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Things	
  that	
  we	
  don’t	
  know

• Exactly why cascades happen 

• How to make them not happen 

• How to incorporate intermittent wind and solar at 
very large scales without adding risk to this 
fragile system 

• (and especially) How to coordinate the actions of 
millions of devices and people (and the weather) 
to improve reliability, efficiency and sustainability
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Key	
  points	
  about	
  power	
  laws	
  
and	
  risk

• Risk is probability times cost 

• If event cost is distributed as a power law, and the 
slope is shallow (-1), then risk is infinite, and very 
hard to measure

29
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• Large systems have ~10
4
 lines; ~1 failure/hour 

• Even if outages are uncorrelated (false) N-2 events are ~1x/year

• ~1970s, Monte Carlo methods were developed for probabilistic 
reliability analysis

• But, Monte Carlo is super-slow: 

• combinatorial number of possible triggering combinations, each 
with very small probabilities 

• event costs (blackout sizes) span 3-4 orders of magnitude
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Only 300-400 of these cause large 
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Can we somehow quickly find the malignant 
combinations, and then use their probabilities 

to estimate risk?

Evidence 
There are 4.2 million n-2 combinations in 
the“Polish” grid.  
Only 300-400 of these cause large 
blackouts.
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Can	
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  insight	
  to	
  
reduce	
  risk?

• Take the 3 lines that contribute most to blackout risk

• Re-dispatch generators to leave more margin between 
the flow on these lines and the limit (cut the flow limit in 
half)

• Fuel costs increase by 1.6% (we need to use some 
generators that are more expensive)

• Large blackout risk decreases by 61%

• Very large (S>40%) blackout risk decreases by 83%
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Key	
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If we couple the power grid to communications  
systems will risk increase or decrease?
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*Model is very similar to work  
by Parandehgheibi, Modiano & Hay

*
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How do we get better results without this?



Different	
  types	
  of	
  electricity	
  
prices

• Real time pricing 

• Time-of-use 

• Critical Peak Pricing (stick)

• Critical Peak Rebate (carrot)
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eEnergy	
  Vermont

74



Experimental	
  setup

75



Predictions…

• Classical economic theory assumes that 

• people react about the same to losing money 
and winning money 

• people will gather the information needed to 
make rational decisions 

• Thus, we would expect the carrot and the stick to 
work about equally as well, and the additional 
information would be only marginally helpful
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Overall	
  results
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Perhaps	
  more	
  importantly,	
  
from	
  survey	
  results:
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• People respond well to penalties, but they don’t like 
them
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