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Brief history of computation

I computational devices and methods date back thousands
of years

I abacus; over 4000 years old, Sumer
I Euclid’s Elements; around 300 B.C.

I one of the first algorithms
I Greatest Common Divisor of integers a and b

I algorithm: step-by-step, unambiguously defined process
for solving a problem in a finite number of steps

I computation in the last 100 years
I Is there a mathematical formalism that allows for any

computable function to be solved algorithmically?
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The Decision Problem

I David Hilbert’s Entscheidungsproblem, 1928
I led to formalization of algorithm, 1936

I Alonzo Church and Stephen Cole Kleene, λ-calculus
I recursive functions
I basis of functional programming

I Alan Turing, Turing machines
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Church-Turing Thesis

I each person thought their models defined the “effectively
computable” functions

I that is, any computable function can be computed on a
Turing machine (or represented in λ-calculus)

I λ-calculus and Turing machines were found to define an
equivalent set of functions

I not proven, but thought to be true due to large number of
equivalent models

I general recursion, counter machines, register machines,
inhibitor Petri nets, cellular automata, ...
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The Turing machine

I currently the simplest model of computation
I a tape of symbols, a read/write head, an internal state, and

a transition table
I 7-tuple, M = 〈Q,Γ, B,Σ, δ, q0, F 〉

I Q: finite set of states
I Γ: finite set of tape symbols
I B ∈ Γ: blank symbol, used to delimit end of input
I Σ ⊆ Γ − {B}: set of input symbols
I δ : Q × Γ → Q × Γ × {L, R, N}: transition function
I q0 ∈ Q: initial state
I F ⊆ Q: accepting states
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An example

I Given a string of zeroes, is its length even?
I Q = {ODD, EVEN, YES, NO}
I Γ = {0, B}
I B = B
I Σ = {0}
I δ = see below
I q0 = EVEN
I F = {YES}

Tape Symbol Current State EVEN Current State ODD
0 ODD, 0, R EVEN, 0, R
B YES, B, N NO, B, N
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Categorizing problems

I decision problems
I the problems with yes/no, true/false, 1/0, etc. answers

I decidable problems
I if an algorithm exists that halts for both yes and no

instances
I semi-decidable problems

I if an algorithm exists that halts for yes instances and
doesn’t necessarily halt for no instances

I undecidable problems
I if there exists no algorithm that can determine all yes

instances
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The Halting Problem is undecidable
I INPUT: a program P and its data D
I QUESTION: Will P halt when given D?
I proof by contradiction

H(P, D) =

{

HALT , if P halts on D
LOOP, if P does not halt on D

Q(P) =

{

HALT , if H(P, P) = LOOP
loop forever , if H(P, P) = HALT

I contradiction when...

Q(Q) =

{

HALT , if H(Q, Q) = LOOP
loop forever , if H(Q, Q) = HALT
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Classifying decidable problems

I classifying problems by time and space requirements
relative to size of input

I P, NP, NP-Complete, NP-Hard, Co-NP, ...
I Non-deterministic Turing Machines

I Q: finite set of states
I Γ: finite set of tape symbols
I B ∈ Γ: blank symbol, used to delimit end of input
I Σ ⊆ Γ − {B}: set of input symbols
I δ : Q × Γ → {Q × Γ × {L, R, N}}: transition function
I q0 ∈ Q: initial state
I F ⊆ Q: accepting states
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P

I those decision problems that can be solved on a
deterministic TM in polynomial time

I primality testing
I minimal spanning tree
I 2-coloring a graph, ...

I n5000 is polynomial, but not efficient
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NP

I those decision problems that can be solved on a
non-deterministic TM in polynomial time

I P is a subset of NP
I to show a problem is in NP

I decision problem
I a given solution should be verifiable in deterministic

polynomial time
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Graph coloring

I INPUT: Graph G = (V , E), integer k
I QUESTION: Can G be colored with ≤ k colors?
I GRAPH − COLORING ∈ NP

I decision problem
I given a coloring of G, you can verify it in polynomial time

Adam Campbell

Theory of Computation



History Turing machines Decidability Classes of problems Conclusion

NP-Complete

I a problem X is complete for a class C if
I X ∈ C
I for every S ∈ C, there is a polynomial reduction from S to X

I a reduction of S to X takes each instance of s ∈ S and
maps it to an instance of x ∈ X such that x = YES iff
s = YES

I basically, X is more difficult (or at least as difficult) as every
other problem in C

I so, if X can be solved in polynomial time, so can every
other problem in C

Adam Campbell

Theory of Computation



History Turing machines Decidability Classes of problems Conclusion

K-SAT
I INPUT: Boolean expression using AND, OR, and NOT ,

and a list of variables
I QUESTION: Is there an assignment of TRUE /FALSE

values to the variables that satisfies the boolean
expression?

I (v11 ∨ v12 ∨ ¬v13)∧
I (v21 ∨ ¬v22 ∨ v23)∧
I (v31 ∨ ¬v32 ∨ ¬v33)∧
I ...

I Cook’s theorem (1971) shows that K − SAT is
NP-Complete; first known NP-Complete problem

I the proof is beyond the scope of this tutorial
I essentially, any NTM can be transformed in polynomial

time to a Boolean satisfiability problem
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Showing other problems are in NP-Complete

I need only to show that an existing problem in NP-Complete
can be reduced in polynomial time to your problem

I Richard Karp (1972) showed 21 more NP-Complete
problems

I Garey and Johnson (1974) is an excellent resource for
NP-Complete problems

I thousands of known NP-Complete problems
I currently, none of them have a polynomial time algorithm
I if one goes down, they all go down
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Interesting problems

I MAX-CLIQUE
I INPUT: Graph G = (V , E), integer k
I QUESTION: Does there exist a clique in G containing at

least k vertices?
I is an element of NP-Complete

Adam Campbell

Theory of Computation



History Turing machines Decidability Classes of problems Conclusion

Interesting problems

I MAX-CLIQUE-5
I INPUT: Graph G = (V , E)

I QUESTION: Does there exist a clique in G containing at
least 5 vertices?

I is an element of P
I n5 algorithm
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Summary

I equivalent models of computation
I λ-calculus, Turing Machines, general recursive functions, ...

I decision problems
I decidable, semi-decidable, undecidable

I classes of problems
I P, NP, NP-Complete
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Further topics

I PSPACE, NEXP, ...
I P = NP?
I Information theoretic proof that P 6= NP?

I Can we prove that an exponential number of steps is
required on a deterministic Turing machine in order to
obtain enough information to find a solution to
NP-Complete problems?
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