

So far: mostly about maps.

- discrete time systems:
 - time proceeds in clicks
 - "maps"
 - modeling tool: difference equation

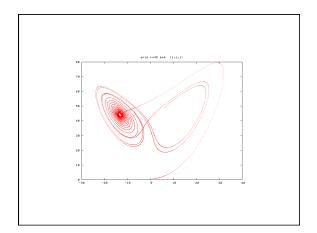
Next up: flows

- continuous time systems:
 - time proceeds smoothly
 - "flows"
 - modeling tool: differential equations

Conditions for chaos in continuous-time systems

Necessary:

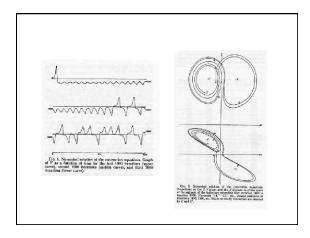
- Nonlinear
- At least three state-space dimensions (NB: only one needed in maps)


Necessary and sufficient:

• "Nonintegrable"

i.e., cannot be solved in closed form

Concepts: review


- State variable
- State space
- Initial condition
- Trajectory
- Attractor
- Basin of attraction
- Transient
- Fixed point (un/stable)
- Bifurcation
- Parameter

Deterministic Nonperiodic Flow

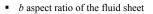
EDWARD N. LORENZ

Massachusetts Institute of Technology cript received 18 November 1962, in revised form 7 January 1963)

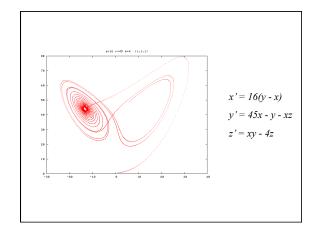
• Equations:

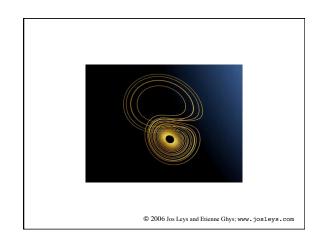
$$x'=a(y-x)$$

$$y' = rx - y - xz$$

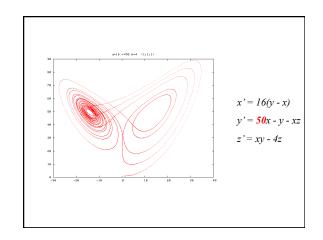

$$z' = xy - bz$$

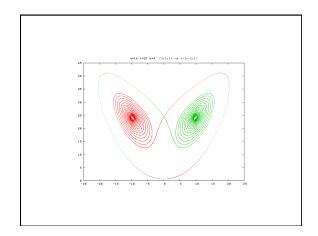
(first three terms of a Fourier expansion of the Navier-Stokes eqns)

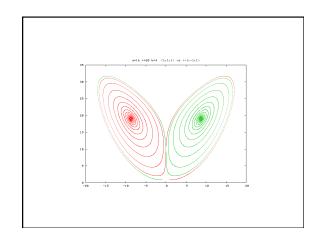


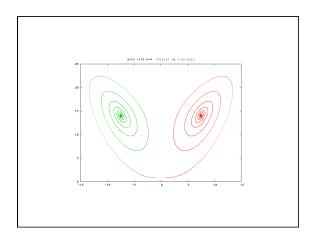

- · State variables:
 - x convective intensity
 - y temperature
 - z deviation from linearity in the vertical convection profile

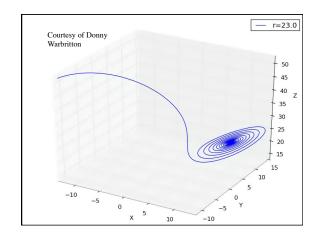

- Parameters:
 - a Prandtl number fluids property
 - r Rayleigh number related to ΔT









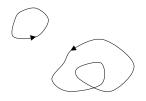


Attractors

Four types:

- fixed points
- limit cycles (aka periodic orbits)
- quasiperiodic orbits
- chaotic attractors

A nonlinear system can have any number of attractors, of all types, sprinkled around its state space

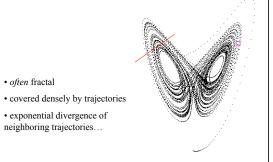

Their basins of attraction (plus the basin boundaries) $\ensuremath{\textit{partition}}$ the state space

And there's no way, *a priori*, to know where they are, how many there are, what types, etc.

• Fixed point

Attractors

• Limit cycle


Attractors

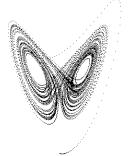
• Quasi-periodic orbit...

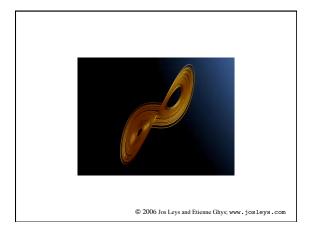
"Strange" or chaotic attractors

• often fractal

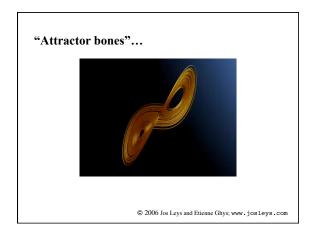
• exponential divergence of neighboring trajectories...

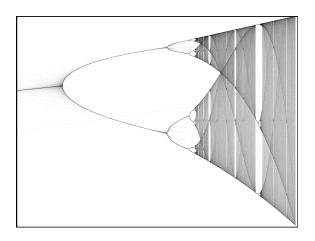
Lyapunov exponents


 \bullet nonlinear analogs of eigenvalues: one λ for each


Lyapunov exponents: summary

- \bullet nonlinear analogs of eigenvalues: one λ for each dimension
- negative λ_i compress state space; positive λ_i stretch it
- $\Sigma \lambda_i < 0$ for dissipative systems
- λ_i are same for all ICs in one basin
- long-term average in definition; biggest one (λ_I) dominates as $t \to \infty$
- positive λ_1 is a signature of chaos


"Strange" or chaotic attractors:




- · exponential divergence of neighboring trajectories
- often fractal
- covered densely by trajectories
- contain an infinite number of "unstable periodic orbits"...

Unstable periodic orbits (UPOs) Bradley/Mantilla, Chaos 12:596

