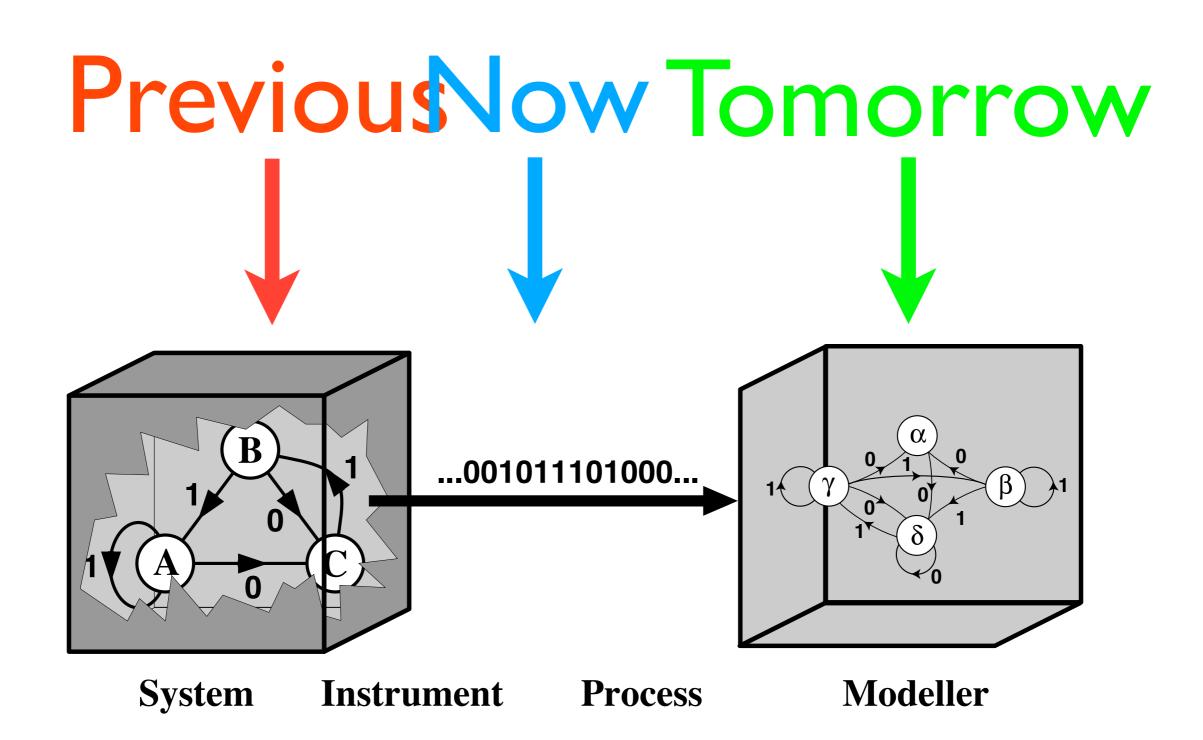
Complexity

Jim Crutchfield
Complexity Sciences Center
Physics Department
University of California at Davis

Complex Systems Summer School Santa Fe Institute St. John's College, Santa Fe, NM 20 June 2017



The Learning Channel

Complexity

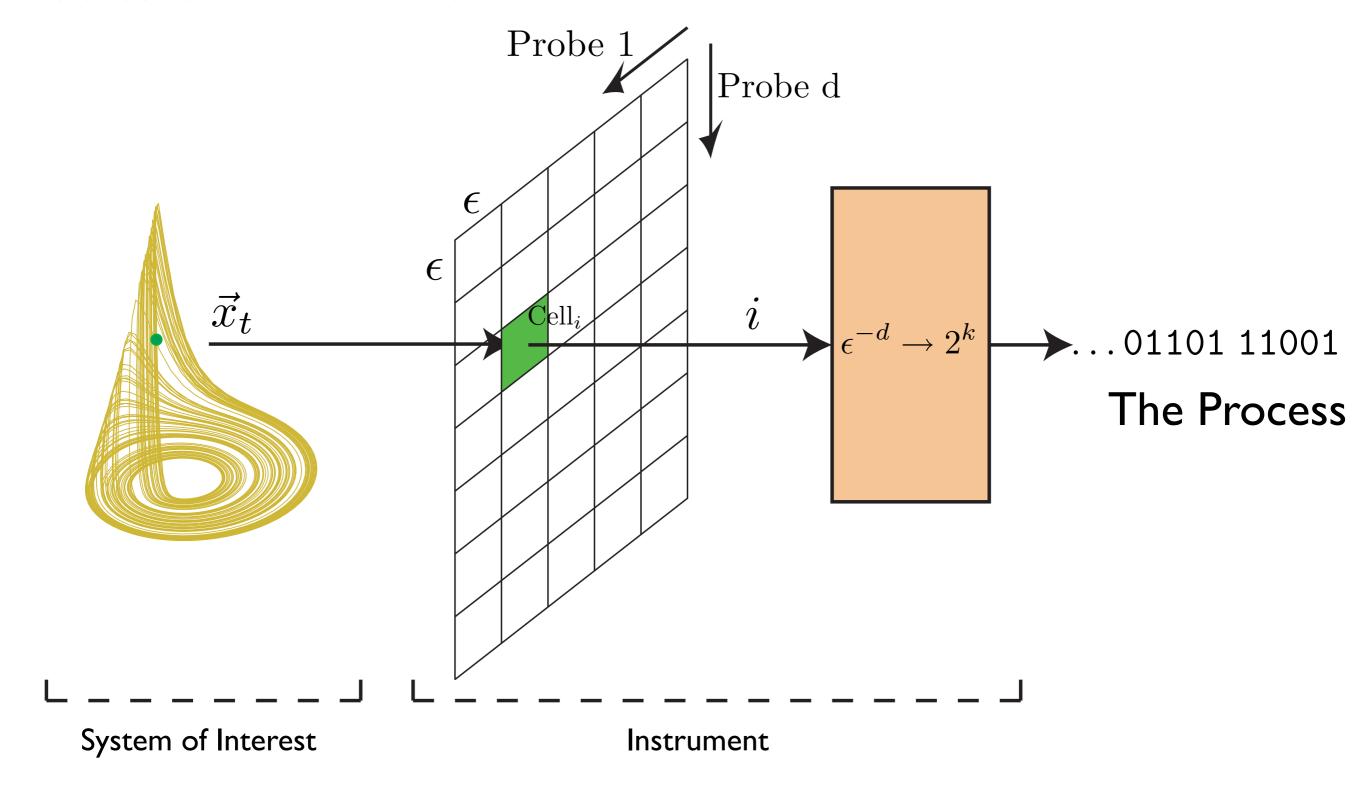
Information Theory for Complex Systems Yesterday:

I. Information Theory
Information Measures
Algorithmic Basis

Now:

II. Information & Memory in Processes

Intrinsic Computation
Measuring Structure
Intrinsic Computation
Optimal Models



Measurement Channel

Complexity Lecture 2: Information in Complex Processes (CSSS 2017) Jim Crutchfield

Main questions now:

How do we characterize the resulting process?

Measure degrees of unpredictability & randomness.

What correlational structure is there?

How do we build a model from the process itself?

How much can we reconstruct about the

hidden internal dynamics?

Stochastic Processes:

Chain of random variables:
$$\overset{\leftrightarrow}{S} \equiv \dots S_{-2}S_{-1}S_0S_1S_2\dots$$

Random variable: S_t Alphabet: A

Past:
$$\overset{\leftarrow}{S}_t = \dots S_{t-3} S_{t-2} S_{t-1}$$

Future:
$$\overrightarrow{S}_t = S_t S_{t+1} S_{t+2} \dots$$

L-Block:
$$S_t^L \equiv S_t S_{t+1} \dots S_{t+L-1}$$

Word:
$$s_t^L \equiv s_t s_{t+1} \dots s_{t+L-1} \in \mathcal{A}^L$$

Stochastic Processes ...

Process:

$$\Pr(\stackrel{\leftrightarrow}{S}) = \Pr(\dots S_{-2}S_{-1}S_0S_1S_2\dots)$$

Sequence (or word) distributions:

$$\{\Pr(S_t^L) = \Pr(S_t S_{t+1} \dots S_{t+L-1}) : S_t \in \mathcal{A}\}$$

Process:

$$\{\Pr(S_t^L): \forall t, L\}$$

Consistency conditions:

$$\Pr(S_t^{L-1}) = \sum_{S_{t+L-1}} \Pr(S_t^L) \qquad \Pr(S_{t+1}^{L-1}) = \sum_{S_t} \Pr(S_t^L)$$

Types of Stochastic Process:

Stationary process:

$$\Pr(S_t S_{t+1} \dots S_{t+L-1}) = \Pr(S_0 S_1 \dots S_{L-1})$$

Assume stationarity, unless otherwise noted.

Notation: Drop time indices.

Models of Stochastic Processes:

Markov chain model of a Markov process:

States:
$$v \in \mathcal{A} = \{1, \dots, k\}$$
 $\overset{\leftrightarrow}{V} = \dots V_{-2} V_{-1} V_0 V_1 \dots$

Transition matrix:
$$T_{ij} = \Pr(v_{t+1}|v_t) \equiv p_{vv'}$$

$$T = \begin{pmatrix} p_{11} & \cdots & p_{1k} \\ \vdots & \ddots & \vdots \\ p_{k1} & \cdots & p_{kk} \end{pmatrix}$$

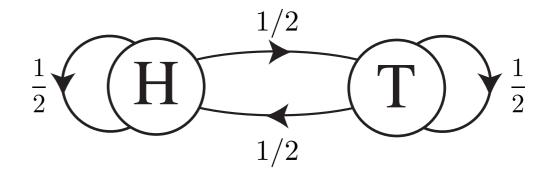
Stochastic matrix:
$$\sum_{i=1}^{k} T_{ij} = 1$$

Models of Stochastic Processes ...

Example:

Fair Coin: $A = \{H, T\}$

$$T = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$



$$\Pr(H) = \Pr(T) = 1/2$$

Asymptotic invariant distribution: $\pi \equiv \Pr(H, T)$

$$\pi = \pi T$$

Models of Stochastic Processes ...

Example:

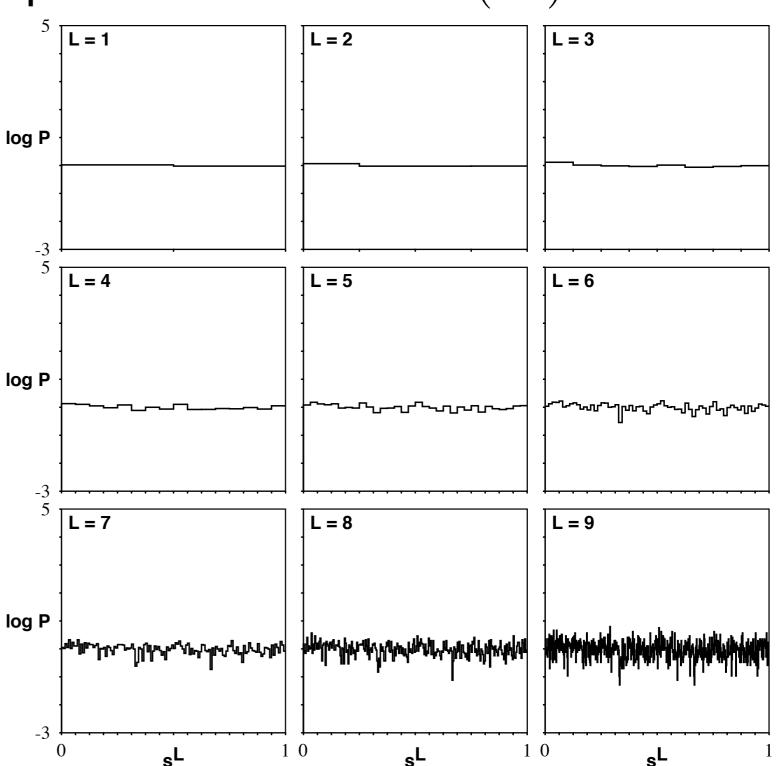
Fair Coin ...

Sequence Distribution: $Pr(v^L) = 2^{-L}$

$$s^L = s_1 s_2 \dots s_L$$

$$s^{L} = \sum_{i=1}^{L} \frac{s_i}{2^i}$$

$$s^L \in [0, 1]$$

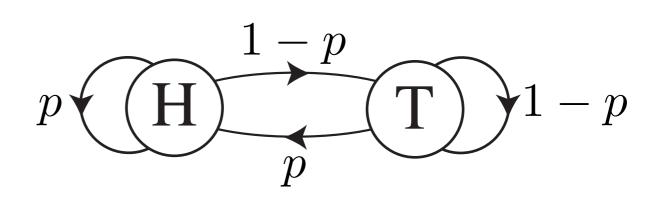


Models of Stochastic Processes ...

Example:

Biased Coin: $A = \{H, T\}$

$$T = \begin{pmatrix} p & 1-p \\ p & 1-p \end{pmatrix}$$



$$Pr(H) = p$$

$$Pr(T) = 1 - p$$

$$\pi = Pr(p, 1 - p)$$

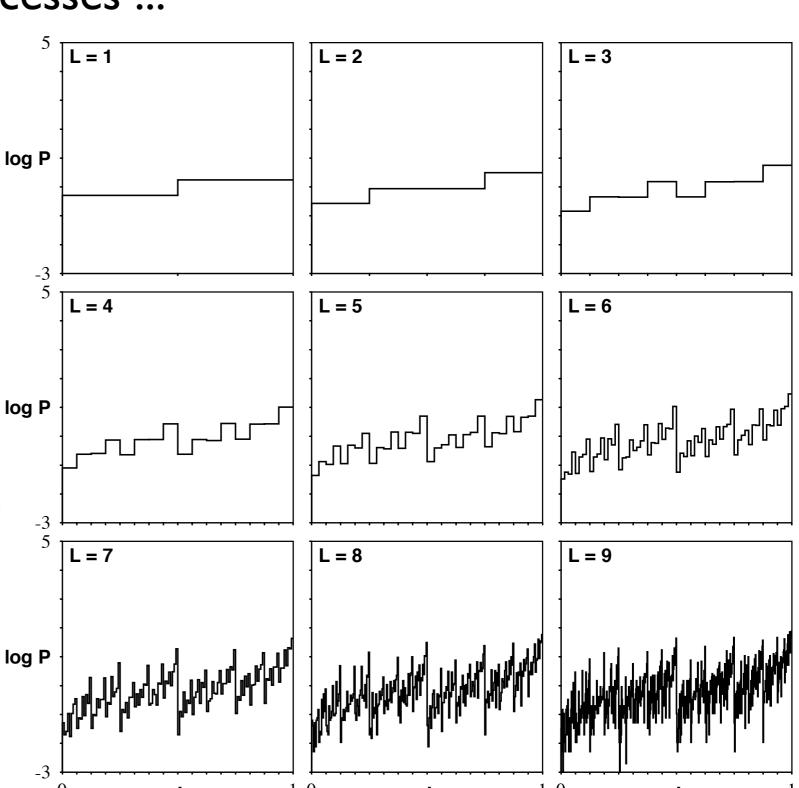
Models of Stochastic Processes ...

Example:
Biased Coin ...

Sequence Distribution:

$$Pr(s^L) = p^n (1-p)^{L-n},$$

 $n = Number Hs in s^L$



Models of Stochastic Processes ...

Example: Golden Mean Process = "No consecutive 0s" Markov chain over 1-Blocks: $\mathcal{A}=\{0,1\}$

$$T = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ 1 & 0 \end{pmatrix}$$

$$\pi = \Pr(V = 1, V = 0)$$

$$= \begin{pmatrix} \frac{2}{3}, \frac{1}{3} \end{pmatrix}$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$

$$0$$

$$1$$

As an order-I Markov chain.

A minimal-order model of the GM Process.

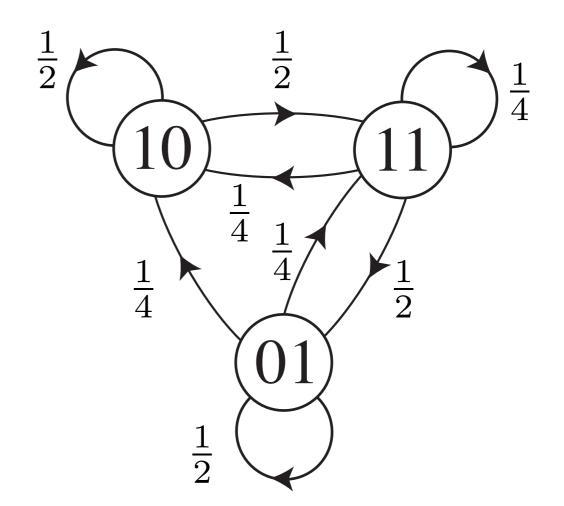
Models of Stochastic Processes ...

Example: Golden Mean Process ...

as a Markov chain over 2-Blocks: $\mathcal{A} = \{10, 01, 11\}$

$$T = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{pmatrix}$$

$$\pi = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$$

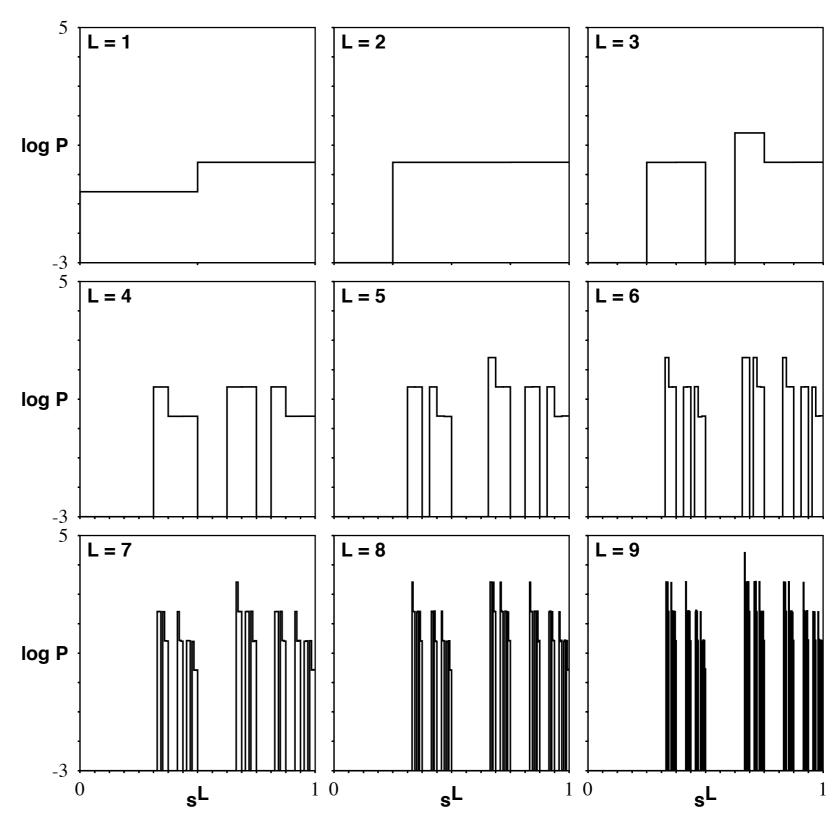


Previous model and this:

Different presentations of the same Golden Mean Process

Models of Stochastic Processes ...

Example:
Golden Mean:



Models of Stochastic Processes ...

Two Lessons:

Structure in the behavior: supp $Pr(s^L)$

Structure in the distribution of behaviors: $Pr(s^L)$

Models of Stochastic Processes ...

Hidden Markov Models of Processes:

Internal: $A = \{A, B, C\}$

$$T = \begin{pmatrix} p_{AA} & p_{AB} & p_{AC} \\ p_{BA} & p_{BB} & p_{BC} \\ p_{CA} & p_{CB} & p_{CC} \end{pmatrix}$$

Observed: $\mathcal{B} = \{0, 1\}$

$$T^{(s)} = \begin{pmatrix} p_{AA;s} & p_{AB;s} & p_{AC;s} \\ p_{BA;s} & p_{BB;s} & p_{BC;s} \\ p_{CA;s} & p_{CB;s} & p_{CC;s} \end{pmatrix}$$

$$p_{AA} = \sum_{s \in \mathcal{B}} p_{AA;s}$$



symbol | transition probability

Models of Stochastic Processes ...

Types of Hidden Markov Model:

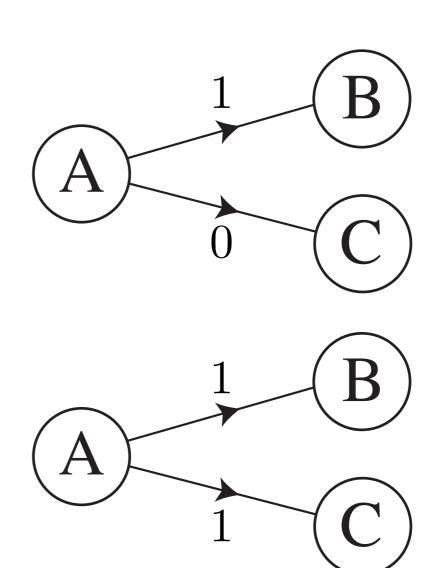
"Unifilar": current state + symbol "determine" next state

$$Pr(v'|v,s) = \begin{cases} 1\\0 \end{cases}$$

$$Pr(v',s|v) = p(s|v)$$

$$Pr(v'|v) = \sum_{s \in \mathcal{A}} p(s|v)$$

"Nonunifilar": no restriction



Multiple internal edge paths can generate same observed sequence.

Models of Stochastic Processes ...

Example:

Golden Mean Process as a unifilar HMM:

Internal:
$$\mathcal{A} = \{A, B\}$$

$$1|\frac{1}{2} \qquad 0|\frac{1}{2}$$

$$T = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ 1 & 0 \end{pmatrix} \quad \pi_V = (2/3, 1/3)$$

Observed: $\mathcal{B} = \{0, 1\}$

$$T^{(0)} = \begin{pmatrix} 0 & \frac{1}{2} \\ 0 & 0 \end{pmatrix} \quad T^{(1)} = \begin{pmatrix} \frac{1}{2} & 0 \\ 1 & 0 \end{pmatrix}$$

Initial ambiguity only: At most 2-to-1 mapping

$$BA^n = 1^n$$
 Sync'd: $s = 0 \Rightarrow v = B$ $AA^n = 1^n$ $s = 1 \Rightarrow v = A$

Irreducible forbidden words: $\mathcal{F} = \{00\}$

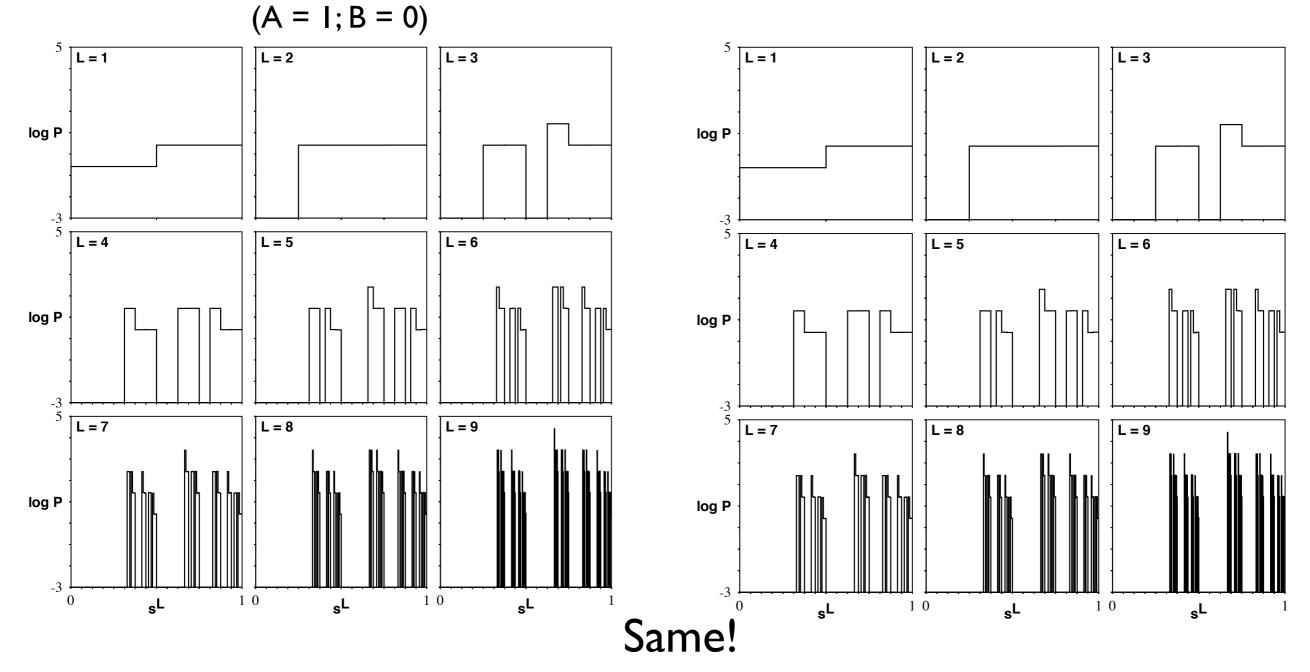
Models of Stochastic Processes ...

Example:

Golden Mean Process ... Sequence distributions:

Internal state sequences

Observed sequences



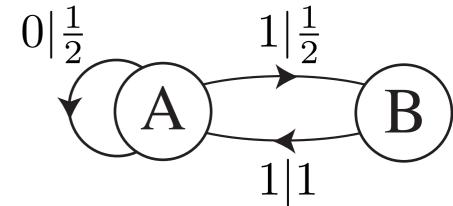
Complexity Lecture 2: Information in Complex Processes (CSSS 2017) Jim Crutchfield

Models of Stochastic Processes ...

Example: Even Process = Even #1s

As a unifilar HMM:

Internal (= GMP): $A = \{A, B\}$



$$T = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ 1 & 0 \end{pmatrix} \quad \pi_V = (2/3, 1/3)$$

Observed: $\mathcal{B} = \{0, 1\}$

$$T^{(0)} = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 0 \end{pmatrix} \quad T^{(1)} = \begin{pmatrix} 0 & \frac{1}{2} \\ 1 & 0 \end{pmatrix}$$

$$v^L = \dots AABAABABAA\dots$$

$$s^L = \dots 0110111110\dots s^L = \{\dots 01^{2n}0\dots\}$$

Irreducible forbidden words: $\mathcal{F} = \{010, 01110, 0111110, \ldots\}$

No finite-order Markov process can model the Even process!

Lesson: Finite Markov Chains are a subset of HMMs.

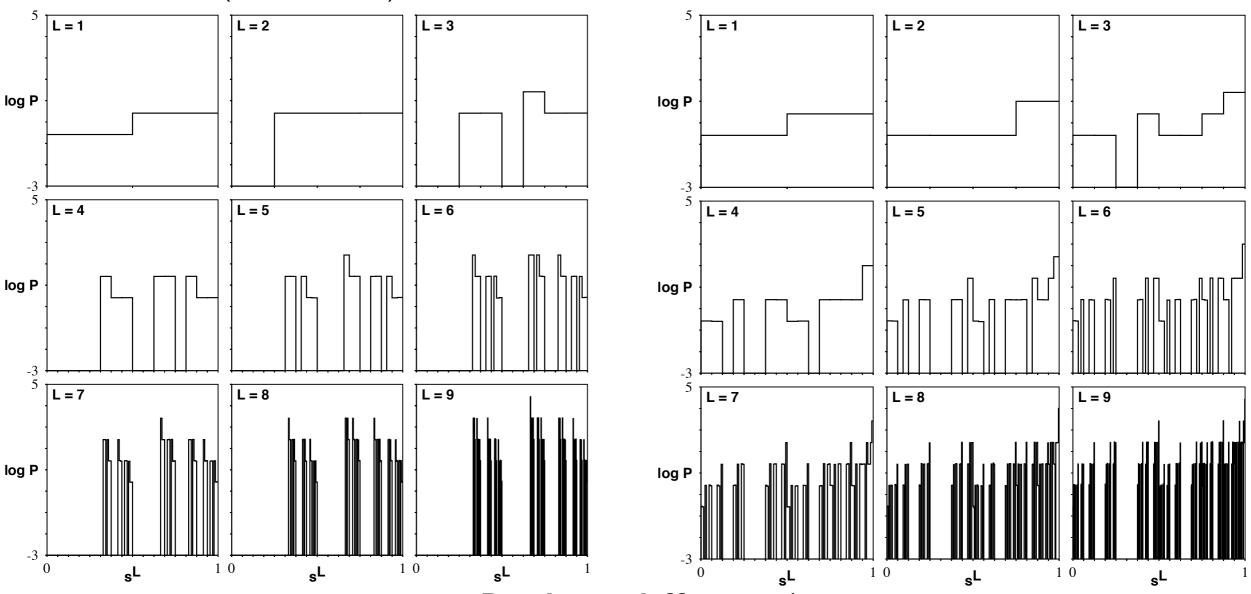
Models of Stochastic Processes ...

Example:

Even Process ... Sequence distributions:

Internal states (= GMP)

(A = I; B = 0)



Rather different!

Complexity Lecture 2: Information in Complex Processes (CSSS 2017) Jim Crutchfield

Models of Stochastic Processes ...

Example:

Simple Nonunifilar Source:

Internal (= Fair Coin): $A = \{A, B\}$

$$T = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \quad \pi_V = \begin{pmatrix} \frac{1}{2}, \frac{1}{2} \end{pmatrix} \qquad 1 | \frac{1}{2}$$
Observed: $\mathcal{B} = \{0, 1\}$

$$T^{(0)} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \quad T^{(1)} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} \end{pmatrix}$$

$$T^{(0)} = \begin{pmatrix} 0 & 0 \\ \frac{1}{2} & 0 \end{pmatrix} \quad T^{(1)} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} \end{pmatrix}$$

$$AAAAAAAAA...$$

Many to one: $11111111 \Leftarrow \begin{cases} AABBBBBBB... \\ AAABBBBBB... \end{cases}$

DDD

BBBBBBBB.

ABBBBBBBB...

Is there a unifilar HMM presentation of the observed process?

Models of Stochastic Processes ...

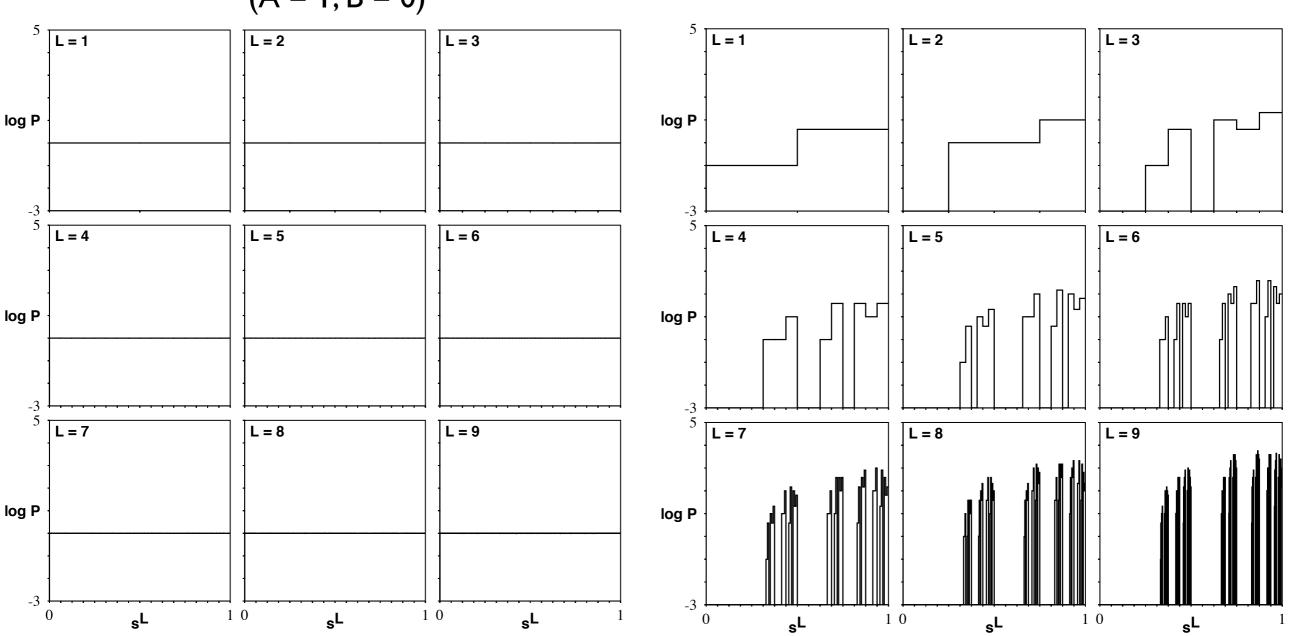
Example:

Simple Nonunifilar Process ...

Internal states (= Fair coin)

$$(A = I; B = 0)$$

Observed sequences



Complexity Lecture 2: Information in Complex Processes (CSSS 2017) Jim Crutchfield

What to do with all of this complicatedness?

- I. Information theory for complex processes
- 2. Measures of complexity
- 3. Optimal models and how to build them

Information in Processes ... Entropy Growth for Stationary Stochastic Processes: $\Pr(\stackrel{\leftrightarrow}{S})$

Block Entropy:

$$H(L) = H(\Pr(s^L)) = -\sum_{s^L \in \mathcal{A}} \Pr(s^L) \log_2 \Pr(s^L)$$

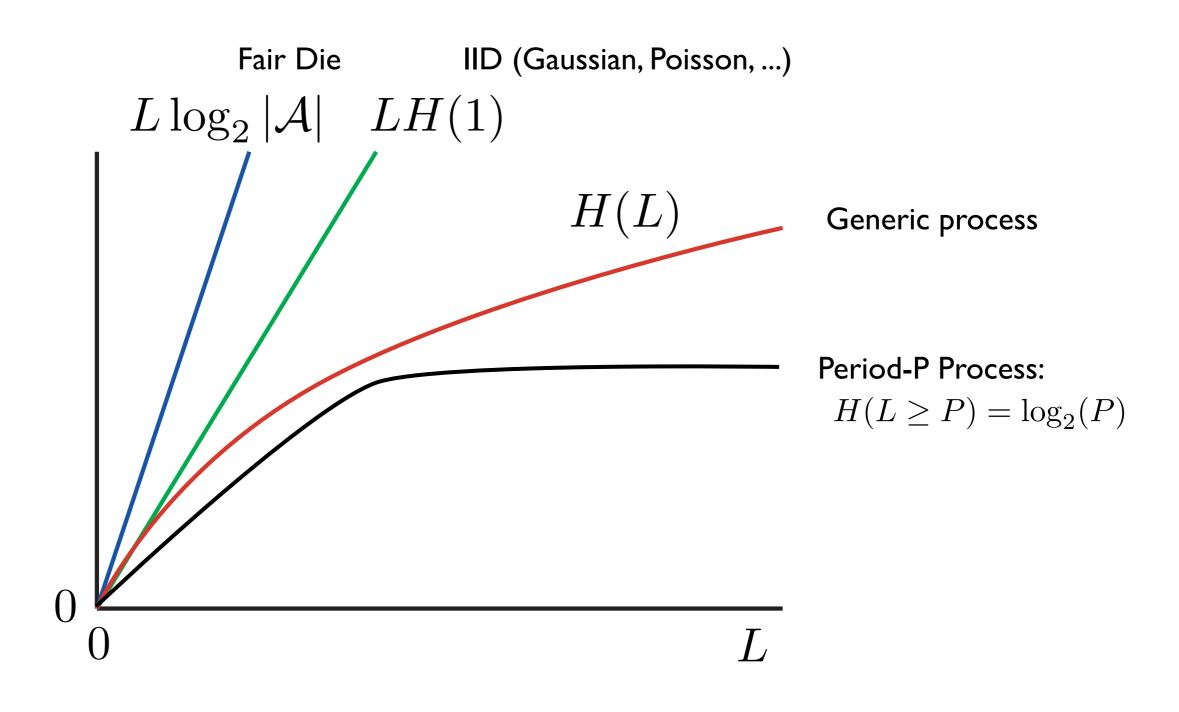
Monotonic increasing: $H(L) \ge H(L-1)$

Adding a random variable cannot decrease entropy:

$$H(S_1, S_2, \dots, S_L) \leq H(S_1, S_2, \dots, S_L, S_{L+1})$$

No measurements, no information: H(0) = 0

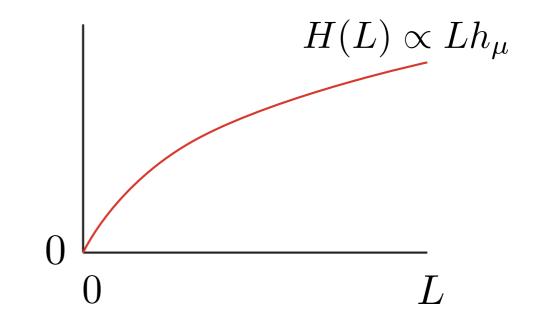
Information in Processes ... Entropy Growth for Stationary Stochastic Processes ... Block Entropy ...



Entropy Rates for Stationary Stochastic Processes:

Entropy per symbol is given by the Source Entropy Rate:

$$h_{\mu} = \lim_{L o \infty} rac{H(L)}{L}$$
 (When limits exists.)



Interpretations:

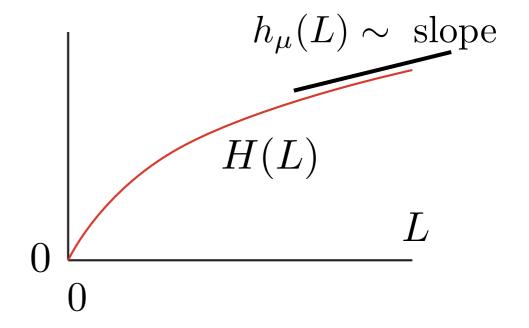
Asymptotic growth rate of entropy Irreducible randomness of process Average description length (per symbol) of process

Entropy Rates for Stationary Stochastic Processes ...

Length-L Estimate of Entropy Rate:

$$\widehat{h}_{\mu}(L) = H(L) - H(L-1)$$

$$\widehat{h}_{\mu}(L) = H(s_L|s_1 \cdots s_{L-1})$$



Monotonic decreasing: $\widehat{h}_{\mu}(L) \leq \widehat{h}_{\mu}(L-1)$

Conditioning cannot increase entropy:

$$H(s_L|s_1\cdots s_{L-1}) \le H(s_L|s_2\cdots s_{L-1}) = H(s_{L-1}|s_1\cdots s_{L-2})$$

Entropy Rates for Stationary Stochastic Processes: Entropy rate ...

$$\widehat{h}_{\mu} = \lim_{L \to \infty} \widehat{h}_{\mu}(L) = \lim_{L \to \infty} H(s_0 | \widehat{s}^L) = H(s_0 | \widehat{s})$$

Interpretations:

Uncertainty in next measurement, given past A measure of unpredictability
Asymptotic slope of block entropy

Alternate entropy rate definitions agree:

$$\widehat{h}_{\mu} = h_{\mu}$$

Entropy Rate for a Markov chain: $\{V, T\}$

$$h_{\mu} = \lim_{L \to \infty} h_{\mu}(L)$$

$$= \lim_{L \to \infty} H(v_L | v_1 \cdots v_{L-1})$$

$$= \lim_{L \to \infty} H(v_L | v_{L-1})$$

Assuming asymptotic state distribution:
Process in statistical equilibrium
Process running for a long time
Forgotten it's initial distribution

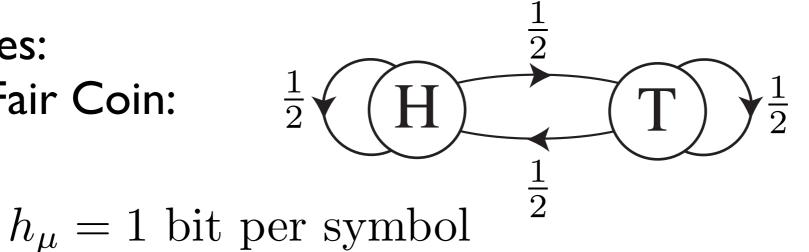
Closed-form:

$$h_{\mu} = -\sum_{v \in V} p_v(\infty) \sum_{v' \in V} T_{vv'} \log_2 T_{vv'} \qquad \vec{p}(n) = \vec{p}(0)T^n$$
$$\vec{p}(\infty) = \vec{p}(\infty)T^n$$

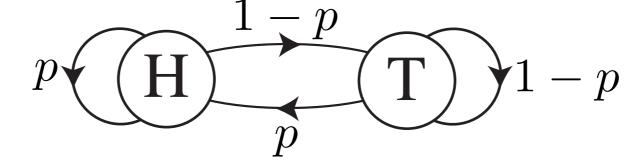
Entropy Rate for Markov chains ...

Examples:

(I) Fair Coin:

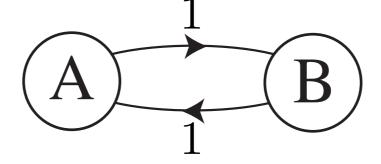


(2) Biased Coin:



$$h_{\mu} = H(p)$$
 bits per symbol

(3) Period-2 Process:



$$h_{\mu} = 0$$
 bits per symbol

Entropy Rate for Unifilar Hidden Markov Chain:

Internal: $\{V, T\}$

Observed: $\{T^{(s)}: s \in \mathcal{A}\}$

Closed-form for entropy rate:

$$h_{\mu} = -\sum_{v \in V} p_{v}(\infty) \sum_{s \in \mathcal{A}} \sum_{v' \in V} T_{vv'}^{(s)} \log_{2} T_{vv'}^{(s)}$$

Due to unifilarity:

Observed sequences are (effectively) unique state paths

Entropy Rate for Nonunifilar Hidden Markov Chain:

Internal: $\{V, T\}$

Observed: $\{T^{(s)}: s \in \mathcal{A}\}$

Entropy rate: No closed-form! [Blackwell 1958]

$$h_{\mu} \neq -\sum_{v \in V} \pi_v \sum_{s \in \mathcal{A}} \sum_{v' \in V} T_{vv'}^{(s)} \log_2 T_{vv'}^{(s)}$$
 $\pi_v = p_v(\infty)$

Upper and Lower Bounds:

$$H(S_L|V_1S_1\cdots S_{L-1}) \le h_{\mu}(L) \le H(S_L|S_1\cdots S_{L-1})$$

Unrealistic for inference: Must know about internal states. Unrealistic for analysis: Simulate chain, do empirical estimate.

Entropy rate? But there exists a way ... stay tuned!

Information in Processes ...

Entropy Convergence:

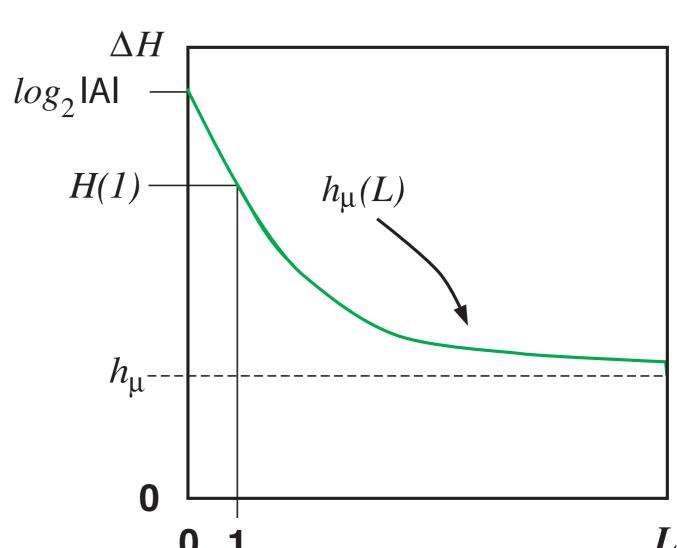
Length-L entropy rate estimate:

$$h_{\mu}(L) = H(L) - H(L-1)$$

$$h_{\mu}(L) = \Delta H(L)$$

Monotonic decreasing:

$$h_{\mu}(L) \le h_{\mu}(L-1)$$



Process appears less random as account for longer correlations

Information in Processes ...

Motivation:

Previous: Measures of randomness of information source Block entropy H(L) Entropy rate h_{μ}

Current target point:

Measures of memory & information storage

Big Picture: Complementary.

Structurally Complex

Memory

Simple

Randomness

Predictable

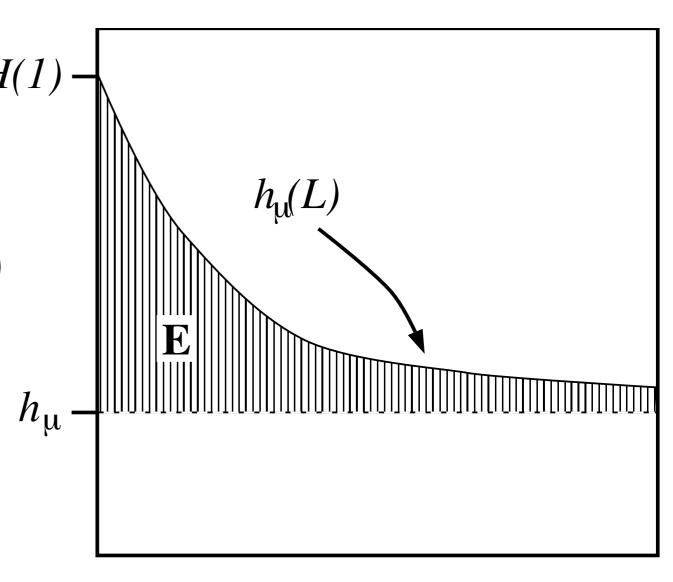
Unpredictable

Excess Entropy:

As entropy convergence:

$$\mathbf{E} = \sum_{L=1}^{\infty} [h_{\mu}(L) - h_{\mu}]$$

$$(\Delta L = 1 \text{ symbol})$$



Properties:

(I) Units: $\mathbf{E} = [\text{bits}]$

1

(2) Positive: $\mathbf{E} \geq 0$

(3) Controls convergence to actual randomness.

(4) Slow convergence ⇔ Correlations at longer words.

(5) Complementary to entropy rate.

Excess Entropy ...

Asymptote of entropy growth:

$$\mathbf{E} = \lim_{L \to \infty} [H(L) - h_{\mu}L]$$

That is,

$$H(L) \propto \mathbf{E} + h_{\mu}L$$
 $H(L)$ Y-Intercept of entropy growth \mathbf{E}

Excess Entropy ...

Mutual information between past and future: Process as channel

Process $\Pr(\overleftarrow{X}, \overrightarrow{X})$ communicates past \overleftarrow{X} to future \overrightarrow{X} :

$$\begin{array}{c} \operatorname{Past} \longrightarrow & \operatorname{Future} \\ \operatorname{Information}_{\operatorname{Rate}} h_{\mu} & \operatorname{Channel}_{\operatorname{Capacity}} C \end{array}$$

Excess Entropy as Channel Utilization:

$$\mathbf{E} = I[\overleftarrow{X}; \overrightarrow{X}]$$

Memory in Processes ... Examples of Excess Entropy:

Fair Coin:

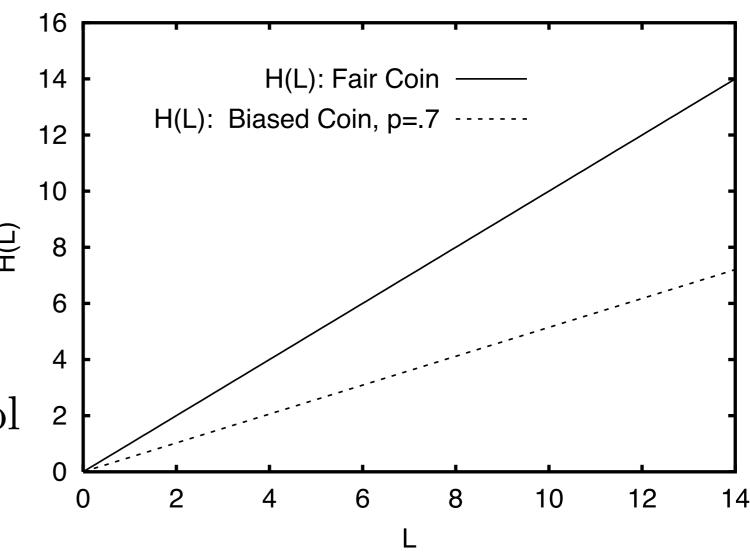
$$h_{\mu} = 1$$
 bit per symbol

$$\mathbf{E} = 0$$
 bits

Biased Coin:

$$h_{\mu} = H(p)$$
 bits per symbol

$$\mathbf{E} = 0$$
 bits



Any IID Process:

$$h_{\mu} = H(X)$$
 bits per symbol

$$\mathbf{E} = 0$$
 bits

Complexity Lecture 2: Information in Complex Processes (CSSS 2017) Jim Crutchfield

Examples of Excess Entropy ...

Period-2 Process: 010101010101

$$h_{\mu} = 0$$
 bits per symbol

$$\mathbf{E} = 1$$
 bit

Meaning:

I bit of phase information 0-phase or I-phase?

Examples of Excess Entropy ...

Period-16 Process:

 $(1010111011101110)^{\infty}$

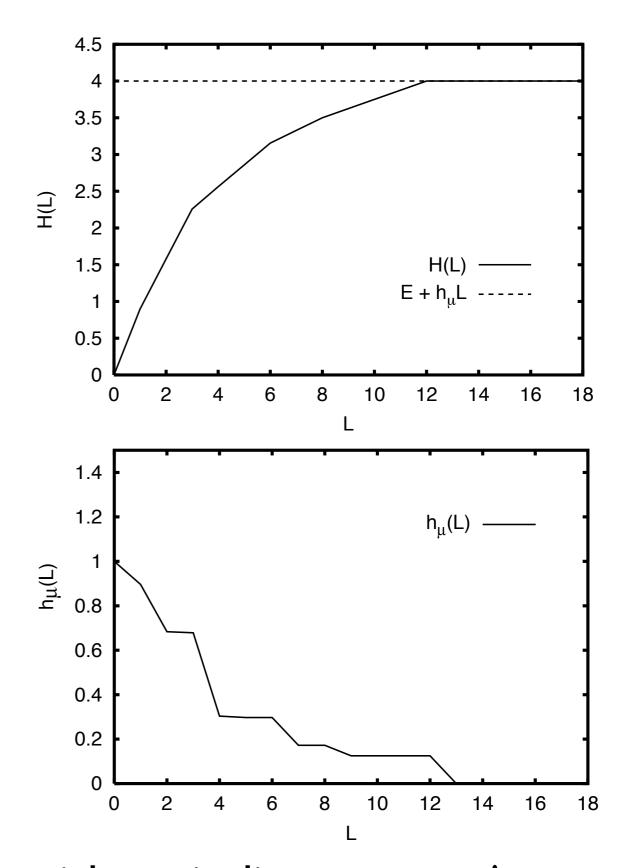
 $h_{\mu} = 0$ bits per symbol

 $\mathbf{E} = 4 \text{ bits}$

Period-P Processes:

 $h_{\mu} = 0$ bits per symbol

 $\mathbf{E} = \log_2 P$ bits



Cf., entropy rate does not distinguish periodic processes!

Complexity Lecture 2: Information in Complex Processes (CSSS 2017) Jim Crutchfield

Memory in Processes ... Examples of Excess Entropy ...

Golden Mean Process:

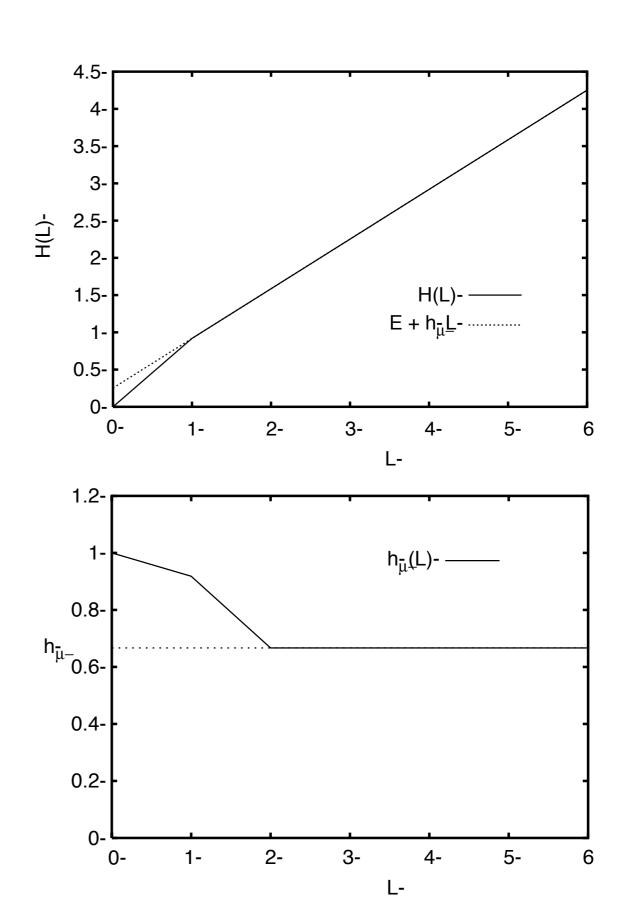
$$h_{\mu} = \frac{2}{3}$$
 bits per symbol

 $\mathbf{E} \approx 0.2516 \text{ bits}$

R-Block Markov Chain:

$$\mathbf{E} = H(R) - R \cdot h_{\mu}$$

(E.g., ID Ising Spin System)



Examples of Excess Entropy:

Finitary Processes: Exponential entropy convergence

Random-Random XOR (RRXOR) Process:

$$S_t = S_{t-1} \text{ XOR } S_{t-2}$$

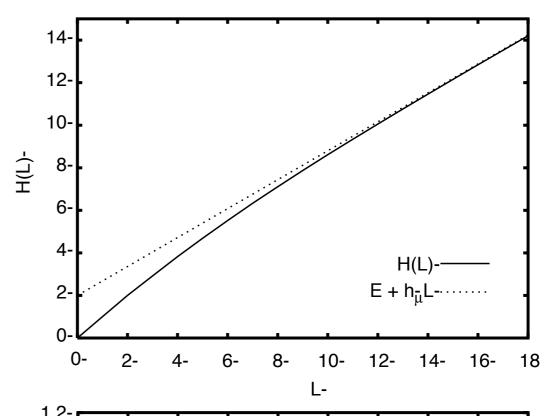
$$h_{\mu} = \frac{2}{3}$$
 bits per symbol

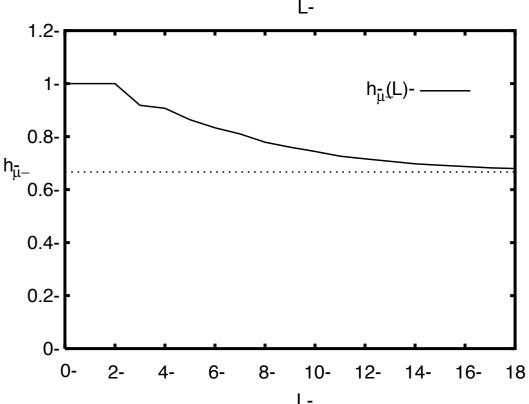
$$\mathbf{E} \approx 2.252 \text{ bits}$$

Finitary processes: Exponential convergence:

$$h_{\mu}(L) - h_{\mu} \approx 2^{-\gamma L}$$

$$\mathbf{E} = \frac{H(1) - h_{\mu}}{1 - 2^{-\gamma}}$$





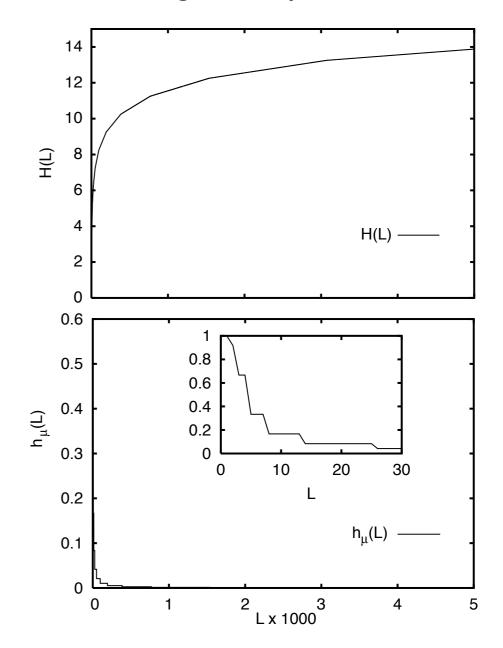
Memory in Processes ...
Examples of Excess Entropy:
Infinitary Processes:

$$\mathbf{E} o \infty$$

Excess entropy can diverge:
Slow entropy convergence
Long-range correlations
(e.g., at phase transitions)

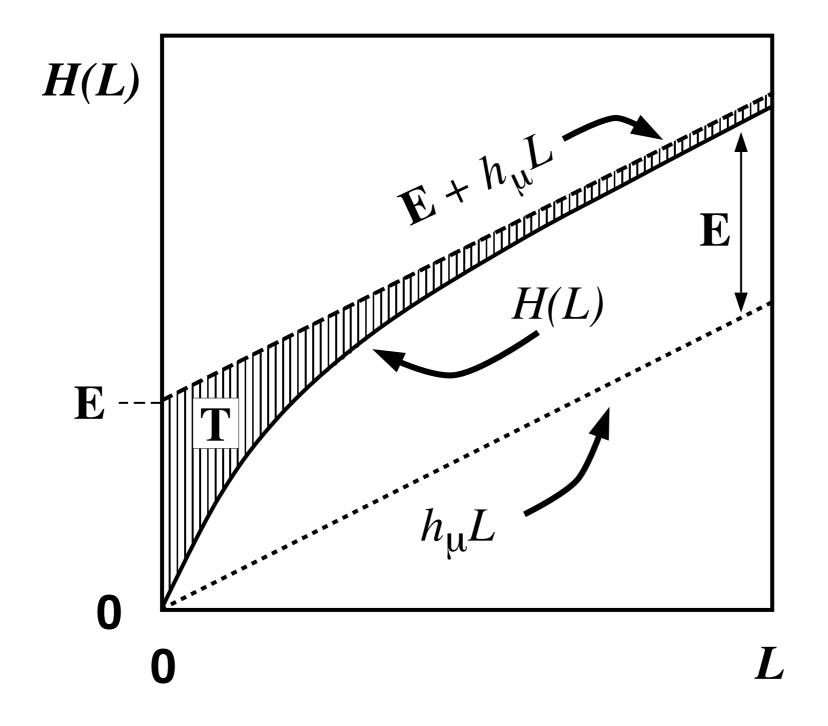
Morse-Thue Process:

A context-free language From Logistic map at onset of chaos



 $h_{\mu} = 0$ bits per symbol

Information-Entropy Roadmap for a Stochastic Process:



What is information?

Depends on the question!

Uncertainty, surprise, randomness, Compressibility.

Transmission rate.

Memory, apparent stored information, Synchronization.

•••

Algorithmic Basis of Information

Kolmogorov-Chaitin Complexity versus Shannon Information

KC Complexity versus Shannon Information

Consider average KC Complexity of source:

$$K(\ell) \equiv \langle K(x_{0:\ell}) \rangle_{\text{realizations}}$$

Recall Block Entropy:

$$H(\ell) \equiv H[\Pr(X_{0:\ell})]$$

Their growth rates equal the Shannon entropy rate:

$$h_{\mu} = \lim_{\ell \to \infty} \frac{H(\ell)}{\ell} = \lim_{\ell \to \infty} \frac{K(\ell)}{\ell}$$

KC Complexity of typical realizations from an information source grows proportional to the Shannon entropy rate [Brudno 1978].

KC Complexity versus Shannon Information

Again, KC Complexity is a measure of randomness, unpredictability, surprise, ...

As well as being a measure of the deterministic computing resources requires to exactly reproduce a given finite string.

KC Complexity and entropy rate maximized by IID processes.

KC Complexity versus Statistical Complexity

KC Complexity Theory:

Great mathematics.

Uncomputable.

Not quantitative: constants of proportionality unknown

Quantitative sciences use Information Theory instead.

Complexity

Information Theory for Complex Systems

Yesterday:

Complex Processes
Information in Processes

Just Finished:

Memory in Processes

Next:

Intrinsic Computation

Measuring Structure

Optimal Models

Structure = Computation

See online course:

http://csc.ucdavis.edu/~chaos/courses/ncaso/