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Carrots vs. Sticks: Smart Grid and human behavior
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L INMA FOUNDATION

The INMA Volunteer Experience

When we arrived in Beirut we were still not sure what to expect. We knew we would be working with kids

in a Palestinian refugee camp - but that was about it.

The first impression as we walked into the camp was of an

incredible web of electrical wires and water pipes haphazardly
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Back to school...take 3
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Why ’'m an engineer

In order to make the
world a better place
(cultivate the universe)

<©IEEE

Advancing Technology
for Humanity

“IEEE's core purpose is to foster
technological innovation and excellence
for the benefit of humanity.”
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- What is the grid, and .

how is it complex?

Paul Hines
Santa Fe Institute, Comenius Program
November 2014
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1895: Niagara Falls to Buftalo

GENERATING STATION OF THE NIAGARA FALLS FOWER COMPANY, SHOWING THE TEN §,000 H. P, GENERATORS
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g US Northeast and Canada
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California, Arizona, Mexico
September 8, 2011
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Officials said it would take at least 12 hours to repair the system and restore power to the capital Dhaka [AP]
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Two key principles

Pout
What goes in, must come out If what goes out is not
(there is no storage) equal to what goes in

generators speed up/down
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Two key principles

Pdl Pout
What goes in, must come out If what goes out is not
(there Is no storage) equal to what goes in

generators speed up/down
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lllustration of this process

http://youtu.be/UTM2Ck6XWHg
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Things that we don’t know

* Exactly why cascades happen

* How to make them not happen

 How to Incorporate intermittent wind and solar at
very large scales without adding risk to this
fragile system

e (and especially) How to coordinate the actions of
millions of devices and people (and the weather)
to iImprove reliability, efficiency and sustainability

25



The US Power Grid

United States KV
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Because of complex interactions among
nature, components and people we get power
laws in in blackout sizes

x Actual data
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Because of complex interactions among
nature, components and people we get power

laws in in blackout sizes
a b
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Key points about power laws
and risk

* Risk Is probability times cost

* |f event cost is distributed as a power law, and the
slope is shallow (-1), then risk is infinite, and very
hard to measure

29
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The risk analysis challenge
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The risk analysis challenge

N-1 security analysis has been the guiding risk analysis principle for
>50 years

But:

-4
* The probability of a single line outage is ~10

4
e Large systems have ~10 lines; ~1 failure/hour
* Even if outages are uncorrelated (false) N-2 events are ~1x/year

~1970s, Monte Carlo methods were developed for probabilistic
reliability analysis

But, Monte Carlo is super-slow:

« combinatorial number of possible triggering combinations, each
with very small probabilities

e event costs (blackout sizes) span 3-4 orders of magnitude

45
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But most combinations are benign,
only a few are “malignant”
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But most combinations are benign,
only a few are “malignant”

Evidence

There are 4.2 million n-2 combinations in =~ ™ = g0

the*Polish™ grid.

Only 300-400 of these cause large
blackouts.
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But most combinations are benign,
only a few are “malignant”

Evidence

There are 4.2 million n-2 combinations in =~ ™ = g0

the*Polish™ grid.

Only 300-400 of these cause large
blackouts.

Can we somehow quickly find the malignant
combinations, and then use their probabillities
to estimate risk”

46



Stuart A. Kauffman, At Home in the Universe, 1996

Searching for Autocatalytic Sets from among a
large collection of molecules

STUART KAUFFMAN

\T HOME
IN THE
év UNIVERSE
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Stuart A KaUﬁman, At Home In the Unlversea 1 996 ‘\[ |I \||l n;l\ll I
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Searching for Autocatalytic Sets from among a

w
large collection of molecules By

Lﬁ 1‘ "4 .

M. Eppsteln
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The Random Chemlstry algorithm

# unique
— molecules/tube

| Py h

Credit: M. Eppstein 48



The Random Chemlstry algorithm

# unique
| molecules/tube

N

3 3 3 3 N/2

Credit: M. Eppstein

48



The Random Chemlstry algorithm

# unique
| molecules/tube
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The Random Chemistry algorithm
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Estimating risk from RC (1)

Rre.x(z) i Z S(d, ) (sz)

‘QRC’kl deQre,k 1e€d



Estimating risk from RC (1)

The estimated number of
malignancies of size k

Rre,k(z .— >, S(dx) (Hpi)

Qrek dEQ R icd
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Estimating risk from RC (1)
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The number of
malignancies of size k
found by RC
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Estimating risk from RC (1)

The estimated number of
malignancies of size k

Combined
The number of probability

malignancies of size k
found by RC

49



Estimating the set size
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Comparing RC to Monte Carlo
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Comparing RC to Monte Carlo

S o 3
—~_ r——— * .
= 2ot

=N
W

5

(N
)

Risk (Expecfed blackéut size; kW)

T T T T T T ! ) '
----- MC:S=25%
! ~ _ ) -----MC:Sz40%
’
J - |"' ““'\-"\l«'." I
f . ;“' ‘W/. ™ - b \
Igu '( N, o Vw gl NN e s ot R ..’:‘Q:’*"“\'."r-""\' bt L~ SISPR e
(R T S s DR
.“ﬁ\'l AV S ™™ . ,-:"‘\' - )
‘ 60 1 ‘I A “\'\ ‘ r’-:\‘ Gy
:: lI :\\ ' ’\‘lkl o \.\3‘\’\ 1
" |’ o
S0 Aoy
ulh?v ouyg Sy ) j
HU TN
40_ 1 (T} . a
A 0 200,000 400,000 1
‘s
{5 Sosves 1
_,\,;..r_ : T esenee., SN N erwey

0.2

Number of calls to the cascading failure simulator

04 06 08

1

1.2

14 16 138

x 10

2
>

51



Risk vs. load
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After many simulations, differentiate (1) to get
the sensitivity of Risk to outage
probabilities...
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After many simulations, differentiate (1) to get
the sensitivity of Risk to outage

probabilities...
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Can we use this insight to
reduce risk?
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Can we use this insight to
reduce risk?

Take the 3 lines that contribute most to blackout risk
Re-dispatch generators to leave more margin between
the flow on these lines and the limit (cut the flow limit in
half)

Fuel costs increase by 1.6% (we need to use some
generators that are more expensive)

Large blackout risk decreases by 61%
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Can we use this insight to
reduce risk?

Take the 3 lines that contribute most to blackout risk
Re-dispatch generators to leave more margin between
the flow on these lines and the limit (cut the flow limit in
half)

Fuel costs increase by 1.6% (we need to use some
generators that are more expensive)

Large blackout risk decreases by 61%

Very large (5>40%) blackout risk decreases by 83%
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What happens when
the grid gets smart?

Coupling the power grid to communications systems

.
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A key result in network science

Network Diameter
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It we coup

systen

Key question

e the power grid to communications
s will risk Increase or decrease?
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Perhaps coupling will cause
risk to increase?
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Perhaps coupling will cause
risk to increase?

Vol 464 15 April 2010 doi:10.1038/nature08932 namre

LET TERS

Catastrophic cascade of failures in interdependent
networks

Sergey V. Buldyrev'?, Roni Parshani’, Gerald Paul?, H. Eugene Stanley” & Shlomo Havlin’
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Perhaps coupling will cause
risk to go down, and then up?

Suppressing cascades of load in
interdependent networks

Charles D. Brummitt*®', Raissa M. D'Souza®““*, and E. A. Leicht'

‘Department of |
Science, Universit

Networks Compli
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Or maybe coupling is useful?

Avoiding catastrophic failure in correlated
networks of networks

Saulo D. S. Reis'?, Yanqing Hu', Andrés Babino®, José S. Andrade Jr? Santiago Canals®,
Mariano Sigman®* and Hernan A. Makse'%3*
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However the mechanics of cascading in
the grid differ from contagion models

Conventional
models of
contagion
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the grid differ from contagion models

Source
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Conventional

models of Cascading in
contagion power grids

61



| _ Initial Disturbance Area

B Separation Locations

= Numbers Indicate General
' Sequence of Separation

Justin e |
case you S V) Gl
think this )
is just in )
my silly :
toy
model

(




Just in
case you
think this
IS just in

my silly

toy
model

‘ ‘ Initial Disturbance Area

B Separation Locations

- Numbers Indicate General

I '. . Vo[>
\ - -~ (#) Sequence of Separation
) 1, o { p!
1 . °
K3
— |2 - @
o L =9 ¢ o erue
—
{ ‘\‘JX‘O \“:—-‘. /' o /
o ° B e
\. S 3 * o / ‘,. =
E Y ‘-) L
;Q~\ ) ~ A { " L3
©
<

62



| _ Initial Disturbance Area

B Separation Locations

= Numbers Indicate General
' Sequence of Separation

Justin e |
case you S V) Gl
think this )
is just in )
my silly :
toy
model

(




Just in
case you
think this
IS just in

my silly

toy
model

Initial Disturbance Area

B Separation Locations

(

= Numbers Indicate General
' Sequence of Separation

62



| _ Initial Disturbance Area

B Separation Locations

= Numbers Indicate General
' Sequence of Separation

Justin e |
case you S V) Gl
think this )
is just in )
my silly :
toy
model

(




Justin
case you
think this
IS just in

my silly

toy
model

| _ Initial Disturbance Area

B Separation Locations

(

= Numbers Indicate General
' Sequence of Separation

62



| _ Initial Disturbance Area

B Separation Locations

= Numbers Indicate General
' Sequence of Separation

Justin e |
case you S V) Gl
think this )
is just in )
my silly :
toy
model

(




If you model power grids this way, you
can get dramatically erroneous answers

Conventional
models of
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If you model power grids this way, you
can get dramatically erroneous answers

Do topological models provide good information about electricity
infrastructure vulnerability?

Paul Hines,"® Eduardo Cotilla-Sanchez,'” and Seth Blumsack®®
iSchooI of Engineering, University of Vermont, Burlington, Vermont 05405, USA
“Department of Energy and Mineral Engineering, Pennsylvania State University,
University Park, Pennsylvania 16802, USA

| __EDITORS'CHOICE.

EDITED BY KRISTEN MUELLER AND JAKE YESTON

ENGINEERING

)A\ Nhat Keeps the Power On?
ST
g L8/ /T

\- Topological models use tools from graph theory to explore connections
\ among elements of complex systems. Recently their application to elec-
Seasica tricity distribution has stoked fears, including in the U.S. Congress, that
massive grids could be crippled by seemingly minor initial disruptions.
Targeted attacks on nodes with low loads but high connectivity, some
argued, could inflict more damage than attacks on the highest-loaded
nodes. Yet such systemwide failures are dictated not only by the nodes
and connectivity of the system but also by the laws of Ohm and Kirchhoff
that describe the physics of electrical flow. In a systematic comparison
of topological and current-flow models, Hines et al. show that topologi-
cal models, which do not fully capture the effects of electrical flow, can
lead to some misleading conclusions. Though all models showed that
different types of targeted disruption would inflict more damage than
would random failures, the physics-based measure of blackout size—the
amount of electrical load curtailed—did not show the same susceptibility
to disruption of low-traffic nodes as did the topological measures of con-
nectivity that so alarmed Congress. Allocation of infrastructure protection
resources informed by physics-based models would focus on nodes that

transport the largest amounts of power. — BW
Chaos 20, 33122 (2010).
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Let’s use reasonably accurate grid models, and
then couple them to a very simple comm.
model
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Let’s use reasonably accurate grid models, and
then couple them to a very simple comm.
model
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How does robustness change with the

level of coupling? Comparison result

Coupled topological model with Polish grid coupled to
Comm. network (10% rewired copy of grid)
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How does robustness change with the
level of coupling? Comparison result

Coupled topological model with Polish grid coupled to
Comm. network (10% rewired copy of grid)
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How does robustness change with the level of
coupling? Power grid result
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How does robustness change with the level of
coupling? Power grid result
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Optimal coupling
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Optimal coupling
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Optimal coupling
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Consumer Behavior
Carrots vs. Sticks

Paul Hines
Santa Fe Institute, Comenius Program
November 2014
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Different types of electricity
prices

* Real time pricing

e [Iime-of-use

- Critical Peak Pricing (stick)

- Critical Peak Rebate (carrot)
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Experimental setup

Group Required

No Group Name survey Year 1 Year 2 [HD Notification sample size

1 CPR X CPR CPR X 390

2 CPR+IHD X CPR CPR X X 195

3 CPP X CPP CPP X 390

4 CPP+IHD X CPP CPP X X 195

5 CPR-CPP X CPR CPP X 390

6 CPR-CPP+IHD X CPR CPP X X 195

7 Flat+Notification X Flat Flat X 390
Flat w/o

Cl1 Notification X Flat Flat 390
(Control)

C2  Control, No Survey Flat Flat 1200

Totals 3735




Predictions...

» (Classical economic theory assumes that

* people react about the same to losing money
and winning money

* people will gather the information needed to
make rational decisions

* Thus, we would expect the carrot and the stick to
work about equally as well, and the additional
information would be only marginally helpful
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Event day behavior with IT
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Event day behavior without IT

Average Hourly KW load across Events in Year
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Overall results
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Perhaps more importantly,
from survey results:
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* |n some cases, people respond about as well to

simple notification as they do to small financial
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* People respond well to penalties, but they don't like
them
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Power Grid Science
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