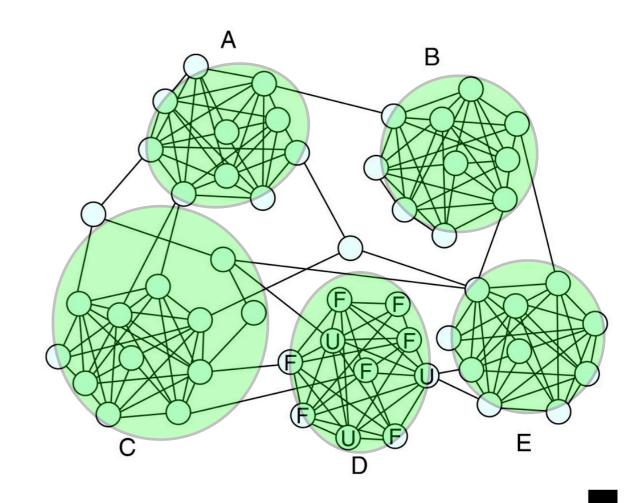


Community detection: model fitting, comparison, and utility

Jake Hofman Yahoo! Research 2008.12.04

Community detection

- Model structure (e.g. summarize data)
- Visualize structure (e.g. graph layout)
- Analyze interactions (e.g. affinities within/between groups)
- Predict (e.g. function, attributes, links)



Community detection: Background

- Physics literature
 - Newman et. al. (2002,...)
 - Bornholdt & Reichardt (2006)
 - Hastings (2006)
 - •

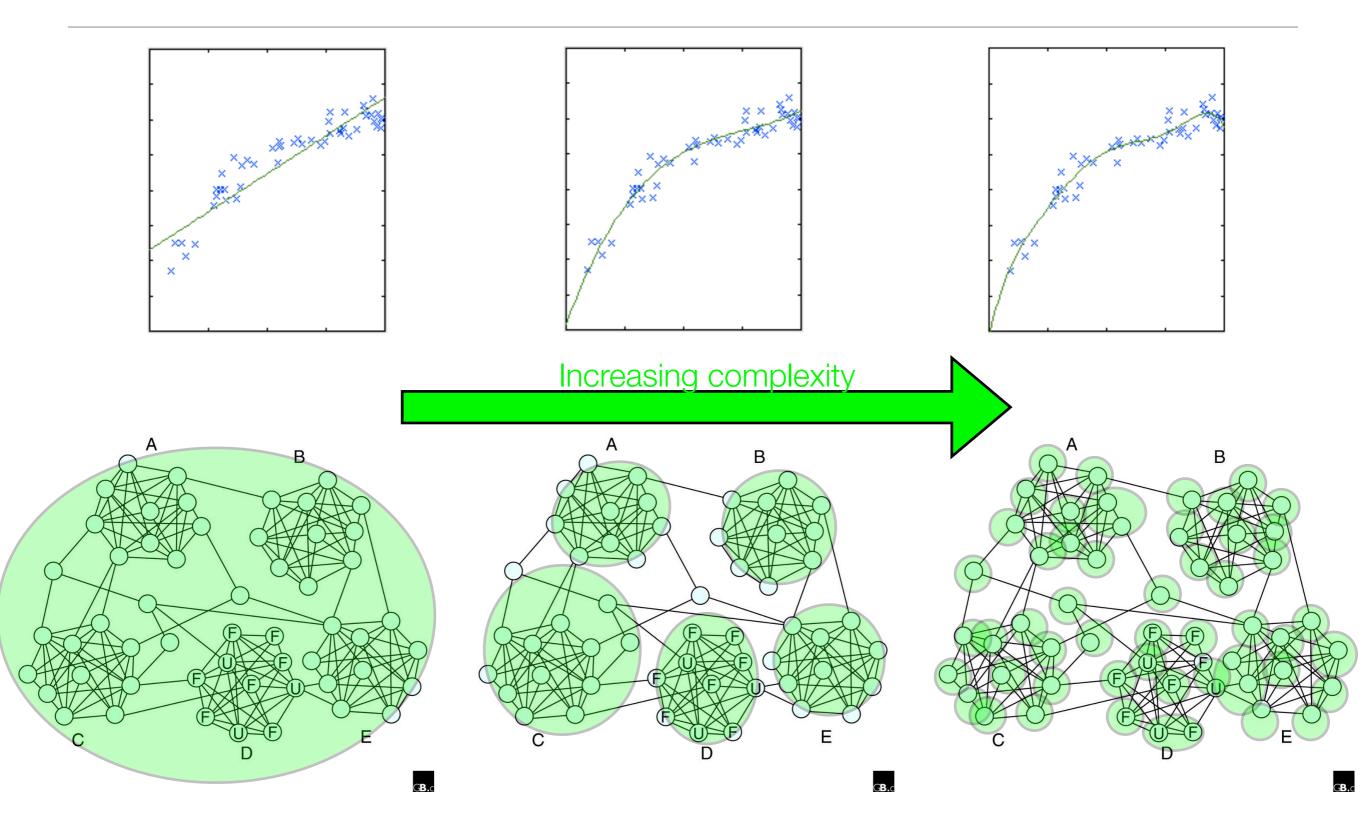
 Parametrized cost function (energy), mostly focus on how to optimize

- Machine learning literature
 - Nowicki & Snijders (2001)
 - Kemp et. al. (2004)
 - Leicht & Newman (2007)
 - Airoldi et. al. (2007)
 - Xu et. al. (2007)
 - Sinkkonen et. al. (2007)
- Complex models, approximate inference (often expensive)

Community detection: Questions

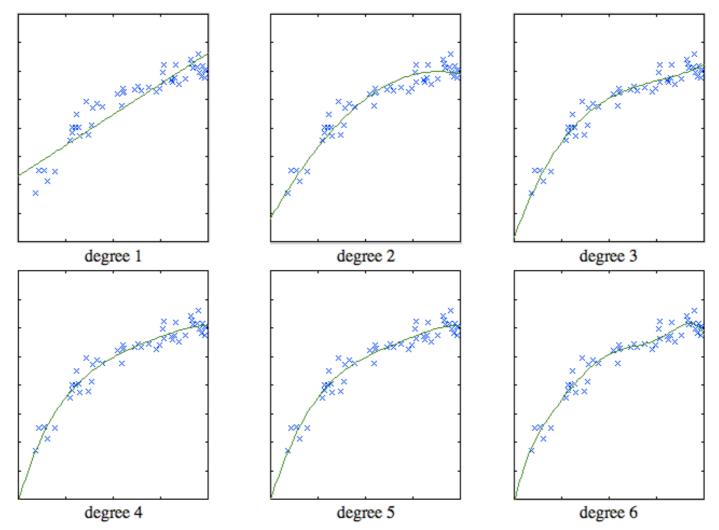
- Methodology:
 - Can we infer the complexity of a given network?
 - Can we compare competing network models?
- Applications:
 - How does topological community structure correlate with attributes/function?
 - How does community structure vary over time?

Complexity control



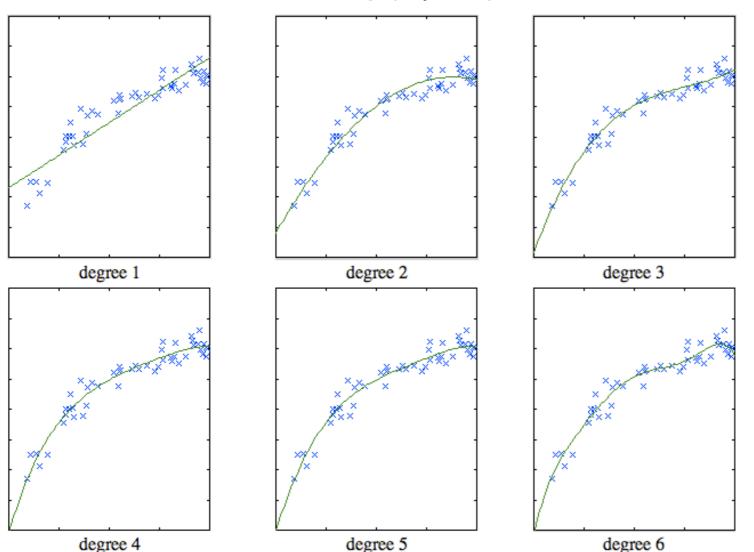
Regression

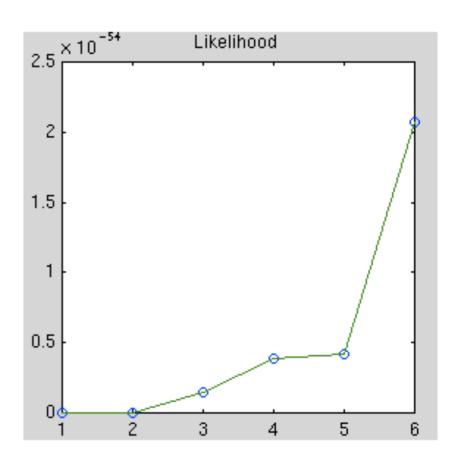
- Data D={x_i,y_i} i=1,...,N
- Parameters Θ=coefficients (e.g. slope, intercept,...), k=1,...,K
- Given D, infer Θ and K



Maximum likelihood regression

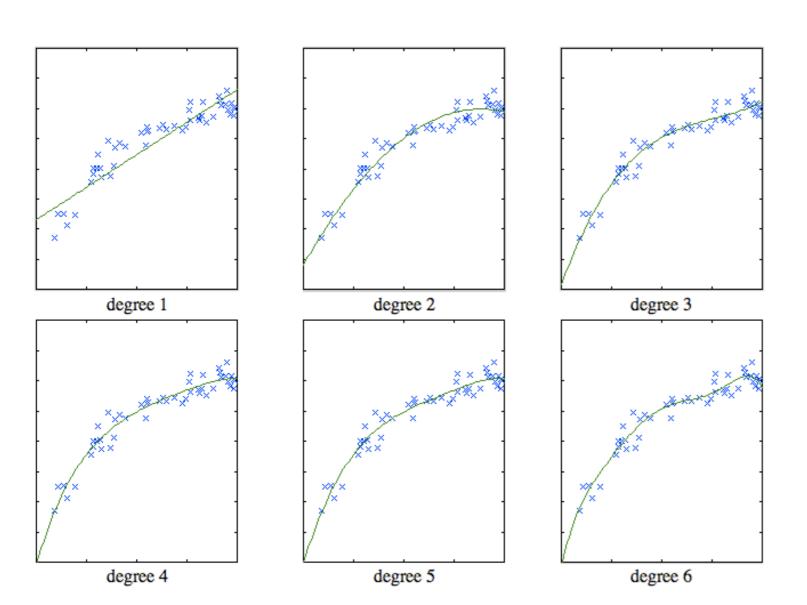
- Given D, infer Θ and K
- "Best parameters" = most probable: $\Theta^* = \operatorname{argmax}_{\Theta} p(D|\Theta,K)$
- Problem: likelihood, p(D|Θ,K), increases with K





Bayesian regression

- Given D, infer Θ and K
- "Best complexity" = most probable: K* = argmax_K p(D|K)





Bayesian inference

- "Best complexity" = most probable: K* = argmax_K p(D|K)
- Avoid choosing best parameters; integrate over parameters

posterior likelihood prior
$$p(\theta|\mathcal{D},K) = \frac{p(\mathcal{D}|\theta,K)p(\theta|K)}{p(\mathcal{D}|K)}$$
evidence

where
$$p(\mathcal{D}|K) = \int \!\! d\theta \ p(\mathcal{D}|\theta,K) p(\theta|K)$$

Bayes (1763), Jeffreys (1935)

Bayesian inference

- Inference = inverse statistical mechanics
- Calculate and optimize partition function (or free energy)

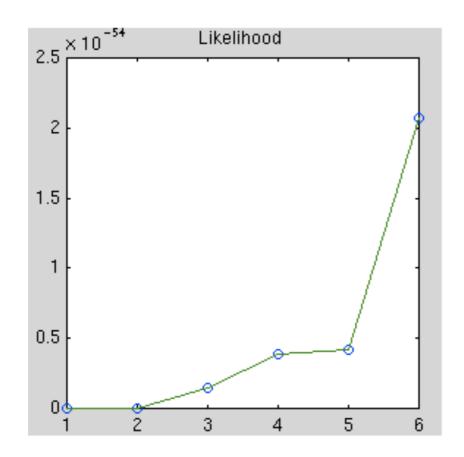
posterior likelihood prior
$$p(\Theta|\mathcal{D},K) = \frac{\mathrm{e}^{-\mathcal{H}} \, p(\Theta|K)}{\mathcal{Z}}$$
 evidence

where
$$\mathcal{H} = -\ln p(\mathcal{D}|\Theta,K)$$

$$\mathcal{Z} = \int \!\! d\Theta \ \mathrm{e}^{-\mathcal{H}} \, p(\Theta|K)$$

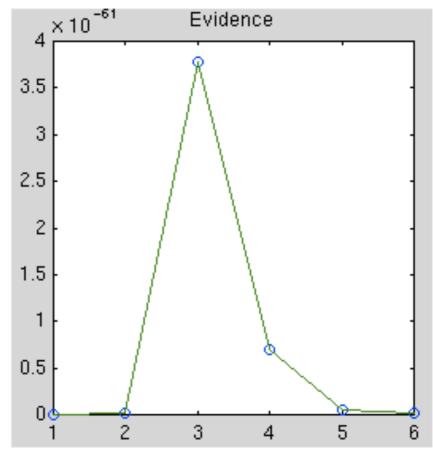
Bayesian complexity control

 Maximize evidence (integrating over unknown parameters and latent variables) to infer most probable model complexity



$$\hat{\theta} = \arg \max_{\theta} p(\mathcal{D}|\theta, K)$$

$$= \arg \max_{\theta} \sum_{Z} p(\mathcal{D}, Z|\hat{\theta}, K)$$

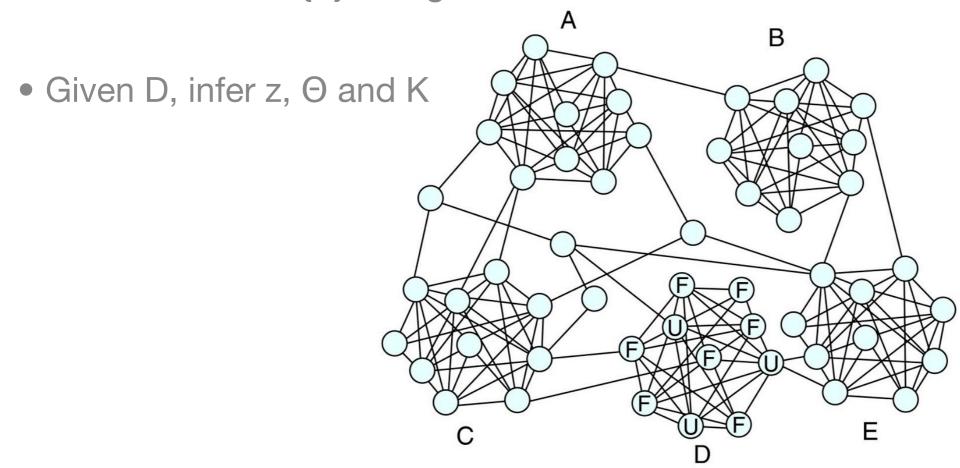


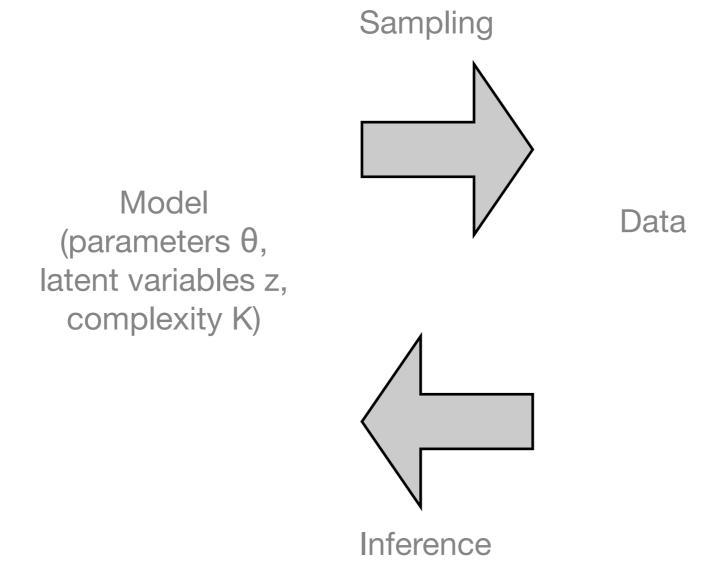
$$\hat{K} = \arg \max_{K} p(\mathcal{D}|K)$$

$$= \arg \max_{K} \sum_{Z} \int d\theta \ p(\mathcal{D}, Z|\theta, K) p(\theta|K)$$

http://research.microsoft.com/~minka/statlearn/demo/

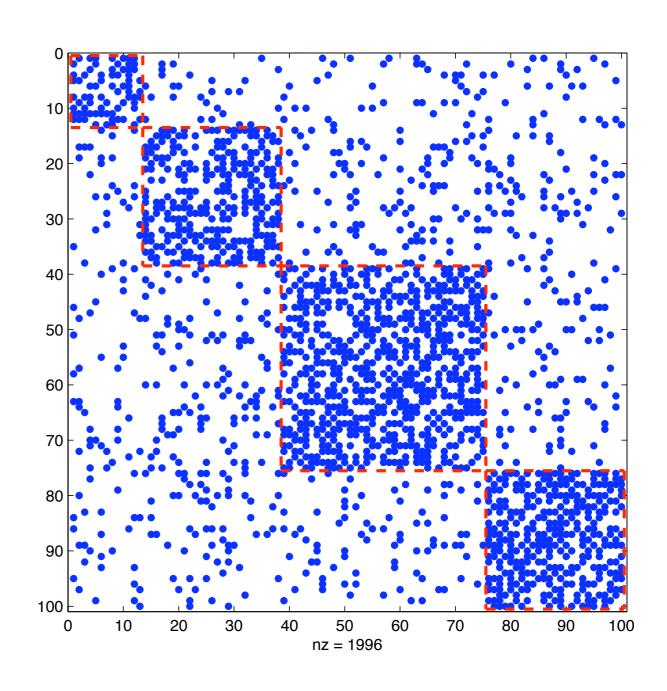
- Data D={A_{ij}} i,j=1,...,N; A_{ij}=1 if nodes i and j connected
- Parameters bias of die π , bias of coins θ
- Latent variables {z_i}, assignments of nodes to communities





Constrained stochastic block model

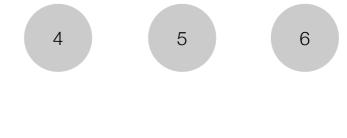
- Nodes belong to "blocks" of varying size
 - Roll die for assignment of nodes to blocks
- Probability of edge between two nodes depends only on block membership
 - Flip (one of two) coins for edges
- Result: mixture of Erdos-Renyi graphs



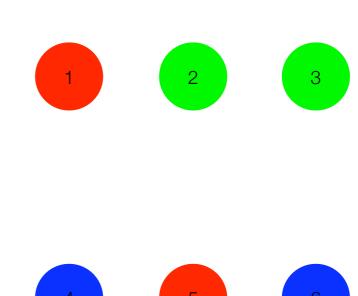
Holland, Laskey, Leinhardt 1983; Wang and Wong, 1987

- For each node:
 - Roll K-sided die with bias π to determine z_i =1,...,K, the (unobserved) module assignment for ith node
- For each pair of nodes (i,j):
 - If z_i=z_j, flip "in community"
 coin with bias θ_c to determine edge A_{ij}
 - If z_i≠z_j, flip "between communities" coin with bias θ_d to determine edge A_{ij}

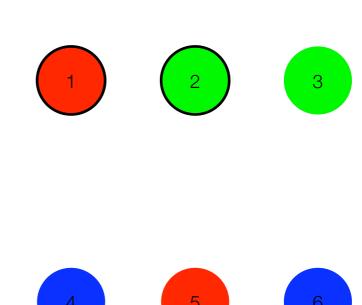
- For each node:
 - Roll K-sided die with bias π to determine z_i =1,...,K, the (unobserved) module assignment for ith node
- For each pair of nodes (i,j):
 - If z_i=z_j, flip "in community"
 coin with bias θ_c to determine edge A_{ij}
 - If z_i≠z_j, flip "between communities" coin with bias θ_d to determine edge A_{ij}



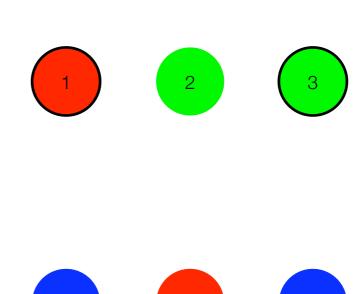
- For each node:
 - Roll K-sided die with bias π to determine z_i=1,...,K, the (unobserved) module assignment for ith node
- For each pair of nodes (i,j):
 - If z_i=z_j, flip "in community"
 coin with bias θ_c to determine edge A_{ij}
 - If z_i≠z_j, flip "between communities" coin with bias θ_d to determine edge A_{ij}



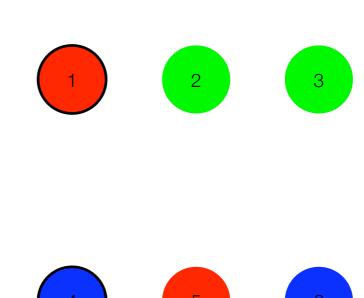
- For each node:
 - Roll K-sided die with bias π to determine z_i=1,...,K, the (unobserved) module assignment for ith node
- For each pair of nodes (i,j):
 - If z_i=z_j, flip "in community"
 coin with bias θ_c to determine edge A_{ij}
 - If z_i≠z_j, flip "between communities" coin with bias θ_d to determine edge A_{ij}



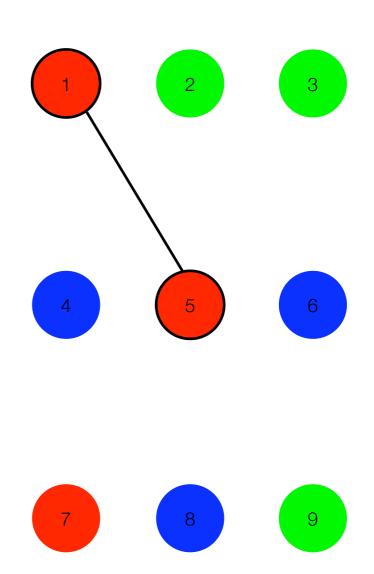
- For each node:
 - Roll K-sided die with bias π to determine z_i=1,...,K, the (unobserved) module assignment for ith node
- For each pair of nodes (i,j):
 - If z_i=z_j, flip "in community"
 coin with bias θ_c to determine edge A_{ij}
 - If z_i≠z_j, flip "between communities" coin with bias θ_d to determine edge A_{ij}



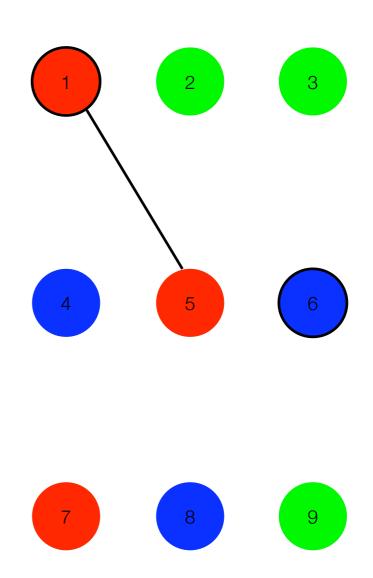
- For each node:
 - Roll K-sided die with bias π to determine z_i =1,...,K, the (unobserved) module assignment for ith node
- For each pair of nodes (i,j):
 - If z_i=z_j, flip "in community"
 coin with bias θ_c to determine edge A_{ij}
 - If z_i≠z_j, flip "between communities" coin with bias θ_d to determine edge A_{ij}



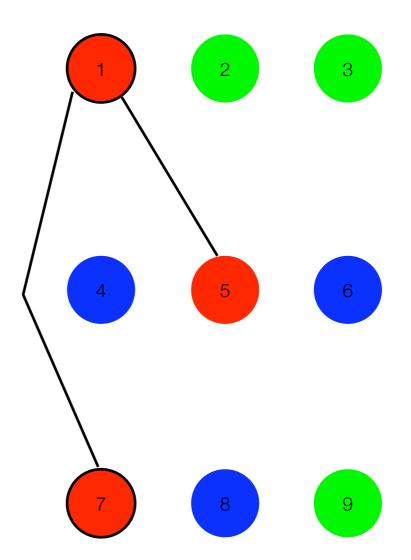
- For each node:
 - Roll K-sided die with bias π to determine z_i=1,...,K, the (unobserved) module assignment for ith node
- For each pair of nodes (i,j):
 - If z_i=z_j, flip "in community"
 coin with bias θ_c to determine edge A_{ij}
 - If z_i≠z_j, flip "between communities" coin with bias θ_d to determine edge A_{ij}



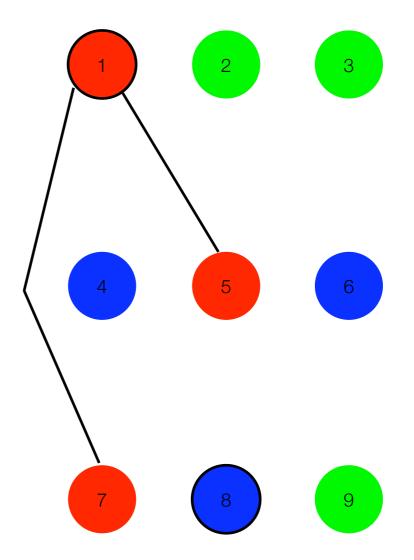
- For each node:
 - Roll K-sided die with bias π to determine z_i=1,...,K, the (unobserved) module assignment for ith node
- For each pair of nodes (i,j):
 - If z_i=z_j, flip "in community"
 coin with bias θ_c to determine edge A_{ij}
 - If z_i≠z_j, flip "between communities" coin with bias θ_d to determine edge A_{ij}



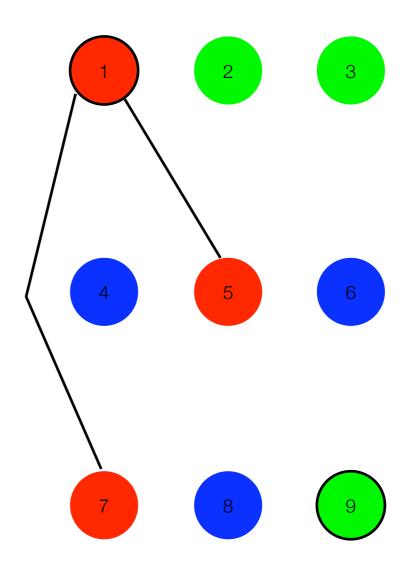
- For each node:
 - Roll K-sided die with bias π to determine z_i=1,...,K, the (unobserved) module assignment for ith node
- For each pair of nodes (i,j):
 - If z_i=z_j, flip "in community"
 coin with bias θ_c to determine edge A_{ij}
 - If z_i≠z_j, flip "between communities" coin with bias θ_d to determine edge A_{ij}



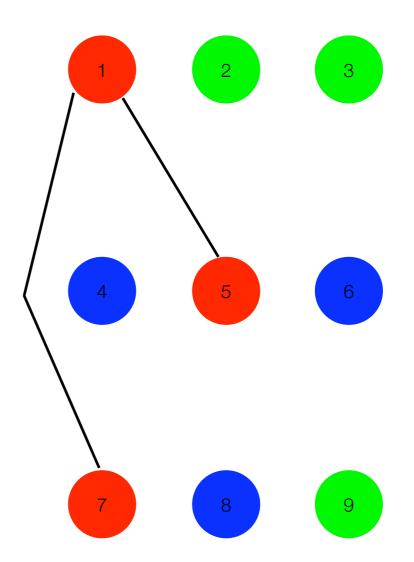
- For each node:
 - Roll K-sided die with bias π to determine z_i=1,...,K, the (unobserved) module assignment for ith node
- For each pair of nodes (i,j):
 - If z_i=z_j, flip "in community"
 coin with bias θ_c to determine edge A_{ij}
 - If z_i≠z_j, flip "between communities" coin with bias θ_d to determine edge A_{ij}



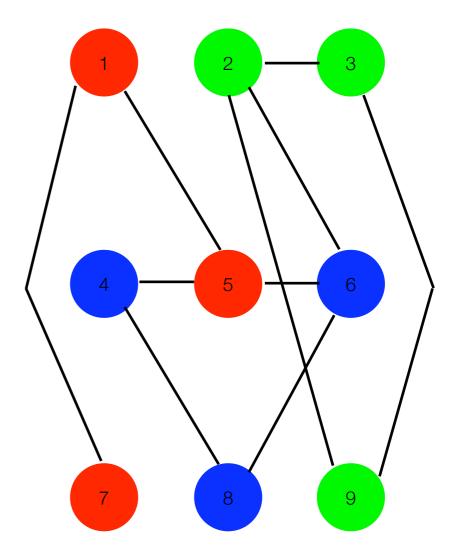
- For each node:
 - Roll K-sided die with bias π to determine z_i=1,...,K, the (unobserved) module assignment for ith node
- For each pair of nodes (i,j):
 - If z_i=z_j, flip "in community"
 coin with bias θ_c to determine edge A_{ij}
 - If z_i≠z_j, flip "between communities" coin with bias θ_d to determine edge A_{ij}



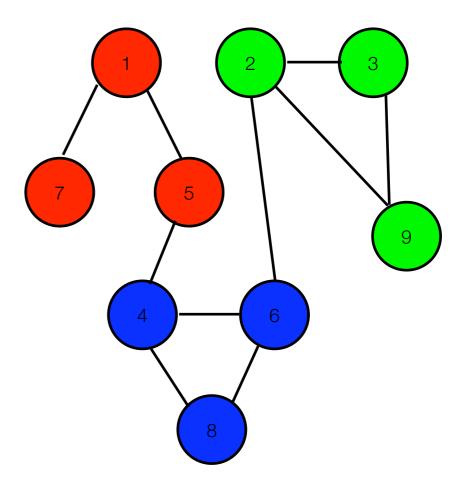
- For each node:
 - Roll K-sided die with bias π to determine z_i=1,...,K, the (unobserved) module assignment for ith node
- For each pair of nodes (i,j):
 - If z_i=z_j, flip "in community"
 coin with bias θ_c to determine edge A_{ij}
 - If z_i≠z_j, flip "between communities" coin with bias θ_d to determine edge A_{ij}

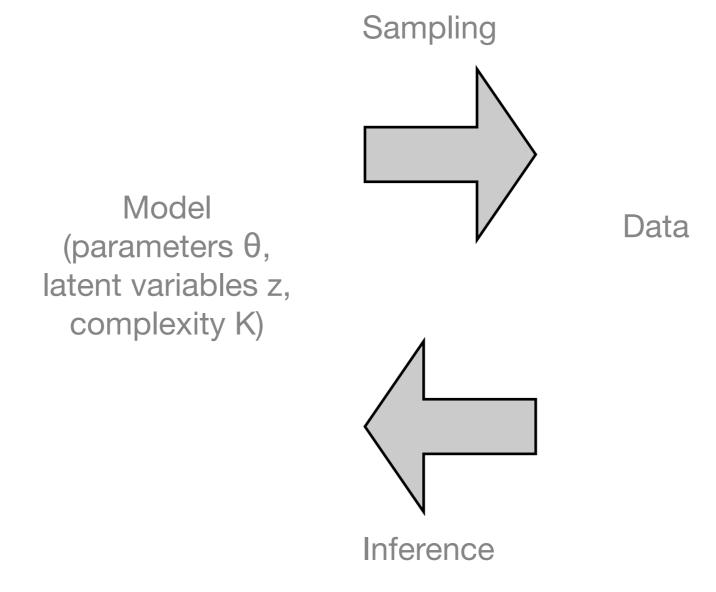


- For each node:
 - Roll K-sided die with bias π to determine z_i=1,...,K, the (unobserved) module assignment for ith node
- For each pair of nodes (i,j):
 - If z_i=z_j, flip "in community"
 coin with bias θ_c to determine edge A_{ij}
 - If z_i≠z_j, flip "between communities" coin with bias θ_d to determine edge A_{ij}



- For each node:
 - Roll K-sided die with bias π to determine z_i=1,...,K, the (unobserved) module assignment for ith node
- For each pair of nodes (i,j):
 - If z_i=z_j, flip "in community"
 coin with bias θ_c to determine edge A_{ij}
 - If z_i≠z_j, flip "between communities" coin with bias θ_d to determine edge A_{ij}

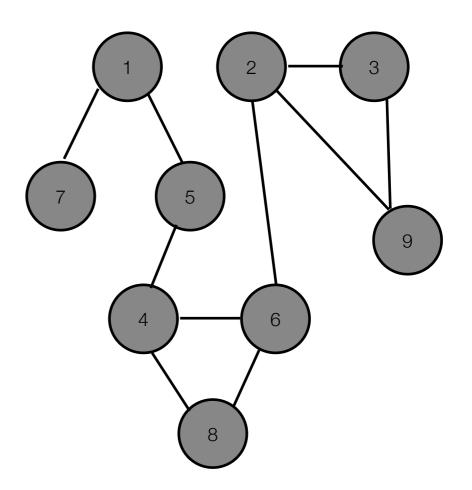




 From observed graph structure, infer distributions over module assignments, model parameters, and model complexity

$$p(\vec{\pi}, \vec{\theta} | \mathbf{A}, K) = \frac{p(\mathbf{A} | \vec{\pi}, \vec{\theta}, K) p(\vec{\pi}, \vec{\theta} | K)}{p(\mathbf{A} | K)}$$

$$p(\vec{z}|\mathbf{A}, K) = \frac{p(\mathbf{A}|\vec{z}, K)p(\vec{z}|K)}{p(\mathbf{A}|K)}$$

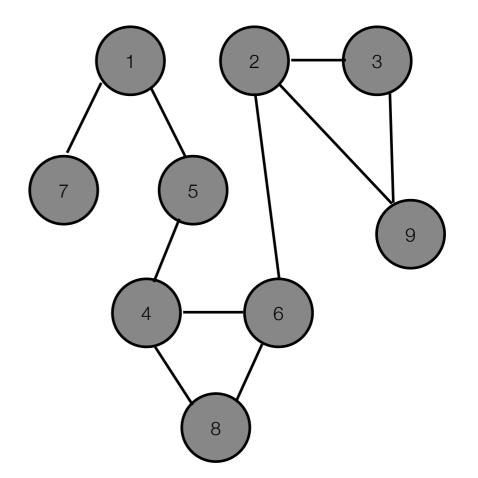


 From observed graph structure, infer distributions over module assignments, model parameters, and model complexity

$$p(\vec{\pi}, \vec{\theta} | \mathbf{A}, K) = \frac{p(\mathbf{A} | \vec{\pi}, \vec{\theta}, K) p(\vec{\pi}, \vec{\theta} | K)}{p(\mathbf{A} | K)}$$

$$p(\vec{z}|\mathbf{A}, K) = \frac{p(\mathbf{A}|\vec{z}, K)p(\vec{z}|K)}{p(\mathbf{A}|K)}$$

Multiplication is easy, but normalization is intractable O(K^N); use mean-field variational approach



Approximate inference for modular networks

• Iteratively optimize F{q;A} by updating distributions over parameters $\{\pi, \theta\}$ and latent variables $\{z\}$

Algorithm 2 Variational Bayes for maximum evidence inference

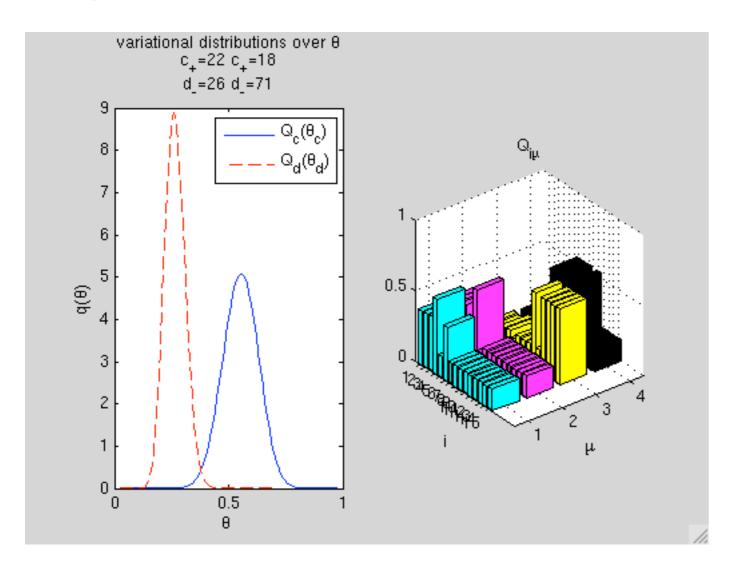
- 1: t=0
- 2: choose initial distributions $q^{(0)}(Z), q^{(0)}(\Theta)$
- 3: repeat
- 4: E-step: calculate $\ln q^{(t+1)}(Z) \propto \langle \ln p(\mathcal{D}, Z | \Theta, K) p(\Theta | K) \rangle_{q^{(t)}(\Theta)}$
- 5: M-step: calculate $\ln q^{(t+1)}(\Theta) \propto \langle \ln p(\mathcal{D}, Z | \Theta, K) p(\Theta | K) \rangle_{q^{(t+1)}(Z)}$
- 6: $t \leftarrow t + 1$
- 7: **until** $\mathcal{F}[q^{(t+1)}(Z), q^{(t+1)}(\Theta)] \mathcal{F}[q^{(t)}(Z), q^{(t)}(\Theta)] \le \delta \text{ or } t = T_{max}$

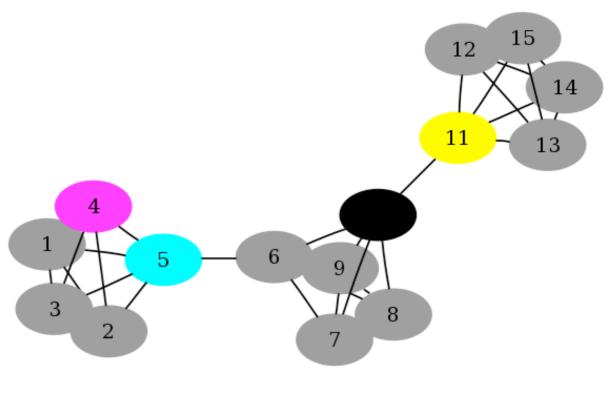
Validation: complexity control

 Automatic complexity control: probability of occupation for extraneous modules goes to zero

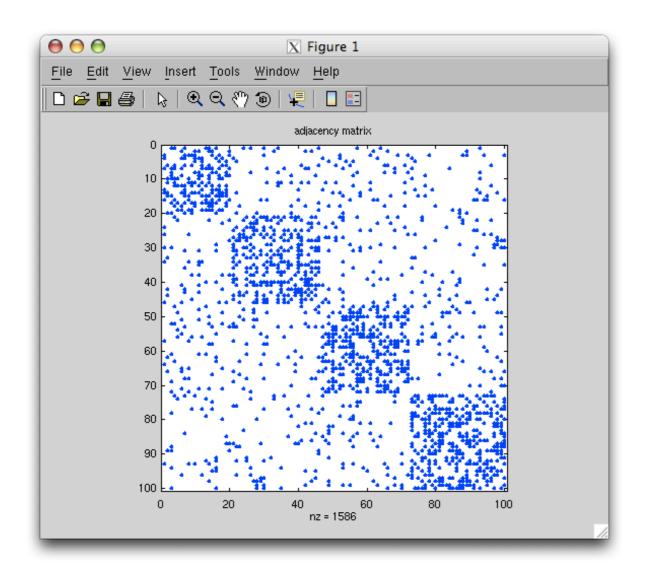
Validation: complexity control

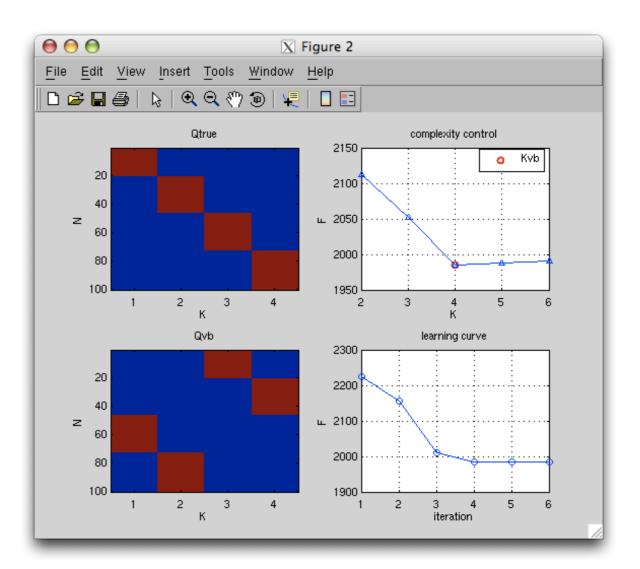
 Automatic complexity control: probability of occupation for extraneous modules goes to zero





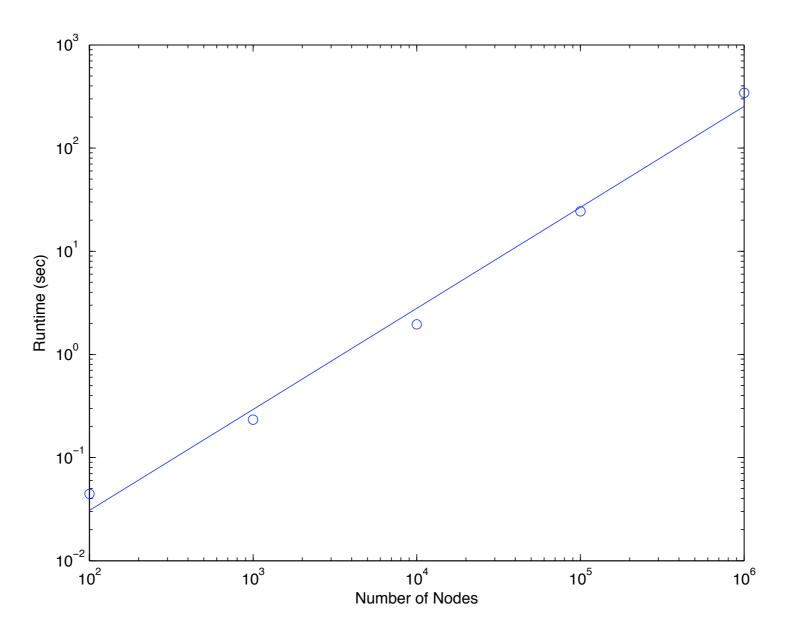
http://vbmod.sourceforge.net





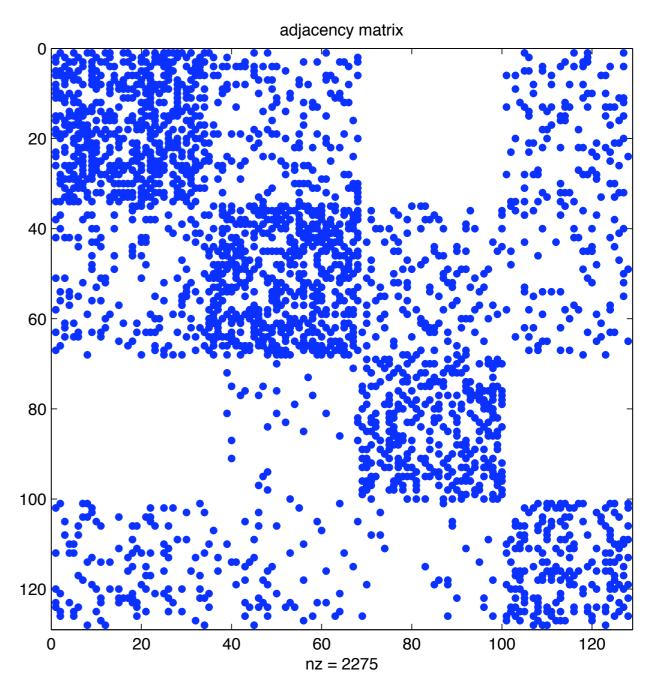
Validation: Runtime

• O(MK) runtime; ~400 sec for N=10⁶ nodes, K=4 modules, average node degree 16



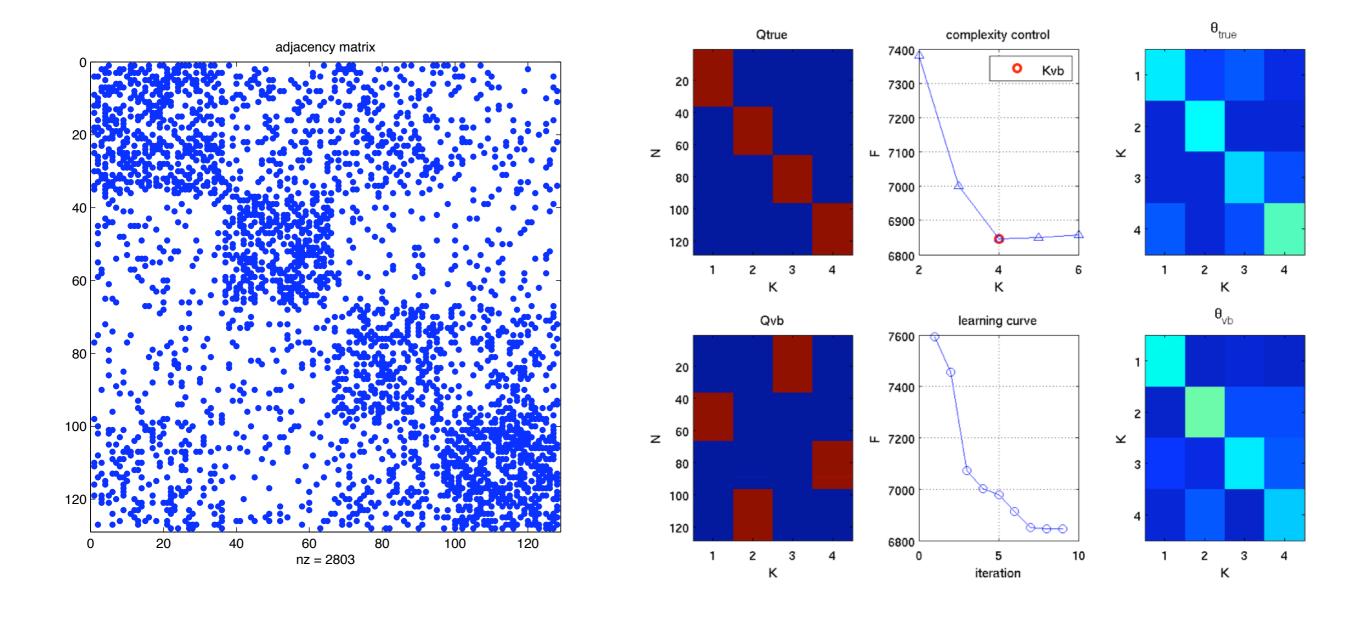
Full stochastic block models

- Nodes belong to "blocks" of varying size
 - Roll die for assignment of nodes to blocks
- Probability of edge between two nodes depends only on block membership
 - Flip (one of K²) coins for edges
- Result: mixture of Erdos-Renyi graphs



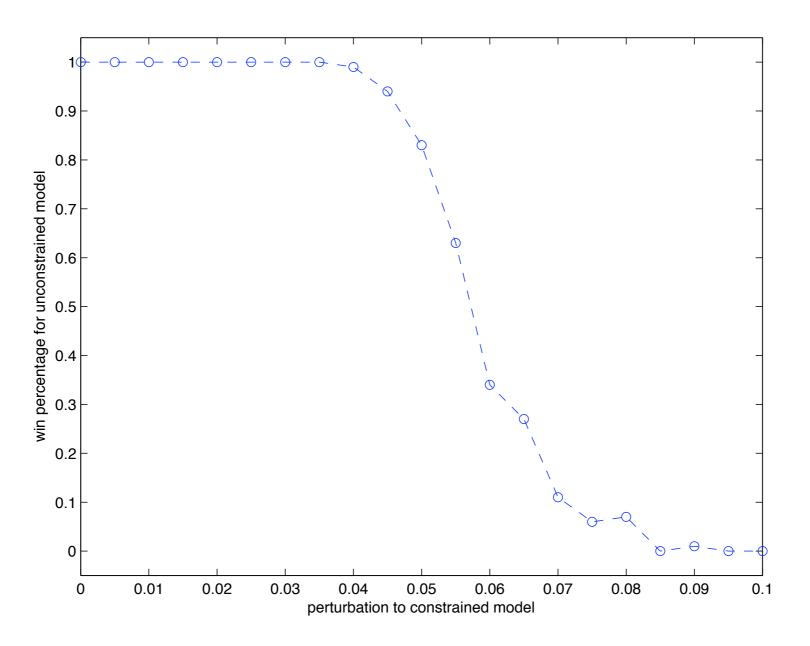
Holland, Laskey, Leinhardt 1983; Wang and Wong, 1987

Variational Bayes for stochastic block models



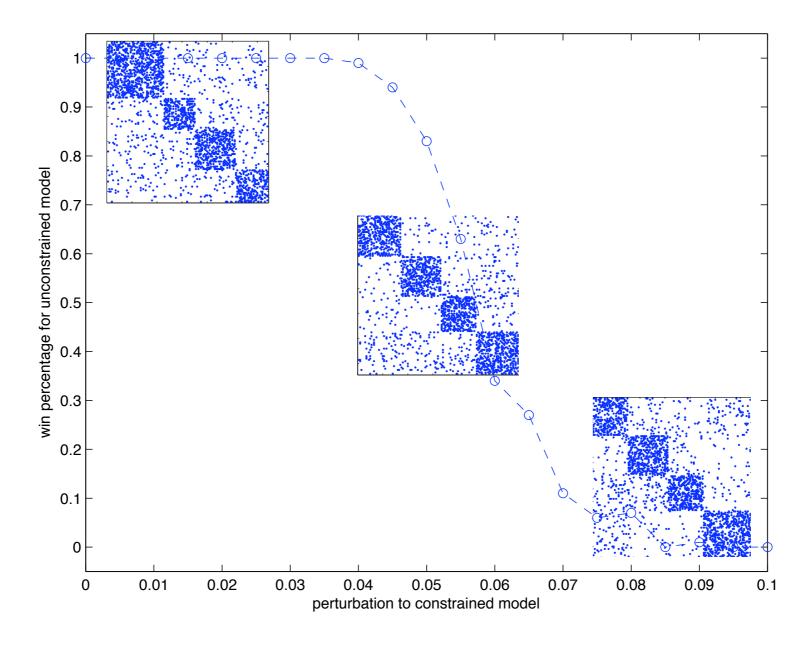
Model comparison

• Using same framework we can compare the constrained and full stochastic block models via p(D|M,K*)



Model comparison

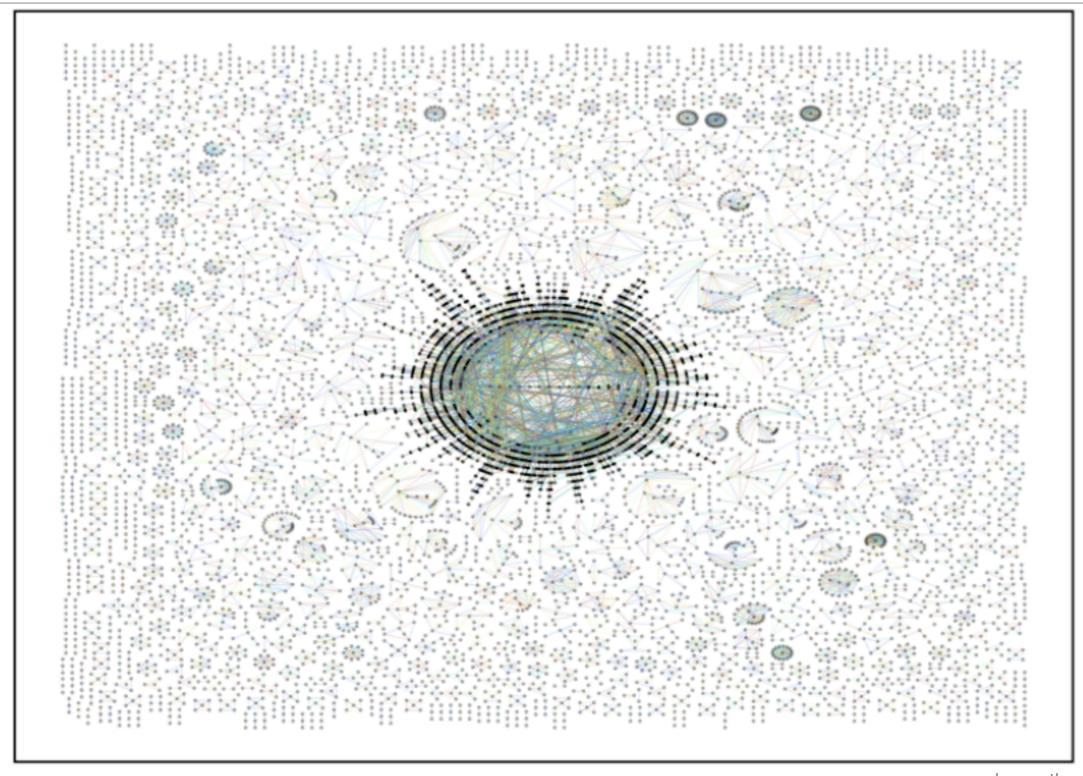
• Using same framework we can compare the constrained and full stochastic block models via p(D|M,K*)



Application: APS March Meeting 2008 co-authorship

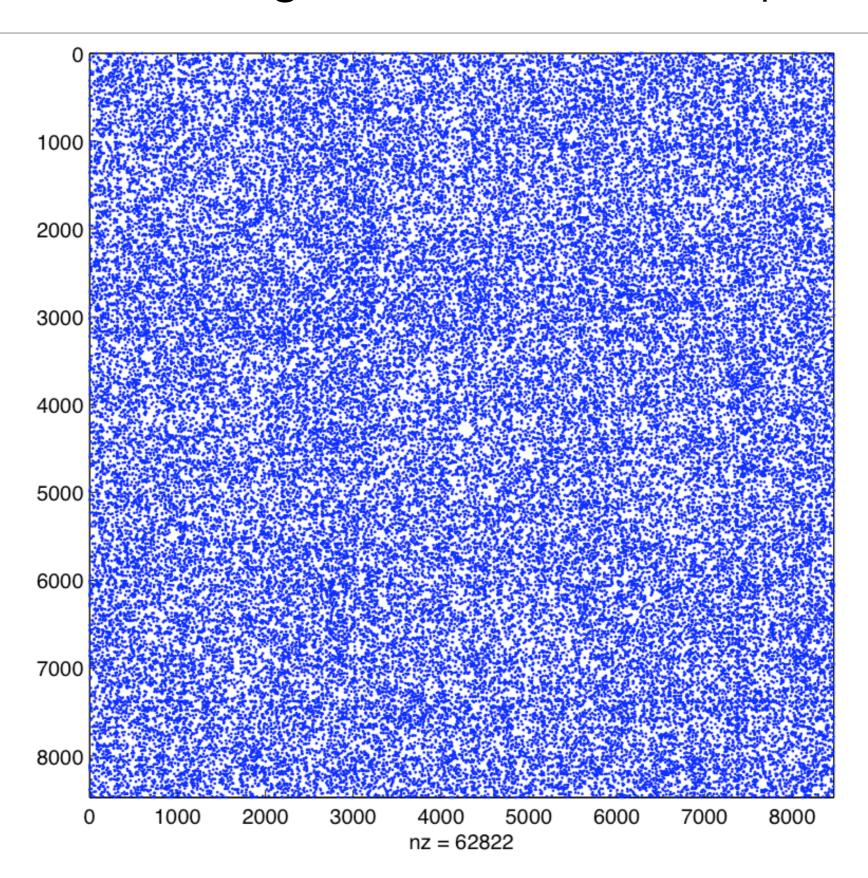
APS Meetings	2008 APS March Meeting Monday–Friday, March 10–14, 2008; New Orleans, Louisiana	
MC	Session P39: Applications of Complex Networks Show Abstracts	
Login	Sponsoring Units: GSNP Chair: Narayan Menon, University of Massachusetts, Amherst	
Create Account	Morial Convention Center - 231	
Meeting Home	Wednesday, March 12, 2008	P39.00001: Effects of quenched randomness on predator-prey interactions in a stochastic Lotka-Volterra lattice model
APS Home	8:00AM - 8:12AM	Uwe C. Tauber , Ulrich Dobramysl
Meeting Announcement		Preview Abstract
Invited Speakers	Wednesday, March 12, 2008	P39.00002: Dynamical Clustering in Reaction-Dispersal Processes on Complex Networks
Author Index	8:12AM - 8:24AM	Vincent David , Marc Timme , Theo Geisel , Dirk Brockmann
Session Index		Preview Abstract
Epitome	Wednesday, March 12, 2008	P39.00003: Fluctuations and Food-web Structures in Individual- based Models of Biological Coevolution
Session Chairs	8:24AM - 8:36AM	Per Arne Rikvold , Volkan Sevim
Word Search		Preview Abstract
Affiliation Search	Wednesday, March 12,	P39.00004: Metabolic disease network and its implication for
Using the Scheduler	2008 8:36AM - 8:48AM	disease comorbidity Deok-Sun Lee , Zoltan Oltvai , Nicholas Christakis , Albert-Laszlo Barabasi
BAPS PDFs		Preview Abstract
	Wednesday, March 12, 2008 8:48AM - 9:00AM	P39.00005: The Human Phenotypic Disease Network Cesar Hidalgo , Nicholas Blumm , Albert-Laszlo Barabasi , Nicholas Christakis
		Preview Abstract

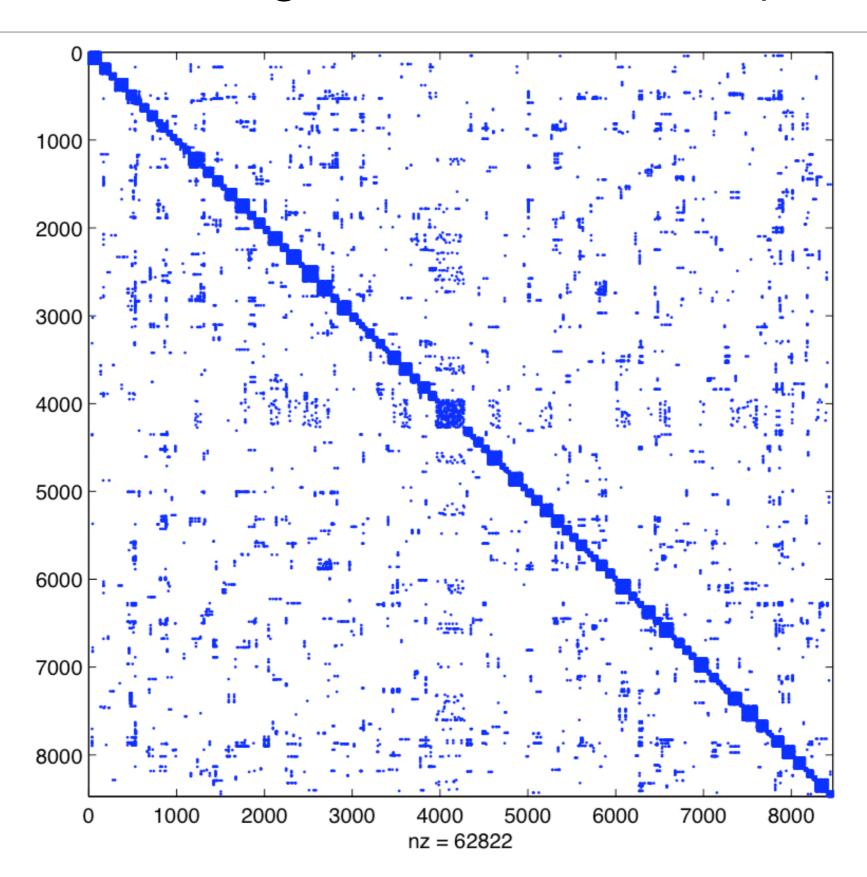
Application: APS March Meeting 2008 co-authorship

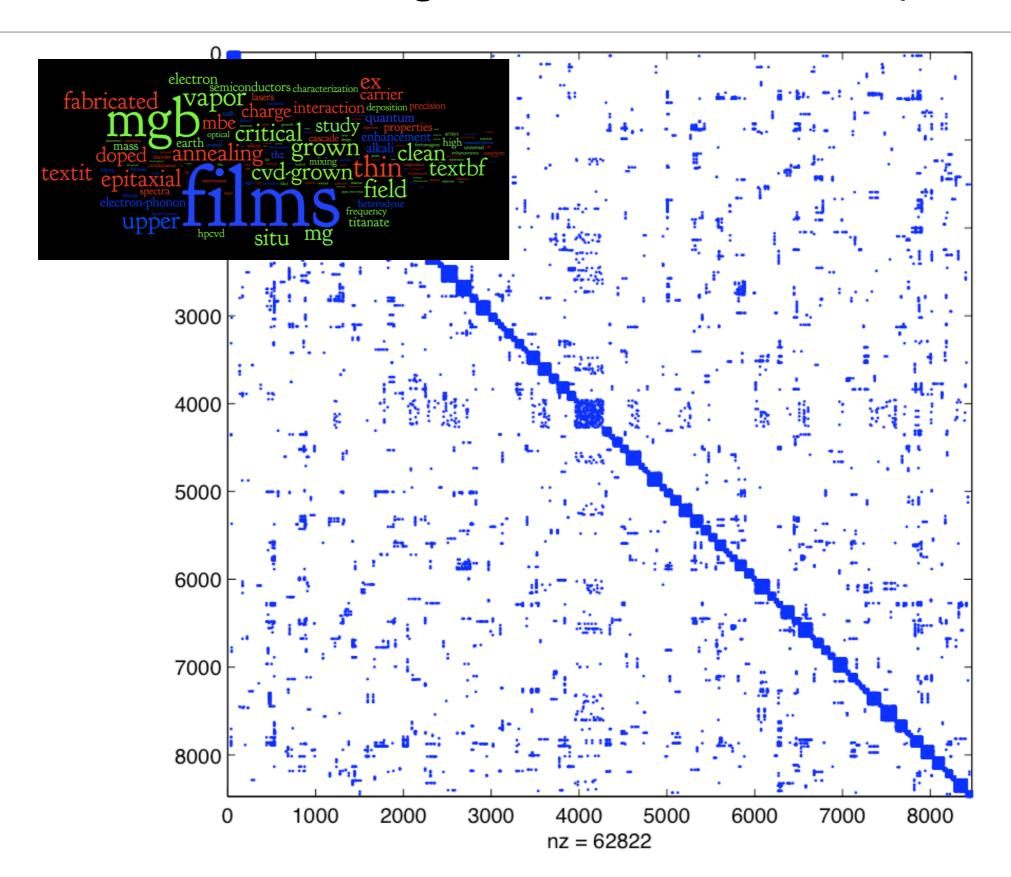


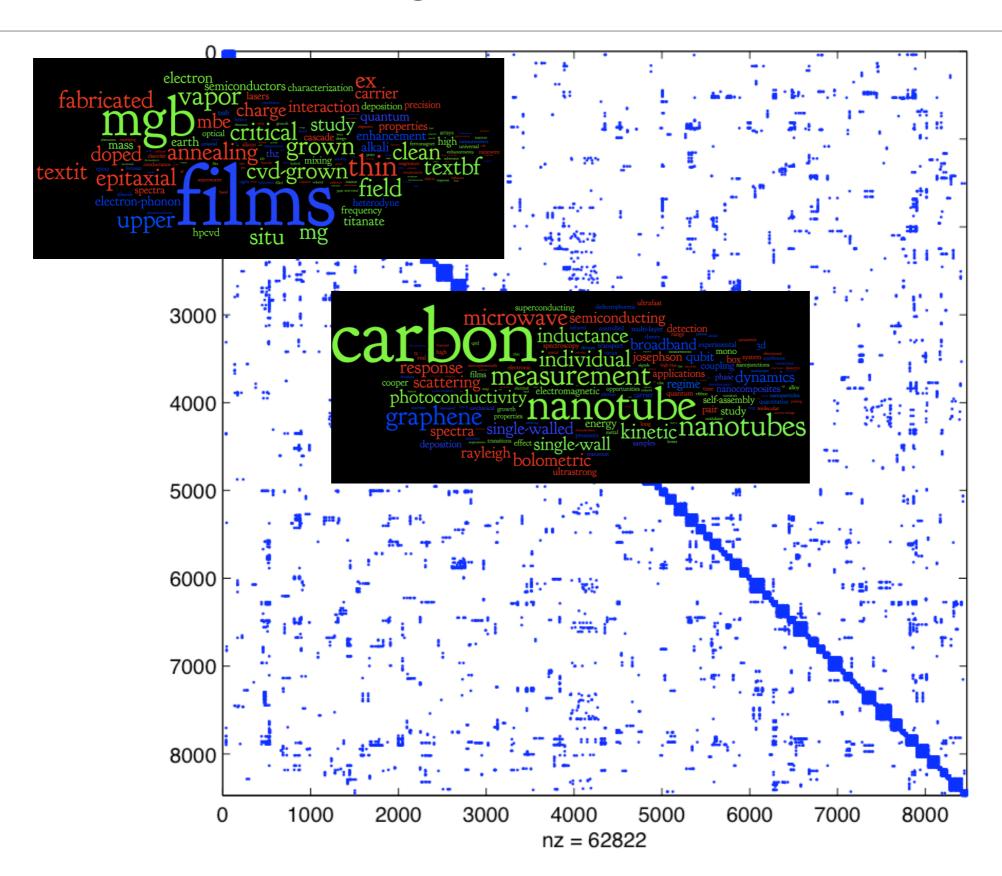
nodes: authors

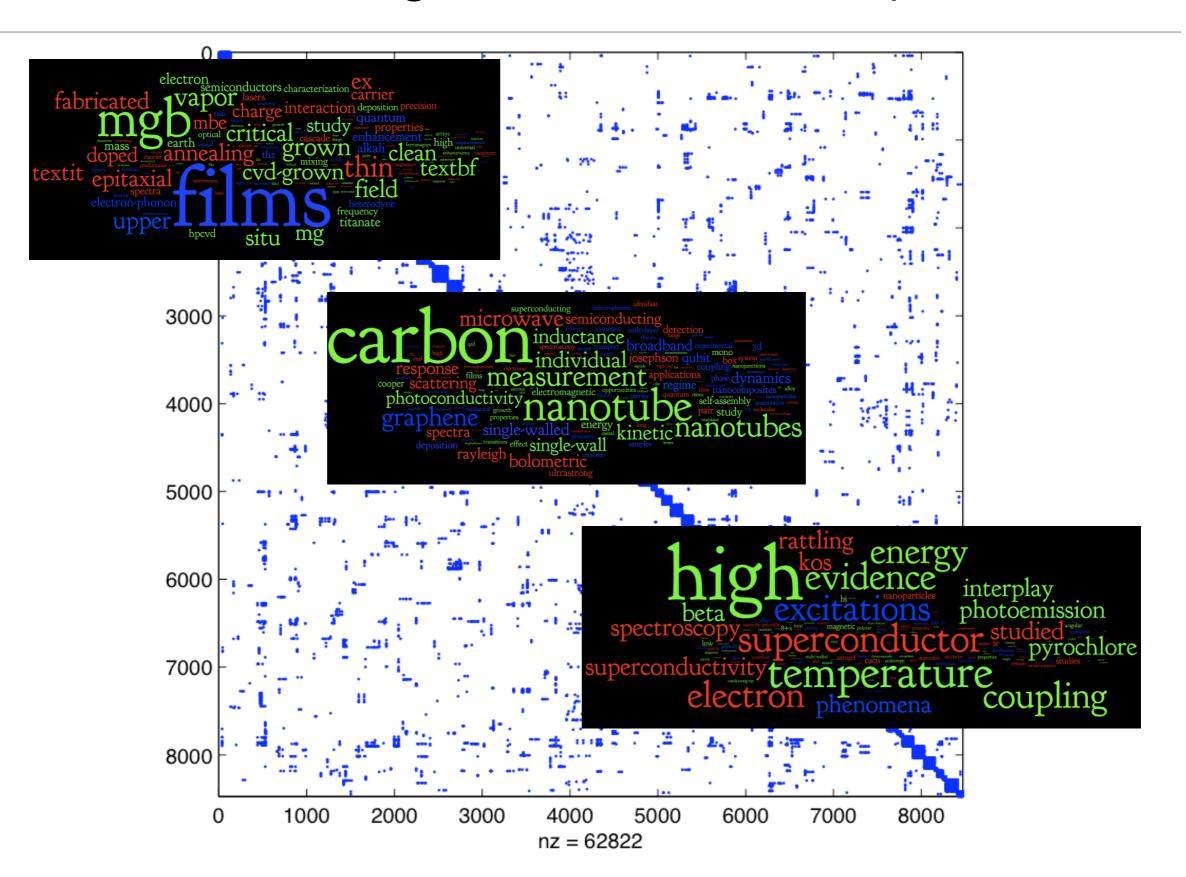
edges: co-authored papers



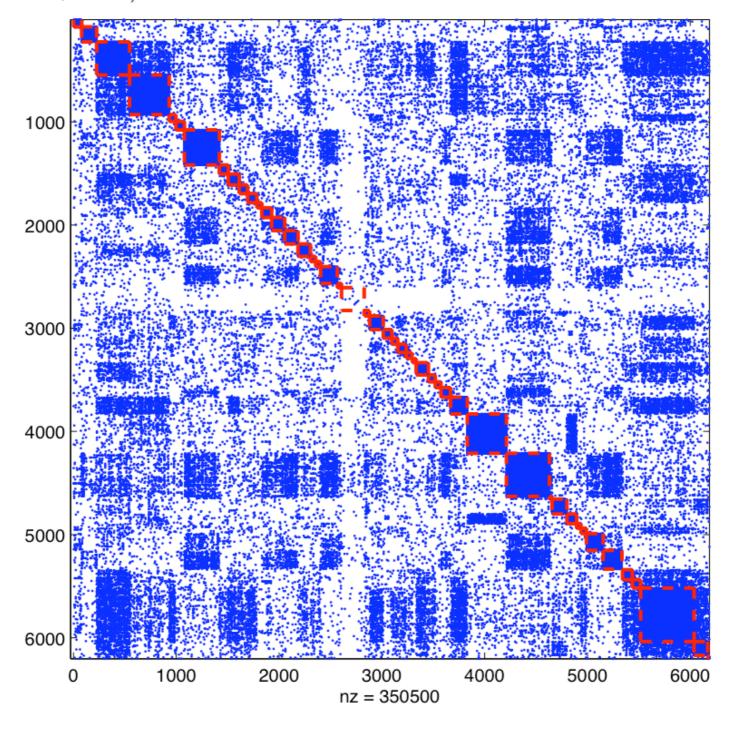








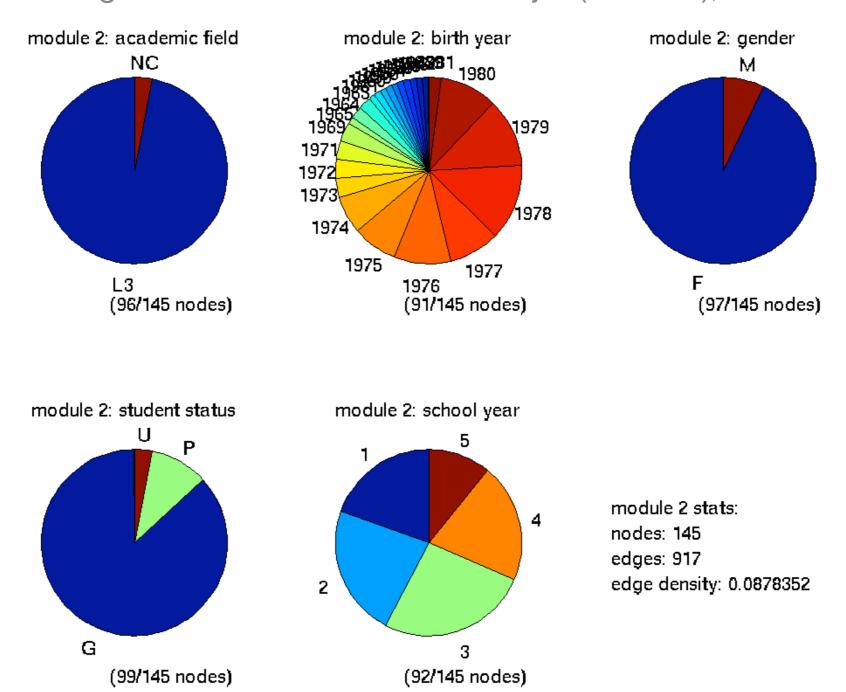
• How does topology (who emails whom) correspond to attributes (age, gender, academic affiliation, etc.)?



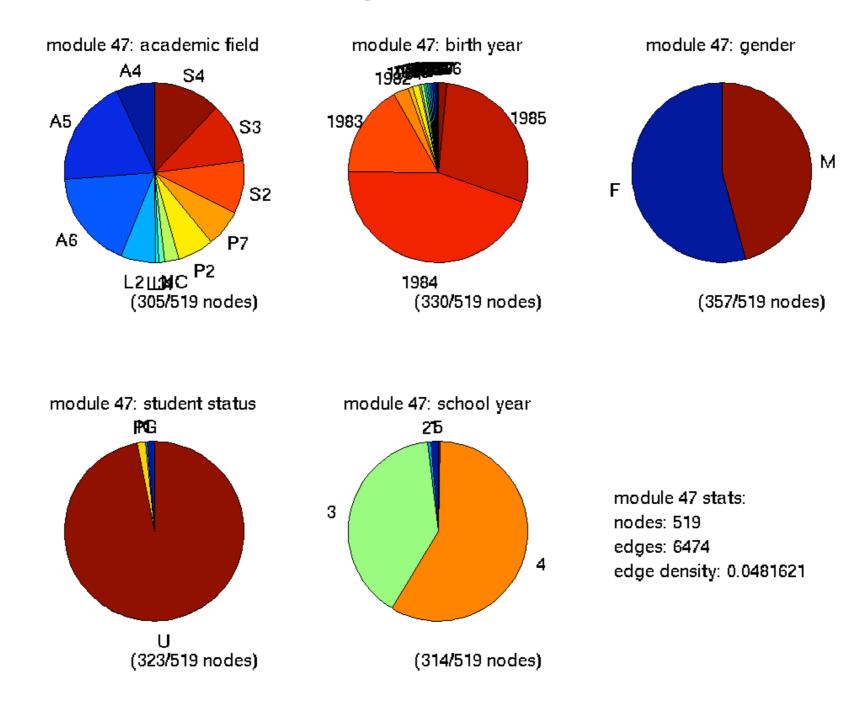
nodes: individuals

edges: reciprocated emails

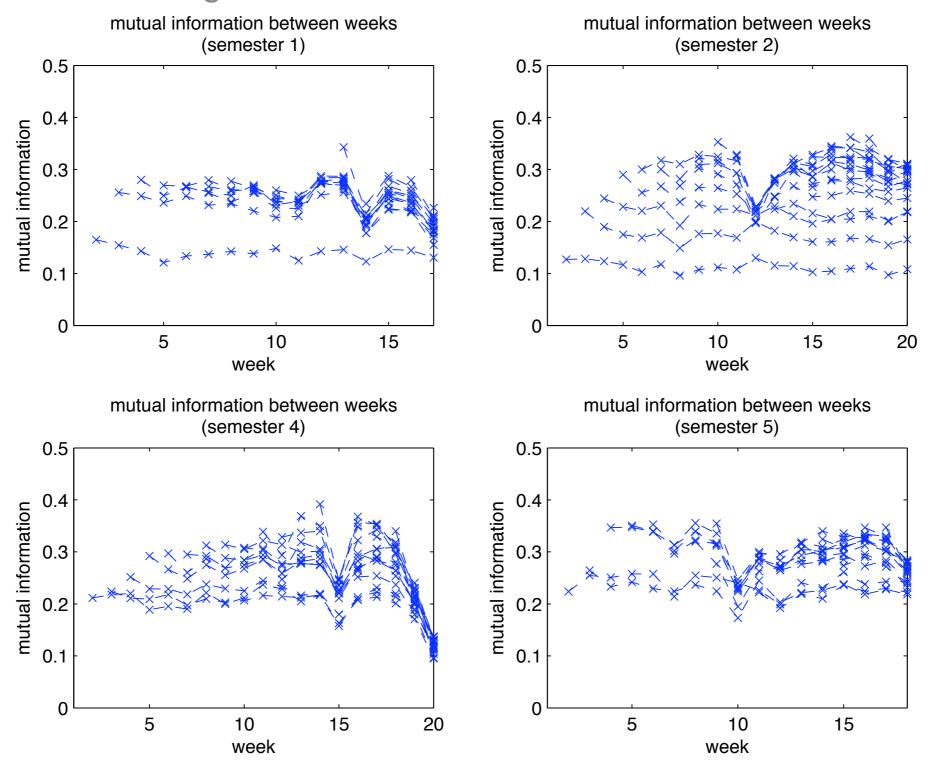
• Module 2: Female graduate students in same major (code L3), across all years



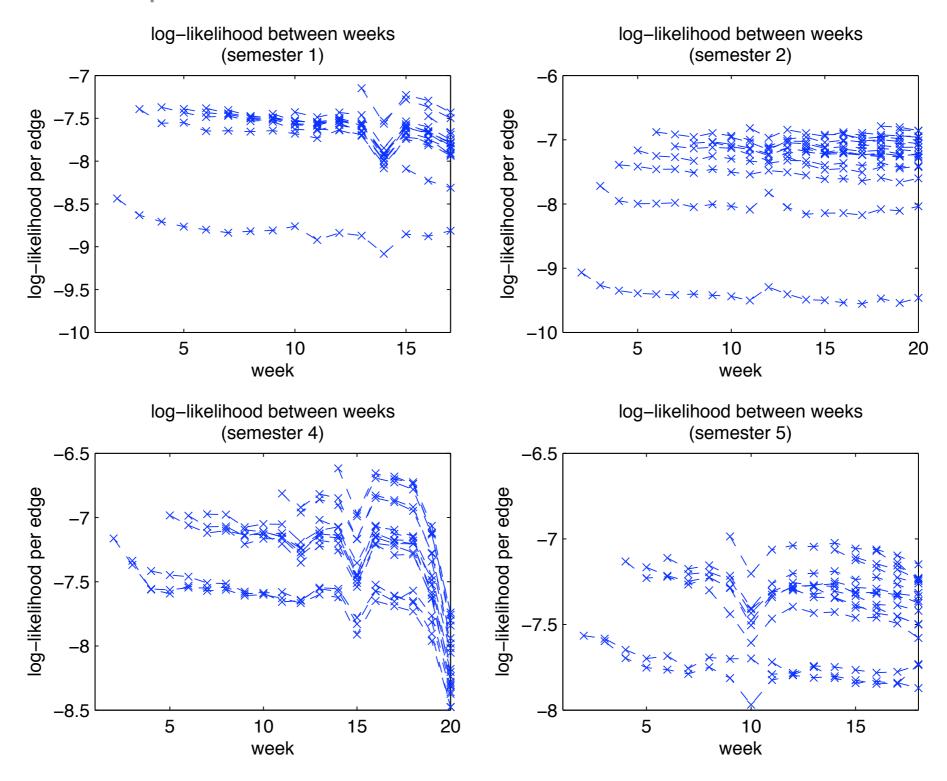
Module 47: Junior and senior undergraduates of various majors



Compare cluster assignments between weeks



Compare model performance as trained/tested on different weeks



Conclusions

- Phrased community detection as Bayesian inference
- Implemented model selection and comparison for constrained and full stochastic block models in variational framework
- Some correlation between topology and attributes, but unclear without additional information
- Non-trivial dynamic evolution of community structure
- References: http://vbmod.sf.net, Phys. Rev. Lett. Vol 100 (2008)

Acknowledgements

- Wiggins Lab
 - Andrew Mugler
 - Anil Raj
 - Chris Wiggins
- Yahoo! Research
 - Duncan Watts

- Useful discussions
 - Edo Airoldi (Princeton)
 - Joel Bader (John Hopkins)
 - David Blei (Princeton)
 - Aaron Clauset (SFI)
 - Jonathan Goodman (NYU)
 - Matt Hastings (LANL)