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Symbols, Strings and 
Languages 


   Alphabet A = {0,1} : finite set of symbols 


   A string over an alphabet A is a finite ordered sequence of symbols 
from A. 


   The empty string, denoted by ε is the (unique) string of length 
zero. 


   Given an alphabet A, we define  

   A0 = {ε}  

   An+1 = AAn  


   A language L over an alphabet A is a subset of A∗. That is, L ⊂ 
A∗.  



The Roots… 


   Probability theory, information theory, philosophical 
notions of randomness, theory of algorithms 


   Regular sequence Pr(000000000000000000) = 1/220 


   Regular sequence Pr(01100110011001100110) = 1/220 


   Random sequence Pr(01000110101111100001) = 1/220 

 Classical probability theory cannot express the notion of 
randomness of an individual sequence. It can only express 
expectations of properties of the total set of sequences under 
some distribution. 



How to measure information 
of a single object? 


   It has to be an attribute of the object itself 


   Independent of the description method 


   Is defined as the length of the shortest binary program from which 
the object can be effectively reconstructed.  


   Example:  

 Consider the ensemble of all binary strings of length 
9999999999999999. 

 By Shannon’s measure, we require 9999999999999999 bits on 
average to encode a string in such an ensemble. However, this 
number can be encoded in about 55 bits by expressing it in binary 
and adding the repeated pattern 1, or even further 32 x 
1111111111111111 (that consists of 24 1’s). 



Turing Machine 



Turing Machine 

A Turing machine  
 . T = (S, A, δ, s0, b, F ) 

consists of:  
 . S = a finite set of states  
 . A = an alphabet 
 . δ : Sx(A ∪ {b}) → Sx(A ∪ 
 {b})x{L, R},  the transition 
 function,  
 . s0 ∈ S, the start state, 
 . b, marking unused tape 
 cells,   
 . F ⊂ S, halting and/or D
 accepting states. 



Happy Birthday Alan! 
(23 June 1912 – 7 June 1954) was a British 
mathematician, logician, cryptanalyst and computer 
scientist. 

Considered to be the father of modern 
computer science.  

Provided an influential formalization of the 
concept of the algorithm and computation with 
the Turing machine. 

Turing was homosexual, living in an era when 
homosexuality was considered a mental illness 
and homosexual acts were illegal. He was 
criminally prosecuted, which essentially ended 
his career.  

He died not long after from what was officially 
declared self-induced cyanide poisoning, 
although his death was considered very 
ambiguous. 



Halting Problem 


   Given a program and an input to the program, whether 
the program will eventually halt when run with that 
input. 


   The halting problem is famous because it was one of 
the first problems proven algorithmically undecidable 
(not computable). 


    This means there is no algorithm which can be applied 
to any arbitrary program and input to decide whether 
the program stops when run with that input. 



Occam’s Razor 
William of Ockham (1290--1349) 

  “Entities should not be multiplied beyond necessity.” 

  Commonly explained as: when have choices, choose 
the simplest theory. 

  Bertrand Russell: ``It is vain to do with more what 
can be done with fewer.'‘ 

  Newton (Principia): ``Natura enim simplex est, et 
rerum causis superfluis non luxuriat''. 



Ray Solomonoff 
(born 1926, Cleveland, Ohio) 

Algorithmic probability 

Theory of inductive inference  

Attended the first meeting 
Where AI became a field 
….. 



Andrey Nikolaevich Kolmogorov 
(1903, Tambov, Russia—1987 Moscow)‏ 

  Measure Theory 
  Probability 
  Analysis 
  Intuitionistic Logic 
  Cohomology 
  Dynamical Systems 
  Hydrodynamics 
  Kolmogorov complexity 



Gregory Chaitin 
(born 1947, is an Argentine-American) 

Algorithmic information theory 
Chaitin’s constant Ω 
Biology 
Neuroscience 
Philosophy 
…… 



Algorithmic information 
(Kolmogorov complexity)   



Proof of the Invariance theorem 


   Fix an effective enumeration of all 
Turing 
m
achines (TM’s): T1, T2, …   Define  K = min  {|p|: T(p) = x} 


    U is an optimal universal TM such that (p produces x) 

    U(1n0p) = Tn(p)‏ 


     Then for all x:  

  KU(x)  ≤  KTn(x) + n+1,  and |KU(x) – KU’(x)| ≤ c  

  Fixing U, we write K(x) instead of KU(x).  

[Paul Vitanyi slide] 



Properties and examples 

  Intuitively: K(x)= length of shortest description of x  
      K(x) ≤ |x|+O(1) 

  K(x|y)=length of shortest description of x given y. 
      K(x|y) ≤ K(x)+O(1)  ‏

  For all x,  
  K(x|x) = O(1)‏ 
  K(x|ε) = k(x); K(ε|x)=O(1)‏ 

  K(x,x) = K(x) + O(1)‏ 
  K(x,y) ≤ K(x) + K(y) + O(log(min{K(x),K(y)})‏ 



Randomness 
  Randomness of strings mean that they do not contain 

regularities. 

  If the regularities are not effective, then we cannot use them. 

  Hence, we consider randomness of strings as the lack of 
effective regularities (that can be exploited). 

  For example: a random string cannot be compressed by any 
known or unknown real-world compressor. 

[Paul Vitanyi slide] 



Intuition:  
Randomness = Incompressibility  

   For constant c>0, a string x ε {0,1}* is c-incompressible if  

     K(x) ≥ |x|-c.  
Usually, we often simply say that x is incompressible 
 (We will call incompressible strings random strings.)‏ 



Shannon Entropy and Kolmogorov 
complexity 


   Shannon entropy of random variable X over sample size S   

   H(X) = ∑ P(X=x) log 1/P(X=x) 


   H(X) bits are necessary on P-average to describe the outcome x.  


   Example. For P uniform over finite S, we have  

   H(X)=∑ (1/|S|)log |S| = log |S|.   


   Kolmogorov complexity, is the minimum description (smallest program) for 
one fixed x. And the expected H(X) and the P-expectation of K(x)  converge to 
the same thing.  

        H(P) = - ∑P(x) log P(x) is assimptotically equal to the expected complexity 

 ∑x P(x)K(x) ≤ - log P(x) + O(1)  

[Paul Vitanyi slide] 



Symmetry of information 

   I(x;y)      = K(y) - K(y|x) 

      = K(x) – K(x|y)  

              =  I(x;y) (up to an additive log term) 

  (the first term is read as “the information x knows about y) 



Entropy or CK? 

 “It has been shown that although in practice we 
can’t be guaranteed to get the right answer to 
either the entropy or computational complexity 
values, we can be sure that they are (essentially) 
equal to each other, so both methods can be 
useful, depending on what we know about the 
system, and what our local goals are. “ 

•  Tom Carter’s notes 



Resource bounded KC 

  K complexity depends on unlimited computational 
resources. Kolmogorov himself first observed that we can 
put resource bounds on such computations. This was 
subsequently studied by Barzdins, Loveland, Daley, Levin, 
Adleman. 

  In the 1960’s, two parallel theories were developed: 
  Computational complexity – Hartmanis and Stearns, 

Rabin, Blum, measuring time/space complexity 
  Kolmogorov complexity, measuring information. 

  Resource bounded KC links the two theories. 

[Paul Vitanyi slide] 



Theory 

  Ct,s(x|y) is the t-time s-space limited Kolmogorov complexity 
of x condition on y. I.e. the length of shortest program that 
with input y, produces x in time t(n) and space s(n). 

  In standard  K complexity, it does not matter if we say 
“produces x” or “accepts x”, they are the same. But in 
resource bounded case, they are likely to be different. So 
Sipser defined  CDt,s(x|y) to be the length of the shortest 
program that with input y accepts x in time t(n) and space 
s(n). 

  When we use just one parameter such as time, we will 
simply write Ct or CDt. 

[Paul Vitanyi slide] 



Learning as (lossless) 
compression: 


   Q: how do you compress well? 


   A: by finding patterns in the data, i.e. by learning to 
predict it 


   compression is learning: in the long run, it's impossible 
to compress a source without learning the patterns in it 


   learning is compression: the output of learning from 
data is a more compact representation of the data 



Universal learning 


   KC suggests a universal learning algorithm: given data 
from a source, search for a TM that outputs the same 
distribution. 


   Of course, there are infinitely many such programs. 


   One way to encode Occam's razor is to select the 
smallest such program. This is roughly the idea behind 
MDL learning (in reality, MDL uses a restricted class of 
programs) 



Universal Measures of 
Similarity 

Normalized Compression Distance: 

Since KC is uncomputable, we estimate it using gzip (this is an 
overestimate) 

Grabbing random articles Wikipedia in 4 languages: (Portuguese, 
Spanish, Dutch, German), we compute NCD, and find the 
following distances: 

NL1-NL2   0.9062 

PT-ES .9774, .9698 
NL-DE .9801, .9812 
PT-NL .9872, .9871 
PT-DE .9965, .9957 
ES-NL .9917, .9961 
ES-DE .9975, 1.000 



Clustering by Compression 

Clustering music 



Warnings! 


   Warning: gzip uses superficial features! It won't capture 
capture deeper similarities, since that would require 
lots of data and computing time. 


    This is universal learning: an ideal compression 
algorithm will find/exploit any pattern. Of course, this 
means that this method really sucks in practice! 


