Theory of Computation

Adam Campbell

June 15, 2008

 299

重

≮ロト ⊀部 ▶ ≮唐 ▶ ⊀唐 ▶

Adam Campbell

Brief history of computation

- I computational devices and methods date back thousands of years
	- \blacktriangleright abacus; over 4000 years old, Sumer
	- Euclid's Elements: around 300 B.C.
		- \triangleright one of the first algorithms
		- Greatest Common Divisor of integers a and b
- \blacktriangleright algorithm: step-by-step, unambiguously defined process for solving a problem in a finite number of steps
- \triangleright computation in the last 100 years
	- \triangleright Is there a mathematical formalism that allows for any computable function to be solved algorithmically?

The Decision Problem

- I David Hilbert's Entscheidungsproblem, 1928
- \blacktriangleright led to formalization of algorithm, 1936
	- \triangleright Alonzo Church and Stephen Cole Kleene, λ -calculus
		- \blacktriangleright recursive functions
		- \triangleright basis of functional programming
	- \blacktriangleright Alan Turing, Turing machines

Church-Turing Thesis

- \triangleright each person thought their models defined the "effectively" computable" functions
	- \triangleright that is, any computable function can be computed on a Turing machine (or represented in λ -calculus)
- \triangleright λ -calculus and Turing machines were found to define an equivalent set of functions
- \triangleright not proven, but thought to be true due to large number of equivalent models
	- \triangleright general recursion, counter machines, register machines, inhibitor Petri nets, cellular automata, ...

The Turing machine

- \triangleright currently the simplest model of computation
- a tape of symbols, a read/write head, an internal state, and a transition table
- **Fig. 7-tuple,** $M = \langle Q, \Gamma, B, \Sigma, \delta, q_0, F \rangle$
	- \triangleright Q: finite set of states
	- \blacktriangleright Γ: finite set of tape symbols
	- \triangleright $B \in \Gamma$: blank symbol, used to delimit end of input
	- \triangleright $\Sigma \subset \Gamma \{B\}$: set of input symbols
	- \triangleright δ : Q \times Γ \rightarrow Q \times Γ \times {L, R, N}: transition function

K ロ ▶ K 御 ▶ K ヨ ▶ K ヨ ▶ ...

 $E \Omega Q$

- ► $q_0 \in \mathsf{Q}$: initial state
- \blacktriangleright \vdash \vdash \subset Q: accepting states

 \triangleright Given a string of zeroes, is its length even?

$$
\quad \blacktriangleright \ \ Q = \{\textit{ODD}, \textit{EVEN}, \textit{YES}, \textit{NO}\}
$$

$$
\blacktriangleright \ \Gamma = \{0, B\}
$$

$$
\blacktriangleright \ B=B
$$

$$
\textbf{1} \quad \Sigma = \{0\}
$$

 $\delta =$ see below

$$
\blacktriangleright q_0 = \text{EVEN}
$$

$$
\blacktriangleright F = \{ \text{YES} \}
$$

Adam Campbell

Categorizing problems

- \blacktriangleright decision problems
	- \blacktriangleright the problems with yes/no, true/false, 1/0, etc. answers
- \blacktriangleright decidable problems
	- \triangleright if an algorithm exists that halts for both yes and no instances
- \blacktriangleright semi-decidable problems
	- \triangleright if an algorithm exists that halts for yes instances and doesn't necessarily halt for no instances
- \blacktriangleright undecidable problems
	- \triangleright if there exists no algorithm that can determine all yes instances

The Halting Problem is undecidable

- \triangleright INPUT: a program P and its data D
- QUESTION: Will P halt when given D?
- \blacktriangleright proof by contradiction

 $H(P, D) = \begin{cases} HALT, & \text{if } P \text{ halts on } D \\ I, & \text{O}QP \text{ if } P \text{ does not.} \end{cases}$ LOOP, if P does not halt on D

$$
Q(P) = \begin{cases} HALT, \text{ if } H(P, P) = LOOP \\ loop forever, \text{ if } H(P, P) = HALT \end{cases}
$$

 \blacktriangleright contradiction when...

$$
Q(Q) = \begin{cases} HALT, \text{ if } H(Q, Q) = LOOP \\ loop \text{ forever, if } H(Q, Q) = HALT \end{cases}
$$

イロメ イ部メ イヨメ イヨメー 重 QQQ

Adam Campbell

Classifying decidable problems

- \triangleright classifying problems by time and space requirements relative to size of input
- ▶ P, NP, NP-Complete, NP-Hard, Co-NP, ...
- \triangleright Non-deterministic Turing Machines
	- \triangleright Q: finite set of states
	- \blacktriangleright Γ: finite set of tape symbols
	- \triangleright $B \in \Gamma$: blank symbol, used to delimit end of input
	- \triangleright $\Sigma \subset \Gamma \{B\}$: set of input symbols
	- \triangleright δ : Q \times Γ \rightarrow {Q \times Γ \times {L, R, N}}: transition function

K □ ▶ K @ ▶ K ミ ▶ K ミ ▶ │ 큰 │ K 9 Q Q

- \blacktriangleright $q_0 \in \mathsf{Q}$: initial state
- \blacktriangleright \vdash \vdash \subset Q: accepting states

P

- \triangleright those decision problems that can be solved on a deterministic TM in polynomial time
	- \blacktriangleright primality testing
	- \blacktriangleright minimal spanning tree
	- \triangleright 2-coloring a graph, ...
- \triangleright n^{5000} is polynomial, but not efficient

NP

- \triangleright those decision problems that can be solved on a non-deterministic TM in polynomial time
- \blacktriangleright P is a subset of NP
- \triangleright to show a problem is in NP
	- \blacktriangleright decision problem
	- \triangleright a given solution should be verifiable in deterministic polynomial time

Graph coloring

- INPUT: Graph $G = (V, E)$, integer k
- \triangleright QUESTION: Can G be colored with $\leq k$ colors?
- \triangleright GRAPH COLORING \in NP
	- \blacktriangleright decision problem
	- \triangleright given a coloring of G, you can verify it in polynomial time

Adam Campbell

- \triangleright a problem X is complete for a class C if
	- $\rightarrow X \in C$
	- \triangleright for every S ∈ C, there is a polynomial reduction from S to X
- \triangleright a reduction of S to X takes each instance of s ∈ S and maps it to an instance of $x \in X$ such that $x = YES$ iff $s = YES$
- \triangleright basically, X is more difficult (or at least as difficult) as every other problem in C
- \triangleright so, if X can be solved in polynomial time, so can every other problem in C

[History](#page-1-0) **Turing machines [Conclusion](#page-15-0)** [Decidability](#page-6-0) **[Classes of problems](#page-9-0)** Conclusion

K-SAT

- \triangleright INPUT: Boolean expression using AND, OR, and NOT, and a list of variables
- \triangleright QUESTION: Is there an assignment of TRUE/FALSE values to the variables that satisfies the boolean expression?
	- \blacktriangleright ($V_{11} \vee V_{12} \vee \neg V_{13}$)∧
	- \triangleright (V_{21} \vee \neg V_{22} \vee V_{23}) \wedge
	- \triangleright (V_{31} \vee \neg V_{32} \vee \neg V_{33}) \wedge
	- \blacktriangleright .
- \triangleright Cook's theorem (1971) shows that $K SAT$ is NP-Complete; first known NP-Complete problem
- \triangleright the proof is beyond the scope of this tutorial
- \triangleright essentially, any NTM can be transformed in polynomial time to a Boolean satisfiability proble[m](#page-12-0) (□)

 $2Q$

Adam Campbell

Showing other problems are in NP-Complete

- \triangleright need only to show that an existing problem in NP-Complete can be reduced in polynomial time to your problem
- ▶ Richard Karp (1972) showed 21 more NP-Complete problems
- Garey and Johnson (1974) is an excellent resource for NP-Complete problems
- \triangleright thousands of known NP-Complete problems
- \triangleright currently, none of them have a polynomial time algorithm
- \blacktriangleright if one goes down, they all go down

Adam Campbell

Interesting problems

- \blacktriangleright MAX-CLIQUE
- INPUT: Graph $G = (V, E)$, integer k
- \triangleright QUESTION: Does there exist a clique in G containing at least k vertices?
- \blacktriangleright is an element of NP-Complete

メミメ メミメ 重 $2Q$ (□) (_□)

Adam Campbell

Interesting problems

- \blacktriangleright MAX-CLIQUE-5
- \blacktriangleright INPUT: Graph $G = (V, E)$
- \triangleright QUESTION: Does there exist a clique in G containing at least 5 vertices?
- \blacktriangleright is an element of P
- \blacktriangleright n^5 algorithm

ぼう メモト 重 $2Q$ (□) (_□)

Adam Campbell

Summary

- \blacktriangleright equivalent models of computation
	- \blacktriangleright λ -calculus, Turing Machines, general recursive functions, ...
- \blacktriangleright decision problems
	- \blacktriangleright decidable, semi-decidable, undecidable
- \blacktriangleright classes of problems
	- \triangleright P, NP, NP-Complete

ス 語 下 重 $2Q$ **← ロ ▶ → 伊** \mathbf{p}_c

Adam Campbell

Further topics

- \blacktriangleright PSPACE, NEXP, ...
- \blacktriangleright P = NP?
- Information theoretic proof that $P \neq NP$?
	- \triangleright Can we prove that an exponential number of steps is required on a deterministic Turing machine in order to obtain enough information to find a solution to NP-Complete problems?