standardized performance density
is noted as follows. Under uniform sampling (cf. Assumption 2.1), the per-
formance values of the N designs Jy, J», . . . , Jy can be thought of as variates
generated from the performance density w(-). As discussed in Ho et al.
(Ref. 1), the ordered performance values are the order statistics J,
Jops - - - Jiwp. With respect to the transformation stated above, i,
Jip— v, David (Ref. 12) showed that

E[F(yw)]=i/(N+1).

In other words, the N values of F(y;) divide the standardized performance
density function into N+ 1 parts, each of which has an expected area of
1/(N+1). This result is useful in terms of determining the required sample
size N. More information about order statistics can be found in Balakrishnan
and Cohen (Ref. 21) and David (Ref. 12).

To date, extensive study is not found on the noise version of order
statistics. The analysis in this paper can be considered as a first attempt.
With respect to the noise model J;=J;+ w;, where J,~w(-) and o,~&(-),
the ordered noisy performances,

Ju<Jg < <,

can be compared to the order statistics generated by the density §(-),
‘T/(y)=J!//(y—S)§(s) ds.

That is, y(-) is the convolution between the performance density and the
noise density. Further examination of this area is an important research
direction.
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