Genetic Algorithms and Multi-Objective Genetic Algorithms

Luíño Seoane

June 12, 2013

1 Some toy examples and very beginnings

2 Genetic Algorithms – General strategies

3 Multi-Objective Genetic Algorithm

Outline

1 Some toy examples and very beginnings

2 Genetic Algorithms – General strategies

3 Multi-Objective Genetic Algorithm

Brief history

Figure: Ingo Rechenberg

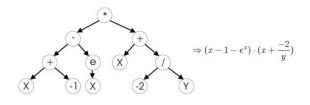


Figure: Hans Paul Schwefel

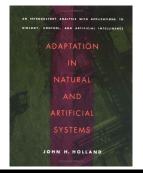
Brief history

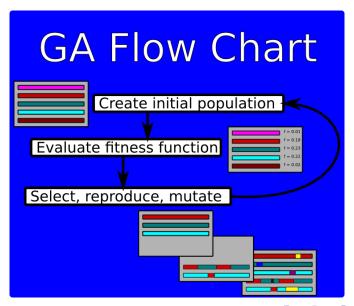
Figure: Lawrence J. Fogel

- Genetic Programming.
- Loads of applications on engineering.

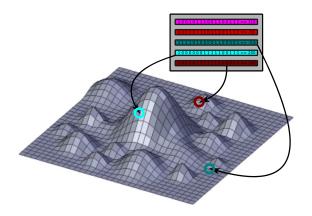
Brief history

```
A = 0 1 1 1 0 0 0
H1 = * 1 * * * * 0
H2 = * * * 1 0 * *
```



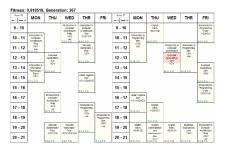

Figure: John H. Holland

Outline


1 Some toy examples and very beginnings

2 Genetic Algorithms – General strategies

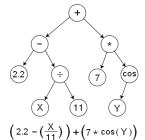
3 Multi-Objective Genetic Algorithm

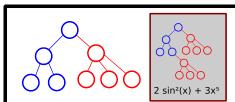

Scope:

Optimizing analytical functions

- Heuristic method.
- Encoding solutions as bit strings: easy to handle, easy to mutate.

Scope:

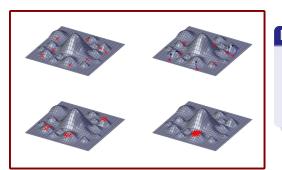

Combinatorial problems


- Usually hard (NP).
- Find proper encoding.
- Crossover and mutation must preserve structure.

Scope:

Genetic Programming

- Functions can be described as trees.
- Also programs.
- Rube Goldberg machines.

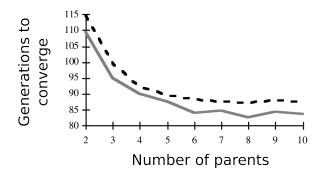


Problems:

Important problems

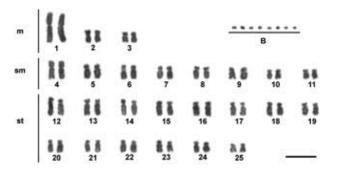
- Convergence to local optima.
- Loss of diversity.
- Can't cope with dynamic optimization.

Minor problems


- Complex fitness function.
- Scaling of search space.

Fitness function and selection

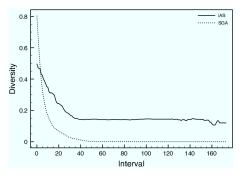
- Link between GA and problem.
- Fitness to whole chromosomes or to individual genes.
- Selection of parents:
 - Biologically inspired: $p(\mathbf{x}_i) = \frac{f(\mathbf{x}_i)}{\sum_j f(\mathbf{x}_j)}$
 - Tournament.
 - Select fittest.


Multi-parenting: orgy in the computer

- Two scenarios:
 - Exponential decay of performance increase.
 - Few parents perform better (combinatorial).

Diploids, Multiplods, Structured GA

- Encoding implicit memory.
- Dominances must be resolved:
 - External, fitness based, coded within genes...
- Neutral mutations enhance exploration.



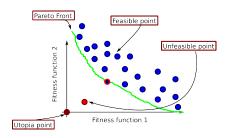
Dynamic systems: increasing diversity

- Diploids, multiploids, structured GA.
- Penalize fitness function:
 - Based on local abundance of solutions.
- Random inmigrants.
- Explicit memory of good solutions:
 - Release them by environment change.
- Usually harms convergence.

Alternative Splicing [4]

- Similar to structured GA.
- Promotes neutral mutations.
- Good reaction to environmental changes.
- Keeps diversity.

Outline


1 Some toy examples and very beginnings

2 Genetic Algorithms – General strategies

3 Multi-Objective Genetic Algorithm

What is the solution??

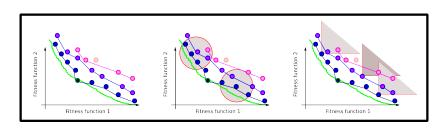
- We don't seek one only individual.
- Instead: a method to control trade-offs between objective functions.
 - Pareto front of non-dominated solutions.
 - Solutions should sample the whole space of optimals.

•
$$x \succ y \Leftrightarrow$$

•
$$f_k(x) \leq f_k(y), k = 1, ..., K$$

•
$$\exists k' \in \{1, ..., K\}, f_{k'}(x) < f_{k'}(y).$$

How to cope with this?


- Optimize by parts?
 - Subpopulations for different objectives that are mixed.
 - Much stronger local optima than usual.
- Combine fitness functions:
 - Are they commensurable?
 - What is the proper combination:
 - $F(\mathbf{x_i}) = \sum_j \alpha_j f_j(\mathbf{x_i})$?
 - $F(\mathbf{x}_i) = \prod_{j=1}^{n} [f_j(\mathbf{x}_i)]^{\alpha_j}$?
 - Introduces ad-hoc constrains.

How to cope with this?

- Try weighted fitness functions once more:
 - Encode the weights within the genome.
 - Evaluate the solutions with random weights.
 - Drawbacks:
 - Doesn't explore the trade-off surface.
 - Crashes if Pareto front is not convex.

Pareto-ranking-based optimization

- Assign fitness depending on dominance level.
 - Different implementations.
 - Natural ways of penalizing close solutions.

