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Abstract 

Regime shifts in complex systems are characterised by abrupt transitions between 

alternative persistent states. Decreasing resilience (the ability of a system to resist 

change) has been suggested as a useful leading indicator of regime shifts in such systems.  

The “paradox of enrichment” is a classic ecological model predicting that ecosystem 

enrichment can lead to a regime shift to an undesirable state.  Here we provide a general 

mathematical proof that decreasing resilience is a leading indicator of regime shift in the 

paradox of enrichment.  We find that the indicator is more useful in systems where: (1) 

the prey population growth rate is low; (2) the predation rate is high; and/or (3) predator-

prey biomass conversion is efficient.  These results can help identify ecosystems in which 

decreasing resilience is most likely to be a useful leading indicator of regime shift. 

 
INTRODUCTION 

Regime shifts in complex systems are characterised by abrupt transitions between 

alternative persistent states. In ecosystems, such shifts may be associated with ecological 

and economical damages that are severe, costly and permanent on timescales relevant to 

human activity (Scheffer & Carpenter 2003). Examples of regime shift are desertification 

(Rietkerk & van de Koppel 1997; Foley et al. 2003), lake eutrophication (Scheffer et al. 

1997; Carpenter et al. 1999), loss of coral reefs to macroalgae (Done 1992; Knowlton 

1992; McCook 1999), replacement of woodlands by open grass landscape and vice versa 

(Dublin et al. 1990), and changes in the world’s ocean-climate system (Reid et al. 1998; 

Hare & Mantua 2000; Hsieh et al. 2005). 

Ecosystems are subject to a variety of external conditions (changes in temperature, 

water supply, nutrients level, harvesting activities, etc.) most of which vary gradually 

with time.  A regime shift typically follows a period of apparent ecosystem insensitivity 

to changes in input variables; the shift occurs only when inputs reach a critical threshold 

(Scheffer & Carpenter 2003).  Regime shifts are difficult to predict, because they 

originate from multiple causes that may act non-linearly at different spatial and temporal 

scales (Brock & Carpenter 2006).  In ecosystems, regime shifts pose a substantial 

challenge to conservation managers, because warning signals are hard to infer from field 

observations and empirical data. 

Recently, decreasing resilience has been proposed as a signal of impending regime 

shift in complex systems (Scheffer et al. 2001; Scheffer & Carpenter 2003). Resilience is 

the ability of a system to resist change (Holling 1973).  Conceptually, resilience can be 

viewed as the depth of the basin of attraction surrounding a stable equilibrium. Gradual 

alterations of the external conditions can make the basin shallower without modifying the 

equilibrium state. As such, the system has not changed in appearance but has become 

highly susceptible to further changes that may push it to an alternative stable state 

(Scheffer & Carpenter 2003). 

In the present paper, we investigate the conditions under which resilience is a reliable 

indicator of regime shift in a classic ecological model, “the paradox of enrichment”.  This 
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model predicts that ecosystem enrichment can cause a regime shift to an undesirable state 

(Rosenzweig 1971). We provide a general mathematical proof that decreasing resilience 

is indeed a leading indicator of regime shift in this scenario. We also find that the 

indicator is more useful in systems where: (1) the prey population growth rate is low; (2) 

the predation rate is high; and/or (3) predator-prey biomass conversion is efficient.  These 

results can help identify ecosystems in which decreasing resilience is most likely to be a 

useful leading indicator of regime shift. 

 
METHODS AND RESULTS 

A classic dynamical system in ecology is the two-species predator-prey model used by 

Rosenzweig (1971) to demonstrate the paradox of enrichment.  The results of 

Rosenzweig’s model caution against enrichment as a strategy for increasing yields from 

ecosystems.  Rosenzweig provides six alternative formulations of the model, one of 

which is given by the following equations: 
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where V is the population size of the prey species, P is the population size of the predator 

species, r is the population growth rate of the prey species, K is the carrying capacity of 

the prey species, k is the predation rate, c is a constant to account for density-dependent 

predation effects (for small values of c, predation rates are lower at low prey density), J is 

the population size of the prey at equilibrium and A is the predator-prey conversion 

efficiency. 

Rosenzweig (1971) showed that the nontrivial equilibrium of this system is stable for 

values of K below a certain threshold, but becomes unstable past this point.  Thus, 

attempting to increase the carrying capacity of the system by, for example, increasing the 

supply of a limiting nutrient, can actually lead to a Hopf bifurcation, destabilising the 

system and resulting in extinction of both predator and prey. 

The nontrivial equilibrium of the system given by equations  (1) and (2) is given by 

the following expressions (Rosenzweig 1971): 
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The equilibrium exists ( P  is positive) when K > J. 

To investigate stability we construct the Jacobian matrix of partial derivatives and 

evaluate it at the equilibrium: 
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The system is stable when the determinant of the Jacobian is positive and the trace is 

negative (Jury criteria).  The determinant of Γ is easily shown to be always positive when 

the equilibrium exists.  The trace is negative when the term at the lower right of the 

matrix is negative.  This can be shown to be true when the following condition is satisfied 

(Rosenzweig 1971): 
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The resilience of the system (the ability of the system to resist change), ρ, can be 

expressed in terms of the time to return to equilibrium after a small perturbation 

(Nakajima & DeAngelis 1989): 
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where λdom is the dominant eigenvalue of the Jacobian (the eigenvalue with greatest real 

part).  Thus, to calculate resilience, we need to calculate the eigenvalues of the Jacobian.  
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Then the eigenvalues of the Jacobian are given by: 

2
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The real part of the dominant eigenvalue is then given by: 
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We are interested in how the resilience, )Re( domλ , changes as K increases.  In the 

stable regime, the real part of the λ dominant eigenvalue is negative, so we can take 

resilience as )Re( domλρ −= . 

If 042 <+ βγδ , then: 
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The inequality follows from a Taylor expansion of e
cJ

 and the fact that c and J are 

positive.  This leads directly to: 
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Also: 
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Thus the two derivatives dδ/dK and dγ/dK in equation (4) are positive, and the two 

coefficients of the derivatives are readily shown to be negative, so the whole expression 

is positive: 

0>
dK

dρ
, for 042 >+ βγδ  

Thus, for 042 <+ βγδ , resilience is decreasing, whereas for 042 >+ βγδ , resilience 

is increasing. 

There is some value of K = Kr for which 042 =+ βγδ .  It is easily shown that 

0/)4( 2 <+ dKd βγδ , so for K < Kr resilience is increasing and for K > Kr resilience is 

decreasing.  The graph of resilience versus K is unimodal with the maximum at K = Kr 

(Figure 1).  The system bifurcates at K = Kcrit and it can be shown that Kr is always 

strictly less than Kcrit: 
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where: 
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Thus, resilience will always decrease before the critical threshold is reached and we 

will have some warning of the impending bifurcation.  However, if Kr is close to Kcrit 

then the warning period will be short.  This is the case when τ → 0, or when r → ∞, k → 

0, cJ → 0 or A → 0.  This means that in systems where the growth rate of the prey 

population is high (r → ∞), the predation rate is low (k → 0; cJ → 0), or predator-prey 

biomass conversion is inefficient (A → 0), we can expect little warning of the impending 

bifurcation.  Conversely, when the growth rate of the prey is low (Figure 2), the predation 

rate is high, or the predator-prey biomass conversion is efficient, we may have 

considerable warning of impending bifurcation, and resilience may be a useful leading 

indicator of regime shift. 

For Rosenzweig’s five other predator-prey models, we obtain similar qualitative 

results.  These are given in the Appendix. 
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Figure 1 Resilience versus carrying capacity (K) for the two-species predator-prey model 

specified by equations  (1) and (2) with k = 0.05, c = 0.08, r = 0.05, J = 10 and A = 

0.2.  The decreasing resilience in the region Kr < K < Kcrit provides a warning of the 

impending bifurcation and destabilisation of the system at K = Kcrit. 
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Figure 2 As for Figure 1, but with the prey population growth rate, r = 0.3.  The effect of 

increasing r is to move Kr closer to Kcrit and thereby contract the range of values of K 

over which decreasing resilience is observed.  This means that there is less warning of the 

impending bifurcation at Kcrit. 

 
DISCUSSION 

Here we have produced two main results concerning resilience and the paradox of 

enrichment.  Firstly, our general analytical results show that resilience is a leading 

indicator of regime shift in each of the six different two-species models used by 

Rosenzweig (1971).  This extends the result of Nakajima and DeAngelis (1989), who 

obtained a similar result based on a single parameterisation of a similar two-species 

model.  Secondly, we have identified circumstances under which resilience is more likely 

to be a useful indicator of regime shift in simple two-species models. 

We identify three avenues for future research: analytic treatment of more complicated 

models; empirical valuation of our predictions using computer models; and empirical 

validation of our predictions using real ecosystems. 

Further analytic work is required to investigate whether our results apply to more 

complicated models that are closer analogues of real-world ecosystems.  Nakajima and 

DeAngelis (1989), for instance, extend the paradox of enrichment to a three-parameter 

model that includes nutrient recycling and find that, for their parameterisation at least, 

resilience decreases only shortly before the regime shift, because the third eigenvalue 

introduced by the third differential equation dominates the dynamics of the system for 

most nutrient input levels.  In such cases, our conditions for resilience to be a useful 

leading indicator of regime shift may not apply. 
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Empirical validation of our results is necessary because in practice the signal of 

decreasing resilience may be masked by noise and difficult to measure.  One measure of 

resilience in modelling studies is variance (Brock & Carpenter 2006).  Increasing 

variance is associated with decreasing resilience because, as a system becomes less 

resilient, it takes longer to recover from small perturbations and the overall behaviour is 

more variable.  An investigation into whether the increasing variance signal is stronger in 

empirical models with low prey growth rates, high predation rates and/or efficient 

predator-prey biomass conversion would provide an empirical test of our theoretical 

results.  Our preliminary investigations in this direction have thus far been equivocal. 

Our predictions about the kinds of ecosystems in which resilience is a useful leading 

indicator of regime shift are, in principle, empirically testable with data from real 

ecosystems.  Examples of such ecosystems are lakes are enriched by nutrient run-off 

(Carpenter 2003; Carpenter & Brock 2006), and the two-species aquatic laboratory 

communities that have previously been used to investigate the paradox of enrichment 

(Fussmann et al. 2000; Fussmann et al. 2005). 
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Appendix to Ecosystem Resilience and the Paradox of Enrichment 
Table A.1 Analysis of Rosenzweig’s (1971) models 1-6, following the procedure described for model 4 in the main text. 
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Table A.1 continued 
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