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“IEEE's	  core	  purpose	  is	  to	  foster	   
technological	  innovation	  and	  excellence	   

for	  the	  benefit	  of	  humanity.”
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US	  Northeast	  and	  Canada	  
August	  14,	  2003	  
50	  million	  people
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California,	  Arizona,	  Mexico	  
September	  8,	  2011	  

5	  million	  people

Hines,	  25	  Jan	  2013



Photo:	  Bikas	  Das/AP	  Photo	  
IEEE	  Spectrum,	  Oct.	  2012

Northern	  India	  
July	  30,	  2012:	  350	  million	  people	  
July	  31,	  2012:	  700	  million	  people
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The physics 
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Illustration	  of	  this	  process
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Things	  that	  we	  don’t	  know

• Exactly why cascades happen 

• How to make them not happen 

• How to incorporate intermittent wind and solar at 
very large scales without adding risk to this 
fragile system 

• (and especially) How to coordinate the actions of 
millions of devices and people (and the weather) 
to improve reliability, efficiency and sustainability
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The	  more	  important	  picture…
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28
August 14, 2003

Size of the 
100-year 
blackout: 
186 GW



Key	  points	  about	  power	  laws	  
and	  risk

• Risk is probability times cost 

• If event cost is distributed as a power law, and the 
slope is shallow (-1), then risk is infinite, and very 
hard to measure
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The	  next	  day:	  
The	  air	  was	  much	  cleaner!
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-4 

• Large systems have ~10
4
 lines; ~1 failure/hour 

• Even if outages are uncorrelated (false) N-2 events are ~1x/year

• ~1970s, Monte Carlo methods were developed for probabilistic 
reliability analysis

• But, Monte Carlo is super-slow: 

• combinatorial number of possible triggering combinations, each 
with very small probabilities 

• event costs (blackout sizes) span 3-4 orders of magnitude
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Evidence 
There are 4.2 million n-2 combinations in 
the“Polish” grid.  
Only 300-400 of these cause large 
blackouts.



But	  most	  combinations	  are	  benign,	  
only	  a	  few	  are	  “malignant”
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Can we somehow quickly find the malignant 
combinations, and then use their probabilities 

to estimate risk?

Evidence 
There are 4.2 million n-2 combinations in 
the“Polish” grid.  
Only 300-400 of these cause large 
blackouts.
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Can	  we	  use	  this	  insight	  to	  
reduce	  risk?

• Take the 3 lines that contribute most to blackout risk

• Re-dispatch generators to leave more margin between 
the flow on these lines and the limit (cut the flow limit in 
half)

• Fuel costs increase by 1.6% (we need to use some 
generators that are more expensive)

• Large blackout risk decreases by 61%

• Very large (S>40%) blackout risk decreases by 83%
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A	  key	  result	  in	  network	  science
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Key	  question
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If we couple the power grid to communications  
systems will risk increase or decrease?
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*Model is very similar to work  
by Parandehgheibi, Modiano & Hay

*
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How do we get better results without this?



Different	  types	  of	  electricity	  
prices

• Real time pricing 

• Time-of-use 

• Critical Peak Pricing (stick)

• Critical Peak Rebate (carrot)
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eEnergy	  Vermont
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Experimental	  setup
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Predictions…

• Classical economic theory assumes that 

• people react about the same to losing money 
and winning money 

• people will gather the information needed to 
make rational decisions 

• Thus, we would expect the carrot and the stick to 
work about equally as well, and the additional 
information would be only marginally helpful
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Event	  day	  behavior	  with	  IT	  
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Event	  day	  behavior	  without	  IT
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Overall	  results
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Perhaps	  more	  importantly,	  
from	  survey	  results:
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Customer	  Endurance
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Conclusions
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