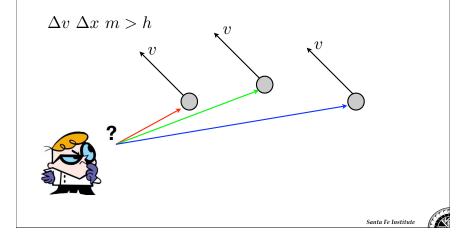
Heisenberg uncertainty principle

Miguel Angel Fuentes Santa Fe Institute, USA Instituto Balseiro and CONICET, Argentina Comments

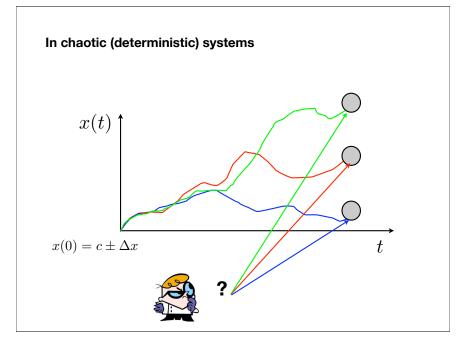
In the framework of quantum mechanics -one of the most successful theories created- is not possible to know -at the same time- the position and velocity of a given object.

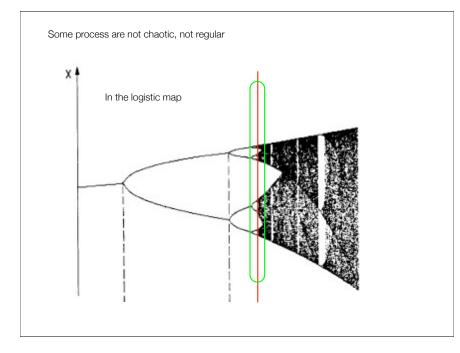


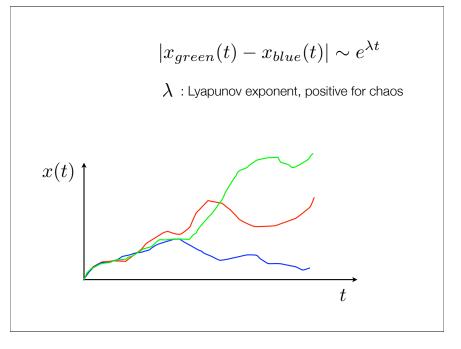
Einstein was very unhappy about this apparent randomness in nature. His views were summed up in his famous phrase, 'God does not play dice.' (as Wilkins does)

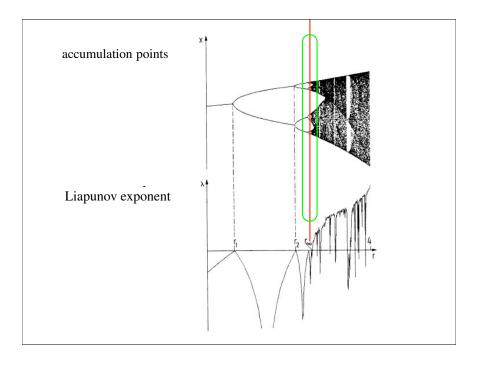
(from a Stephen Hawking lecture)

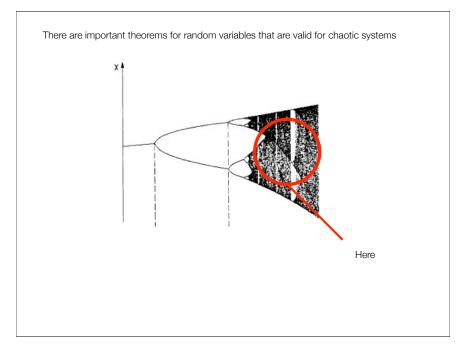
Santa Fe Institute







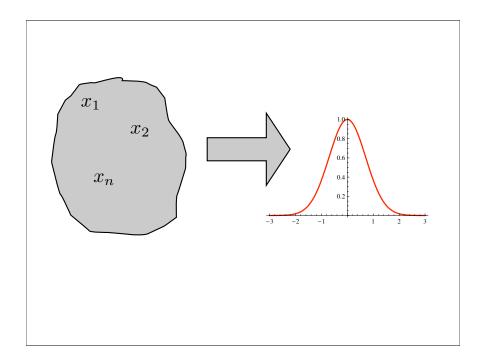


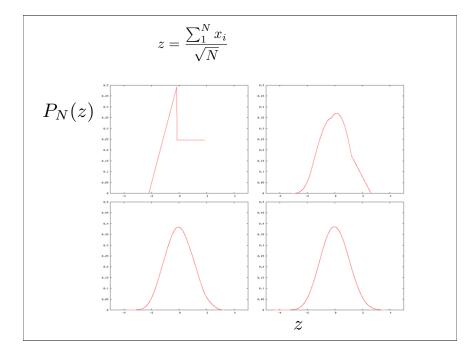


Abraham de Moivre (1667) a French mathematician famous for de Moivre's formula (friend of Isaac Newton, Edmund Halley, and James Stirling)

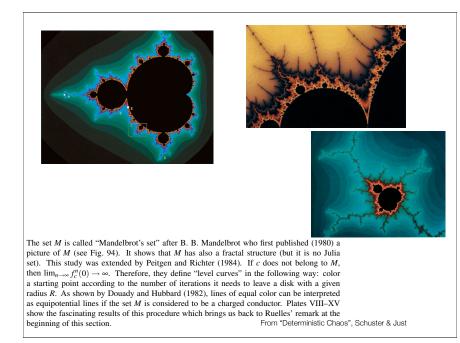
 $(\cos x + i\sin x)^n = \cos nx + i\sin nx$

The central limit theorem (CLT) states that the **sum of a large number** of independent and identically-distributed **random variables** will be approximately normally distributed (i.e., **following a Gaussian distribution**, or bell-shaped curve) if the random variables have a finite variance (*1773*).

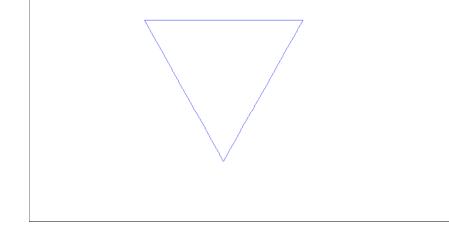


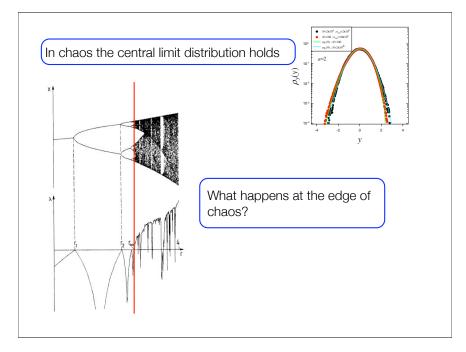


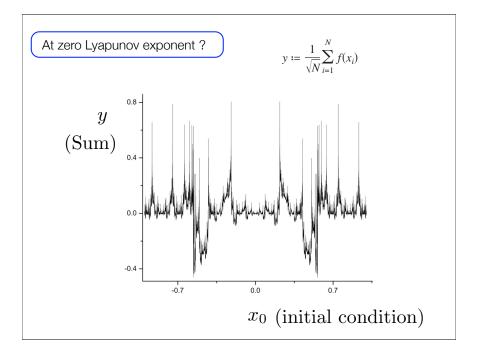


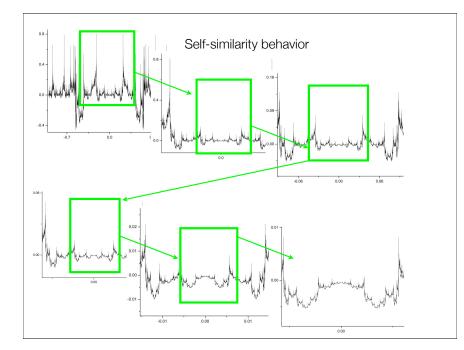


Koch curve (after 1904 paper "On a continuous curve without tangents, constructible from elementary geometry" (original French title: "Sur une courbe continue sans tangente, obtenue par une construction géométrique élémentaire") by the Swedish mathematician Helge von Koch.)

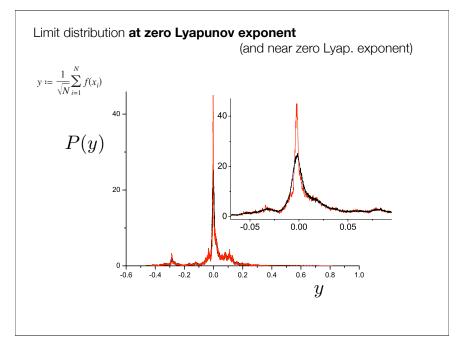






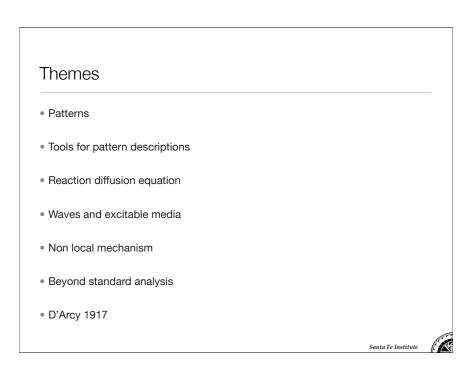


Santa Fe Institute



Patterns

Miguel Angel Fuentes Santa Fe Institute, USA Instituto Balseiro and CONICET, Argentina



PDE, Reaction Diffusion Models:

"Under certain conditions spatially inhomogeneous patterns can evolve by diffusion driven instability" A. M. Turing, 1952

The chemical basis of morphogenesis, A. M. Turing, Phil. Trans. Roy. Soc. London, B237, 37-72, 1952.

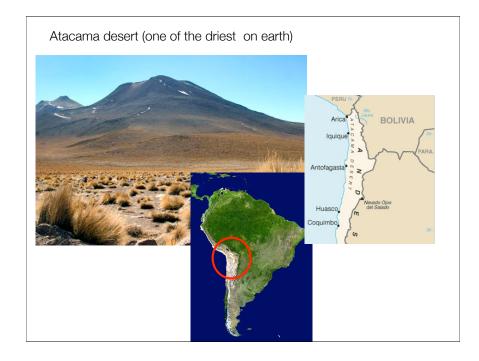
Minimal model

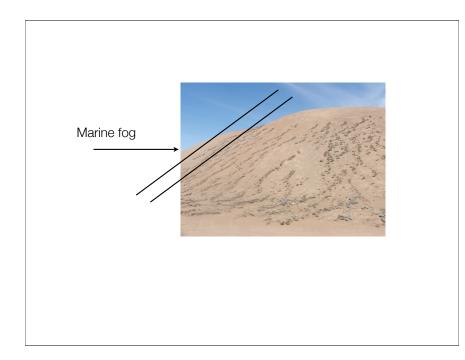
$$\partial_t u = f(u, v) + d_u \nabla^2 u$$

$$\partial_t v = g(u, v) + d_v \nabla^2 v$$

Santa Fe Institute

K





Linear stability analysis

$$(u_0, v_0): \text{ homogenous steady state, i. e.:} f(u_0, v_0) = g(u_0, v_0) = 0$$

$$\mathbf{w} = \begin{pmatrix} u - u_0 \\ v - v_0 \end{pmatrix}$$

$$\dot{\mathbf{w}} = \mathbf{A}\mathbf{w} \qquad \mathbf{A} = \begin{pmatrix} f_u & f_v \\ g_u & g_v \end{pmatrix}$$

$$\mathbf{w} \sim e^{\lambda t} \quad \begin{cases} \lambda > 0 & \mathbf{w} \to \infty \\ \lambda < 0 & \mathbf{w} \to 0 \end{cases}$$
sum Fe haviant

Conditions for stability of the homogeneous state The eigenvalues are given by the solution of (exercise 1) $\begin{vmatrix} f_u - \lambda & f_v \\ g_u & g_v - \lambda \end{vmatrix} = 0$ Then there are two solution: λ_1, λ_2 from the equation: $\lambda^2 - (f_u + g_v)\lambda + (f_ug_v - f_vg_u) = 0$ Linear stability, $\Re[\lambda] < 0$, is guaranteed if (exercise 2) $tr\mathbf{A} = f_u + g_v < 0, \quad |\mathbf{A}| = f_ug_v - f_vg_u > 0$ $\mathbf{A} = \begin{pmatrix} f_u & f_v \\ g_u & g_v \end{pmatrix}$

Santa Fe Institute

Conditions for instability of the homogeneous state

$$\begin{aligned}
\partial_t u &= f(u, v) + d_u \nabla^2 u \\
\partial_t v &= g(u, v) + d_v \nabla^2 v
\end{aligned}$$
Linear version

$$\begin{aligned}
\partial_t \mathbf{w} &= \mathbf{A} \mathbf{w} + \mathbf{D} \nabla^2 \mathbf{w} \qquad \mathbf{w} = \sum_k c_k e^{\lambda t} \mathbf{W}_k(\mathbf{r})
\end{aligned}$$
Using cos functions

$$\lambda \mathbf{W}_k &= \mathbf{A} \mathbf{W}_k + \mathbf{D} \nabla^2 \mathbf{W}_k \\
&= \mathbf{A} \mathbf{W}_k - \mathbf{D} k^2 \mathbf{W}_k
\end{aligned}$$

Eigenvalues equation

$$|\lambda \mathbf{I} - \mathbf{A} + \mathbf{D}k^2| = 0$$
 $\mathbf{w} = \sum_k c_k e^{\lambda t} \mathbf{W}_k(\mathbf{r})$

$$\lambda^{2} + \lambda [k^{2}(1+d) - (f_{u} + g_{v})] + h(k^{2}) = 0$$

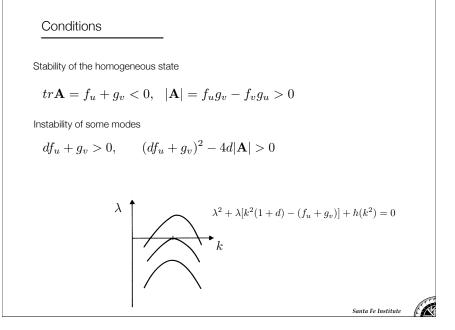
 $h(k^2) = dk^4 (df_u + g_v)k^2 + |\mathbf{A}|$

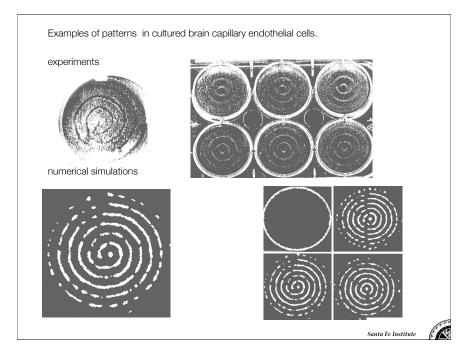
Santa Fe Institute

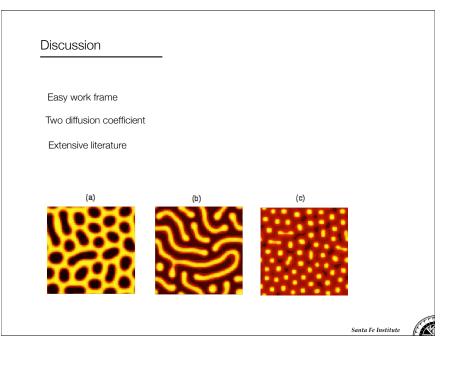
<u>la k</u>

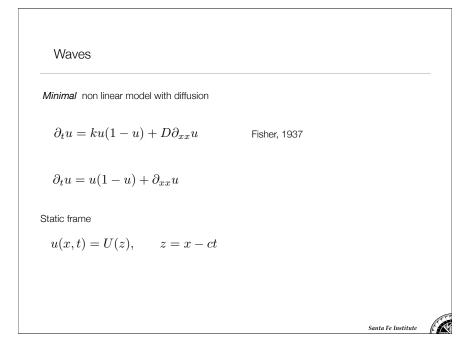
Linear stability, $\Re[\lambda]>0\,$,is guaranteed if (exercise 3)

$$df_u + g_v > 0,$$
 $(df_u + g_v)^2 - 4d|\mathbf{A}| > 0$





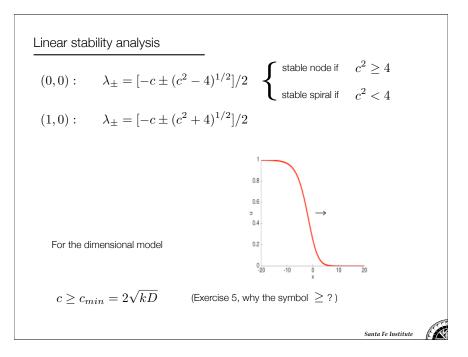


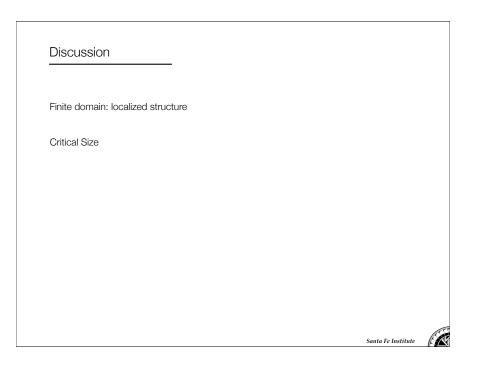


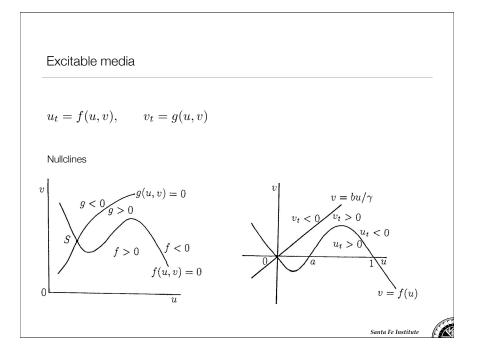
$$U'' + cU' + U(1 - U) = 0 \qquad (Exercise 4)$$

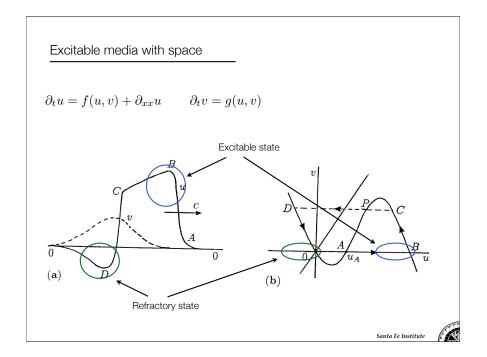
$$\lim_{z \to \infty} U(z) = 0, \qquad \lim_{z \to -\infty} = 1$$

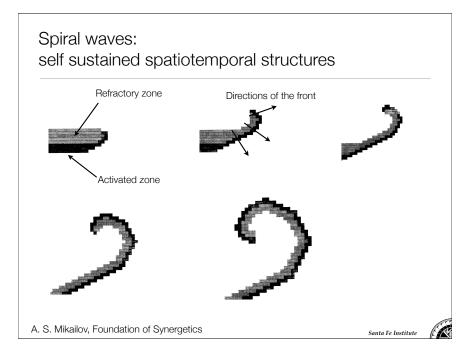
In the plane (U, V)
$$U' = V, \qquad V' = -cV - U(1 - U)$$

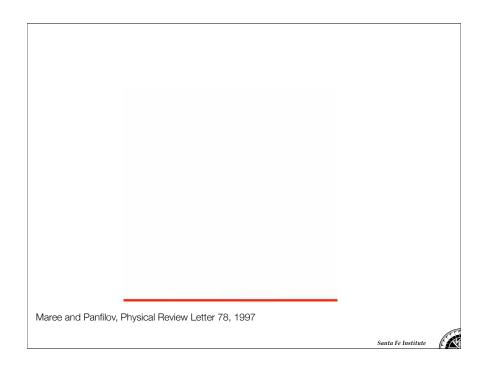


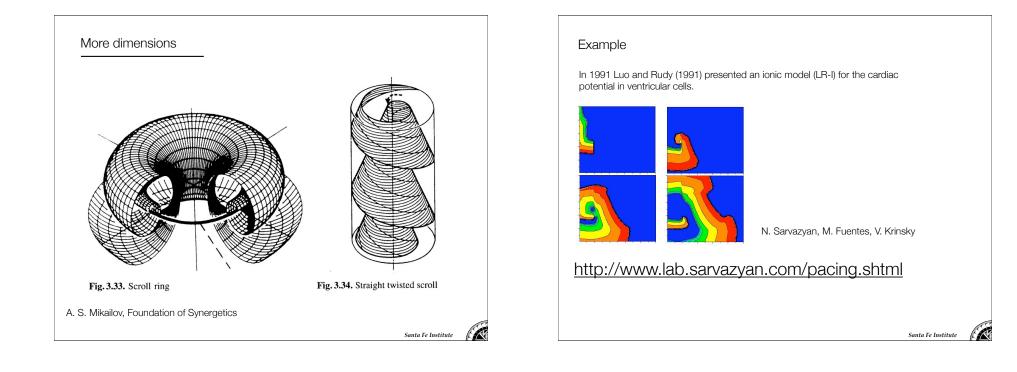


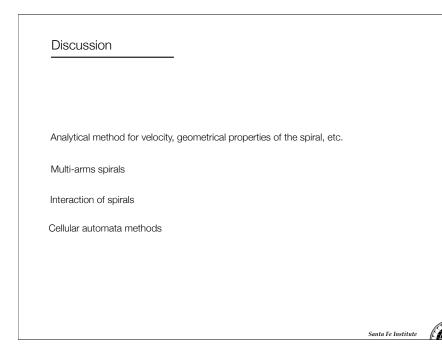


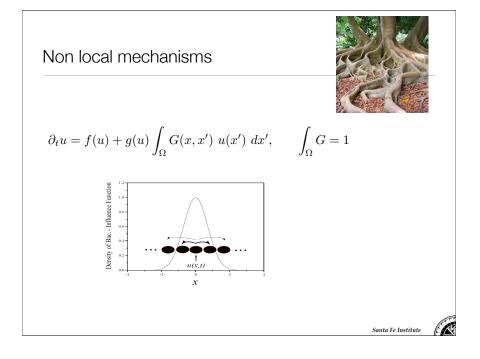












$$\partial_t u = f(u) + g(u) \int_{\Omega} G(x, x') \ u(x') \ dx', \qquad \int_{\Omega} G = 1$$

Near the stable point

$$\partial_t u = f'(u_0)u + g'(u_0)u_0u + g(u_0) \int G \ u \ dx', \qquad u_0 \text{ is a stable point}$$
(Exercise 6)

Santa Fe Institute

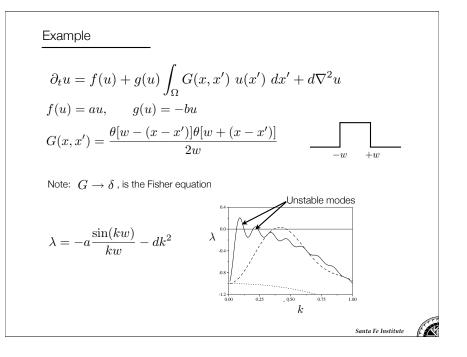
(Exercise 7, condition for stability for local interaction see the limit: $G
ightarrow \delta$)

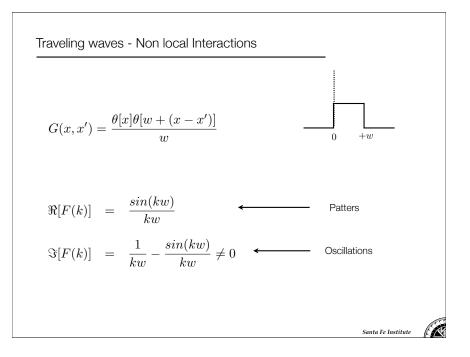
Doing the Fourier transform, i.e.
$$u \sim e^{ikx+\lambda}$$

$$\lambda = f'(u_0) + g'(u_0)u_0 + g(u_0)F(k), \quad \text{with } F(k) = \int Ge^{iky}dy$$
Equation with space variables

$$\partial_t u = f(u) + g(u) \int_{\Omega} G(x, x') u(x') dx' + d\nabla^2 u$$
Condition for unstable modes

$$F(k) > \frac{Dk^2 - f'(u_0) - g'(u_0)u_0}{g(u_0)} \quad \text{(Exercise 8)}$$

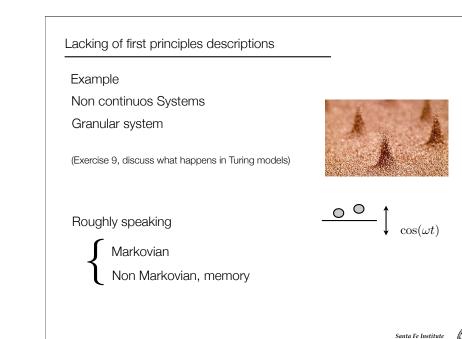


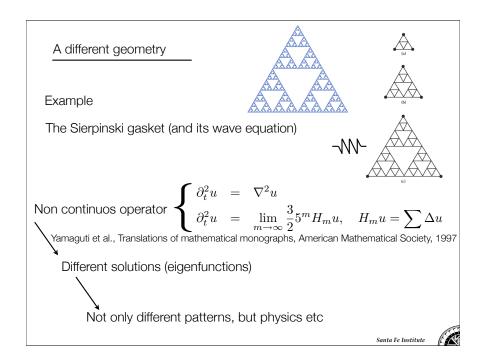


Frontiers

1- Lacking of first principles descriptions

2- A different geometry





Santa Fe Institute

Conclusions

- Linear stability analysis is a fundamental tool
- Turing patterns has many application, we must have a critic view

Santa Fe Institute

- In the literature: studies for 'amplitude equations'
- Non continuos systems need special attention
- Dynamical systems knowledge is also necessary
- Geometry
- Calculus