



### Different timestep





Different arithmetic



Different solver algorithm...





# Moral: numerical methods can run amok in "interesting" ways...

- can cause distortions, bifurcations, etc.
- and these look a lot like *real*, *physical* dynamics...
- source: algorithms, arithmetic system, timestep, etc.
- Q: what could you do to diagnose whether your results included spurious numerical dynamics?

## Moral: numerical methods can run amok in "interesting" ways...

- can cause distortions, bifurcations, etc.
- and these look a lot like *real*, *physical* dynamics...
- source: algorithms, arithmetic system, timestep, etc.
- Q: what could you do to diagnose whether your results included spurious numerical dynamics?
  - change the timestep
  - change the method
  - change the arithmetic

#### So ODE solvers make mistakes.

...and chaotic systems are sensitively dependent on initial conditions....



??!?

### **Shadowing lemma:**

Every noise-added trajectory on a chaotic attractor is *shadowed* by a true trajectory.

Important: this is for *state* noise, not *parameter* noise.

## Solving *PDEs*



## **Projection:**



### **Section:**





### Section of a UPO:



?





### **Aside: finding UPOs**



- Section
- Look for close returns
- Cluster
- Average
- See Gunaratne, So papers

Back to sections...time-slice ones now.

# Time-slice sections of periodic orbits: some thought experiments

- pendulum rotating @ 1 Hz and strobe @ 1 Hz?
- pendulum rotating @ 1 Hz and strobe @ 2 Hz?
- pendulum rotating @ 1 Hz and strobe @ 3 Hz?
- pendulum rotating @ 1 Hz and strobe @ 1/2 Hz?
- pendulum rotating @ 1 Hz and strobe @  $\pi$  Hz? (or some other irrational)

### When this becomes really useful:



### **Poincare section:**





#### What bifurcations look like on a Poincare section:



### **Computing sections:**

- Space-slice
- Time-slice

# Stability, $\lambda$ , and the un/stable manifolds

### Lyapunov exponents:

- nonlinear analogs of eigenvalues: one  $\lambda$  for each dimension
- $\Sigma \lambda < 0$  for dissipative systems
- λ are same for all ICs in one basin
- negative  $\lambda$  compress state space along *stable manifolds*
- positive  $\lambda$  stretch it along *unstable manifolds*
- biggest one  $\lambda_1$  dominates as  $t \rightarrow$  infinity
- positive  $\lambda_1$  is a signature of chaos

## These $\lambda$ & manifolds play a role in control of chaos...



## We've been assuming that we can measure all the state variables:



### But often you can't:



#### How to reconstruct the other state vars?



derivatives magnify noise!

### What this looks like in the state space:



This is not useful for computation.

# What we want here is to undo a projection:



### **Delay-coordinate embedding:**

"reinflate" that squashed data to get a *topologically identical* copy of the original thing.



### **Mechanics:**





### What this looks like:

Data:



Reconstruction space:







#### Takens\* theorem:

For the right  $\tau$  and enough dimensions, the dynamics in this *reconstruction space* are diffeomorphic to the original state-space dynamics.

\* Whitney, Mane, ...

### Diffeomorphisms and topology:

Diffeomorphic: mapping from the one to the other is differentiable and has a differentiable inverse.

#### What that means:

- qualitatively the same shape
- have same dynamical invariants (e.g.,  $\lambda$ )





### Picking $\tau$ :



### Picking m:

m > 2d: sufficient to ensure no crossings in reconstruction space:

...may be overkill.

"Embedology" paper: m > 2 dc (box-counting dimension)

#### If $\Delta t$ is not uniform:

Theorem (Takens): for τ>0 and m>2d, reconstructed trajectory is diffeomorphic to the true trajectory

Conditions: evenly sampled in time