# Understanding the origin and organization of biochemistry

#### Eric Smith SFI

based on work with

Harold Morowitz George Mason University
Shelley Copley University of Colorado Boulder

Complex Systems Summer School 2007, Beijing

### 3-day outline

- Day I: Introduction to biochemistry and the problem of the origin of life
- Day II: Studying carbon fixation as a selforganized process
- Day III: From metabolism to self-replication and cells

### Day I: general introduction

- How to think about the organization of life
- Life's universal features
- Bioenergetics unifies living processes
- Comparing chemical evolution to species evolution
- Using these observations to think about the origin of life

# Ways of thinking about organization in the biosphere

- Chance and necessity
- Control and metabolism
- Biosynthesis and ecology

### Phylogenetic organization reflects the history of accidents



### Much of the observed contingency is possible because of top-down control



(Genes / enzymes provide "external" control of metabolism)

### However, different levels of structure involve different problems of organization



### Some kinds of organization seem more contingent; some seem more necessary













#### **Necessity**

Universal Steady Predictable

#### Chance

Variable
Fluctuating
Contingent

### Metabolism is organized by different distinctions than phylogeny; more "function" than "control"

Reductive metabolisms

Oxidative metabolisms

**Autotrophs** 





(Anabolism)

Heterotrophs





(Anabolism & Catabolism)

### Whole-ecosystem metabolism is simpler and more universal than species metabolism

Reductive ecologies

Oxidative ecologies





(Ecosystems are more fundamental than organisms)

#### Geological / evolutionary time and complexity



(The major transitions in evolution were chemical)

#### Universal features of life

- Small-molecule metabolic substrate
- Polymer chemistry and cofactors
- Macro-molecular catalysts and genes
- Membranes and compartments

### The bulk of life is built from four kinds of small molecules

- Fatty acids (compartments, polar environments)
- Sugars (structure, signaling, energy storage)
- Amino acids (catalysis, structure)
- Nucleic acids (heredity, catalysis)









#### Molecules classes have characteristic chemical form











#### Cofactors are a special class of mid-sized molecules

ATP (gives and takes phosphates)

NAD (gives and takes electrons)

 Coenzyme A (exchanges electrons for phosphates through sulfur intermediate)

### Macro-molecules provide catalysts and genetic templates

- Catalysts enhance reaction rates without being consumed
- Most modern catalysts are proteins, but some important ones are RNA
- Catalysts combine an active site
   with scaffolds or channels to hold
   or direct the substrates of the reaction
- Almost half of catalysts still use cofactors for the active site



http://metallo.scripps.edu/PROMISE/IOCC.html



#### Physical structures control reactions and energy flow

- Include membranes, ribosomes, pores, pumps, motors, walls, cytoskeleton
- Topology, geometry, and physical chemistry of membranes are all used
  - Topology concentrates reactants, excludes toxins, and creates pH and voltage differences
  - Geometry creates continuous energy currency
  - Oily membranes in a water medium are proton semiconductors



# Bioenergetics unifies living processes

- Electron transfer is the fundamental energy source
- Phosphates power polymerization
- Protons are used to couple electrons and phosphates

### Reduction and Oxidation (redox) powers basic organic chemistry

- Transfer of an electron can lower or raise free energy
- The free energy change can be measured as a voltage if electrons move separately from substrates
- A pair like  $A^- = A + e^-$  is known as a redox couple
- Voltage needed to halt
   a general reaction is
   proportional to the free
   energy (with concentration)
- Voltages are expressed relative to a standard couple



general reaction schema

$$dn_i = \nu_i d\xi \qquad de = \nu_e F d\xi$$

voltage equivalent

$$\nu_e FE = -\Delta G_0 - RT \sum_i \ln \left[ C_i \right]^{\nu_i}$$

reference couple

$$H_2(gas) \leftrightharpoons 2H^+ + 2e^-$$

#### Phosphate energy is released by hydrolysis

http://www.emc.maricopa.edu/faculty/farabee/BIOBK/BioBookATP.html

- All biopolymers are formed by dehydration reactions in water solution!
- Dehydrating agent is ATP, GTP, etc
- ATP has an inorganic analogue, polyphosphate, which has also been found in all organisms searched for it

http://employees.csbsju.edu/hjakubowski/classes/ch331/oxphos/olcouplingoxphos.html

### Activation with phosphates enables polymerization

 Using activation of a monomer as an intermediate in ATP hydrolysis dehydrates the monomer to produce a bond



DRIVING AMIDE (PEPTIDE) BOND FORMATION (DELGO > 0)

http://employees.csbsju.edu/hjakubowski/classes/ch331/oxphos/olcouplingoxphos.html

#### ATP is recycled from proton energy

 ATP synthase (and related flagellar motors) combines a transport pore for H<sup>+</sup> with a rotory shaft



 Proton flux through membranes is only permitted by rotation of the shaft, which deforms enzymes to make ATP



### Respiration generates protons from reductant to recycle phosphate; both occur at membranes

- Lipid-soluble cofactors (quinones) couple electron transfer to proton pumping
- Proton return recycles ATP from ADP and P<sub>i</sub>



### The function of photosynthesis is to produce reductant from light

- Electrons are progressively raised in redox potential, then donated to NADP+, to make NADPH, a powerful reductant used in anabolism
- Protons pumped directly can also be used to recycle phosphates



#### All biological energy sources are interconvertible

- Permits environmental flexibility and buffers against fluctuations
- Environmental redox couples are widely diverse
- Cellular use of phosphates and protons is much more uniform



# The dynamics of species and ecologies is qualitatively different from the dynamics of chemistry

- Species dynamics is not universal or steady
- Darwinian evolution and ecological structure may reflect the dynamics of partition rather than chemistry

### Species go extinct and ecosystems undergo re-arrangements



- Extinctions at many levels have happened constantly
- Yet core biochemistry has persisted with little loss and only occasional innovation





### Spin glasses: a mathematical model for ecological organization?

- Glasses: solids without crystal order
- Arise where too many constraints make satisfiability impossible
- Have a huge number of "equally bad" solutions to energy minimization
  - Solutions are qualitatively similar
  - Each solution is stable or metastable
  - Shift between solutions occurs by avalanche dynamics





# Clues to thinking about the origin of life

- Chemistry and function are hierarchical
- Biosynthesis has a simple and universal core
- Reducing metabolisms are simpler than oxidizing metabolisms
- The structure of metabolism combines elements of randomness and of constraint

#### The problem deriving control and metabolism

- All enzymes / genes are built from metabolites
- All metabolic reactions are catalyzed by enzymes encoded in genes
- No simple "point of entry" for evolution



#### Biochemistry has hierarchical organization

- Organic chemistry mostly concerns monomers
  - Simplest and most universal molecules
- Phosphate-polymer chemistry starts with cofactors
  - Many cofactors are "multimers" of simpler building blocks
- Oligomers become large by introducing secondary structure
  - Uniform molecule type
  - Uniform chirality
  - Retain cofactors as prosthetic groups



#### Biosynthesis has a simple core

- Krebs (TCA) cycle makes precursors to all five classes of biomolecules
- Eleven simple acids (<6 Carbon)</li>
- Exists in oxidative and reductive organisms
- Extremely ancient and absolutely conserved



### Reductive metabolism: a free lunch you are paid to eat



#### Metabolism combines randomness and order

- Metabolism is a confederacy
- Dependency tree has clouds and gateways
- Clouds look thermodynamic
- Gateways may be molecules or pathways



### Summary for Day I

- Biology combines necessity & contingency;
   control & metabolism & self-organization
- Biochemistry itself is well-ordered and hierarchical, with many universal properties
- Evolution of chemistry and of species follows different dynamics; chemistry seems more fundamental and more "necessary"
- Understanding the principles of organization should help us understand how life emerged

### Further reading

- Schrödinger, Erwin, What is life?: the physical aspect of the living cell / by Erwin
   Schrödinger London: Cambridge University Press, 1955
- Stryer, Lubert Biochemistry New York: W.H. Freeman, 1995 4th ed
- Voet, Donald and Judith G. Biochemistry New York: J. Wiley & Sons, 1995 2nd ed
- Metzler, David E Biochemistry: the chemical reactions of living cells New York:
   Academic Press, 1977
- Morowitz, Harold J Beginnings of cellular life: metabolism recapitulates
   biogenesis New Haven: Yale University Press, 1992
- Lowry, Thomas H and Richardson, Kathleen Schueller Mechanism and theory in organic chemistry New York, N.Y.: Harper & Row, 1981 2nd ed
- Mezard, Marc, Parisi, Giorgio, and Virasoro, Miguel Angel Spin glass theory and beyond Singapore; Teaneck, NJ, USA: World Scientific, 1987