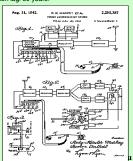
CC: Rates of Change and Constraints for Adaptation and Mitigation

SF Sustainability Summer School 2009

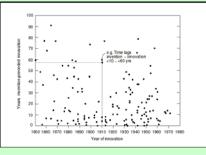
arnulf.grubler@yale.edu

Reminder: Innovation Life Cycle (and main drivers, ex. technology)

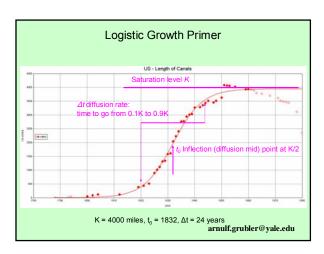
- Invention (new knowledge, research)
- Innovation (new application of knowledge, R&D)
- Niche markets (exploration of application possibilities and debugging via supplier-user interaction)
- Diffusion (standardization, cost reductions via learning curve and scale effects, globalization of markets)

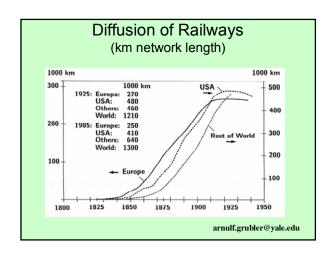

arnulf.grubler@yale.edu

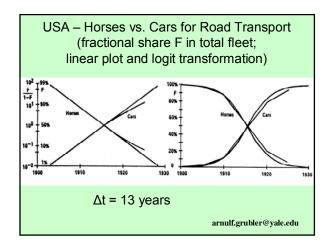
Invention - Innovation Lag: The Unrecognized Inventor


Movie Actress Hedy Lamarr (Eva Kiesler) together with musician George Antheil patented "secret communication system" in 1942 which US Navy thought useless Now as "spread spectrum technology" basis of all cell phones.

Invention-Innovation lag: 50 years!

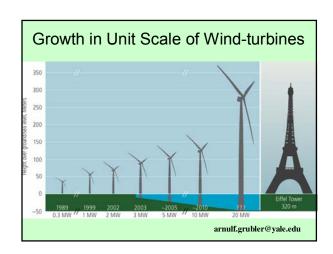

Time Lag Between Invention and Innovation: No shortening of stochastic variation

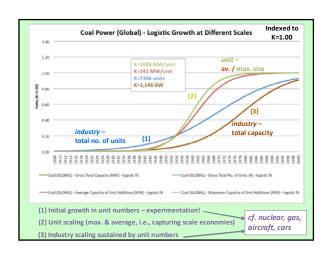


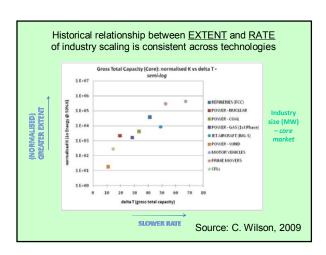

Source: Rosegger, 1996

Why Emphasis on Diffusion?

- Significance of innovation only when widely applied (society, economy, environment)
- Generally life cycle phase taking longest
- Equalizing force (but no homogeneity): Importance for DCs
- Availability of descriptive & causal formal models (≠ invention, innovation)
- Diffusion and Substitution




Fractality


• Diffusion processes operate at levels of:

Technology (size, performance, efficiency,..)

Industry (production AND use) regional to global markets

	,	JSA	,	USSR	
	46	Ar(press)	40	Ar (years)	
primary energy					
wood coal oil gas energy technologies surface coal infrastructure canals	1883 1885 1956 1990 1975	65 66 79 112 70	1919 1926 1985 1983 1986	77 76 120 47 59	Diffusion/Substitution Rates and Timing US - USSR
railways roads	1913 1916	90 92	1941 1941	101	
passenger transport rail car/bus air transport technologies steam/motor ships diesel/electric locomotives	1920 n.a. 2004 1886 1951	51 50 67 75	1971 1976 2006 1900 1961	57 53 80 66 14	Note similarities despite fundamental different diffusion environment: Central Planning vs. Market
military nuclear warheads labor force agriculture	1970	31 115	1982	27	Exception: social change (diffusion of literacy)
manufacturing service education literacy rate	1930 1975	120 224 160	1923	38	arnulf.grubler@yale.edu

Diffusion: Macro variables

- Involves time and space (S-curve and spatial hierarchy centers)
- First mover vs. follower: longest (slowest) diffusion time & highest adoption (first mover) vs. catch-up at lower levels (follower)
- Market size vs speed and impact:
 Large size & impact = slower diffusion
 Small size and impact (fashion) = fast diffusion
- Diffusion (slower) vs. substitution (faster)
- Always look at: market share AND absolute volume; watch out for competitors

arnulf.grubler@yale.edu

Hierarchies of Rates of Change: (Diffusion Rates of Transport Systems)

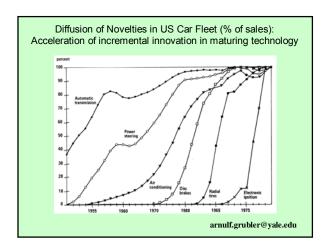
	US	SA SA	USSR	
	to	Δt	t _o	Δt
Total length of transport infrastructure	1950	80	1980	80
Growth of railways 1830-1930 1930-1987	1858 Decline	54 Decline	1890 1949	37 44
Treated ties (USA) Track electrification (USSR)	1923	26	1965	27
Replacement of steam locomotives	1950	12	1960	13

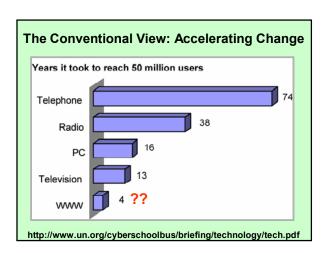
Determinants of Diffusion Speed (beyond macro)

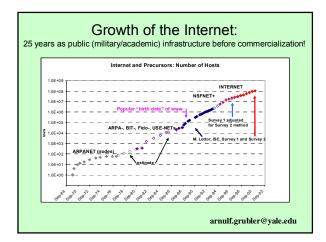
- Type of adoption decision (individual, collective, authoritative)
- Type of communication channels (mass media vs. word-of-mouth)
- Nature of social system (interconnection, sources of learning: internal vs. external)
- Existence and efforts of change agents
- · Perceived attributes of innovation:
 - -- relative advantage (e.g. performance, costs);
 - -- adoption effort (e.g. investment size);
 - -- compatibility (technological, social integration);
 - observability (social visibility, learn from neighbors);
 - -- trialability (learning from own experience).

arnulf.grubler@yale.edu

Explaining Differences in Diffusion Speed (each additional + implies *ceteris paribus* slower diffusion) | Diff | Rel. | Infra- Tech

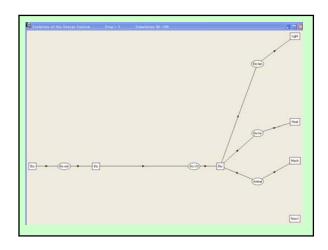

Δt	Example	Diff/ Sub.	advantage	Scale	Infra- structure needs	Techn. Interde- pendence
80/110	coal vs wood USA/World	s	++	+++	+++	+++
47/60	railways France/World	D	+++	+++	+++	+++
25	% US homes with radio	D	+++	++	+	++
28	mechanization coal mines Russia	s	++	+	+	++
16	Car vs. horse, France, UK	s	++	+	++	++
15	Color vs. B/W TV, USA	s	+	++	+	+

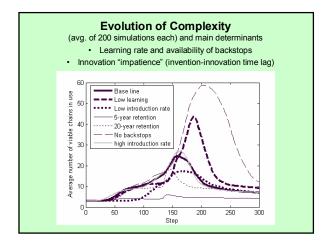

Source: Grübler/Nakicenovic/Victor, 1999, Energy Policy 27:247-280

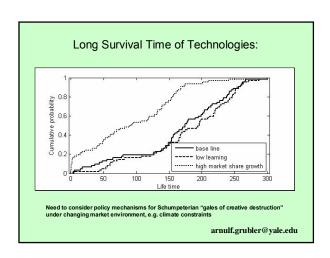

Innovation Diffusion Rates in the US HISTOGRAM OF DIFFUSION RATES (\(\Delta = \text{t}_0.9F^* \text{t}_0.1F^* \) Sample A (117 cases) mean = 57.5 st.dev = 52.5 sample B (265 cases) mean = 41.0 st.dev = 42.0 arnulf.grubler@yale.edu

Is Change Accelerating?

- · More Myth than reality
- Frentic incremental innovations in maturing markets (cars, Microsoft,...)
- Piggy-back on existing infrastructures (nuclear, Internet, cell-phones)
- With growing capital stock: More to change!
- Basic diffusion patterns in time and space unchanged
- Big hits require time!


Technology Systems (Interrelatedness)


- Increasing interdependence: Change constrained by slowest component
- To date: Poor theoretical/empirical understanding
- Key importance in transformative change (CC)
- Insights from agent-based model of evolution of technological complexity (Ma/Grubler/Arthur/Nakicenovic IIASA IR-08-02)


arnulf.grubler@yale.edu

The Evolution of Technological Complexity

- Agent-based simulation model of the global energy system since 1800
- Random walk model of invention discovery and stochastic combination with other technologies into energy chains and systems
- Evolutionary selection environment
 - uncertain increasing returns
 - market share gains f(rel. advantage)
 - externalities (stochastic C-tax)

Rates of Change History suggests typical turnover rates of systems of between 20-70 years depending on: - Market size - Technology characteristics (e.g. costs) - Adoption environment (e.g. market growth, capital) - Policy support Fastest: short lifetime, low capital (<10 yrs) e.g., fashion gadgets, appliances Slowest: long lifetime, capital intensive (>70-100 yrs) infrastructures, settlements Inverse relationships: (larger) size → (slower) speed (larger) importance/significance → (slower) speed CC adaptation/mitigation constrained by slowest system components Need for policy mechanism of retiring of long-lived vintages (Schumpeterian "gales of creative destruction")