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1. INTRODUCTION AND DISCLAIMER

The bulk of this paper is aimed at an audience that has been exposed, however tangentially,  to
Bayesian inference of phylogeny; who feel the excitement and intuit its promise, but are
intimidated by both the mathematics and the Bayesian/MCMC jargon.  We are in a unique
position in that, as Paul O. Lewis (2002) states, the field is young enough that “the literature on
Bayesian phylogenetics is still small enough that you can have some hope of actually reading all
the papers on the topic!”  This will undoubtedly become much more difficult within the decade.
The purpose of this paper in part is to summarize the research to date; to sort out and explain the
jargon, to point out some of the advantages of Bayesian inference, and to elaborate on some
possible pitfalls.

Mathematical equations are given, but not overly dwelled on; instead, it is hoped that the reader
will get a sense of the process of navigating through tree space and assessing reliability rather
than dissecting high-dimensional functions.  I have written this review in a specific mindset: to
write a paper that I myself would liked to have read when first being exposed to the field of
Bayesian phylogenetics.  As such, particular attention has been paid to making it as readable as
possible, in parts relying on figures to expand on points.  In this respect I would like to thank
those authors that contributed (unknowingly) many of the figures contained herein.

The reader is expected to have knowledge of rudimentary classical statistics and a working
understanding of model-based phylogenetic inference.  Numerous papers (Kuhner and
Felsenstein, 1994; Huelsenbeck and Hillis, 1993; Huelsenbeck, 1995; Gaut and Lewis, 1995;
etc.) have explained in detail the superiority of maximum likelihood in most situations when
compared to such inference methods as maximum parsimony, minimum evolution, and various
distance methods; I will not, therefore, repeat those arguments here.  Nor will I compare
Bayesian inference with those proven inferior methods.  Rather, what is of interest is whether
Bayesian inference of phylogeny can perform at least as well as maximum likelihood.

* Readers proceeding beyond this page do so at their own risk.  I do not hold myself responsible for any psychological trauma that may ensue, nor will I pay psychiatrist fees.
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2. A BRIEF INTRODUCTION TO BAYESIAN STATISTICS

Despite the relative novelty of the word “Bayesian” in the molecular systematics literature, this
school of statistics is anything but new.  Bayesian statistics was borne of a posthumously
published paper by Reverend Thomas Bayes the year 1763; as such, Bayesian inference predates
classical (Frequentist) inference by 150 years (Huelsenbeck et al., 2002).  In his Essay Towards
Solving a Problem in the Doctrine of Chances Bayes developed a formal method for
incorporating prior evidence into the inference of the probability that an event occurs.  All
subsequent work in Bayesian inference stems ultimately from this 1763 paper, though many of
the recent developments involve technological and programming advancements that allow
evaluation of extremely complex problems.  A Bayesian framework offers many advantages over
its classical counterpart in terms of the questions that can be asked, the incorporation of relevant
prior evidence, the speed at which conclusions are reached, and the straightforward interpretation
of results.

In this chapter I will walk through the derivation of Bayes’ theorem, illustrate its utility through
use of a simple example, discuss the controversy surrounding prior probabilities and how they
are constructed, show how posterior probabilities and credible intervals are defined and
interpreted, and finally contrast the major differences between the classical and Bayesian schools
of statistics.

BAYES’ THEOREM

Bayesian statistics is a formal method for inferring the probability that an event occurs from
consideration of both the prior probability of that event occurring and the current data.  Bayes’
theorem, the instrument used to perform this task, is described below.

Figure 2.1: A Venn diagram.  The rectangle represents the universe set while A and B represent two
separate events within that universe.  Areas where the circles overlap indicate both A and B have
occurred.

Let A and B represent two separate events.  From Figure 2.1 it is clear that:

€ 

Pr(A,B) = Pr(B,A)
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This equation is trivial.  What it says is that the probability of A and B both occurring is equal to
the probability of B and A both occurring.  These are both joint probabilities.  Using simple
probability theory a joint probability can be rewritten as the product of a conditional probability
and the probability that the condition is true.  The probability of both A and B occurring,

€ 

Pr(A,B), can thus be rewritten as 

€ 

Pr(A,B) = Pr(A)Pr(B | A).  What this equation says is that the
probability of A and B both occurring is equal to the marginal (unconditional) probability of A
occurring multiplied by the conditional probability of B occurring given that A has occurred.
The above equation thus becomes:

€ 

Pr(A)Pr(B | A) = Pr(B)Pr(A |B)

which can be rearranged to the familiar form of Bayes’ theorem:

€ 

Pr(B | A) =
Pr(B) ×Pr(A |B)

Pr(A)

Biologists are not usually interested in the association of separate events; rather, we are
interested in the relationship between an event and a particular hypothesis.  Let us rewrite the
above equation in a more useful form:

€ 

Pr(hypothesis | data) =
Pr(hypothesis) ×Pr(data | hypothesis)

Pr(data)

The left side of the equation, 

€ 

Pr(hypothesis | data) , is the conditional probability of the
hypothesis given the data, and is called the posterior probability.  This is the quantity that we are
all after: how well our model agrees with the observed data.  Contrast this with the quantity

€ 

Pr(data | hypothesis)  on the right hand side of the equation which represents the likelihood, the
vehicle for data analysis in the classical framework.  Clearly these two quantities measure very
different things.  Personally, I feel that that the posterior probability delivers something more
intuitive and useful than the likelihood.  We will return to this issue shortly.

€ 

Pr(hypothesis)  in the above equation is the prior probability  of the hypothesis. The prior
probability, or simply “prior”, represents our state of knowledge (or ignorance) about the truth of
a hypothesis before we have observed the data (Sivia, 2002).  Thus prior probabilities are
determined before any data are observed.  The prior is modified by the data through the
likelihood function to yield the posterior probability. Priors, because they are true probabilities,
obey the laws of probability and thus must sum (or integrate) to 1 across hypotheses.  The final
quantity, 

€ 

Pr(data) , is the marginal probability of the data given the model, and can be expressed
as:

€ 

Pr(data) = Pr(hypothesis) ×Pr(data | hypothesis)
hypotheses∑

This is simply the sum of the numerators over all possible hypotheses (Felsenstein, 2003).  At
first sight 

€ 

Pr(data)  appears completely incalculable for complex (e.g. phylogenetic) problems,
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not to mention incomprehensible (Lewis, 2002).  However, close examination reveals that

€ 

Pr(data)  does not depend on the hypothesis of interest and so is a constant. 

€ 

Pr(data)  essentially
acts as a scaling factor to ensure that the posterior probability lies in the interval (0,1).  Bayesians
thus often write Bayes’ theorem as follows:

€ 

Pr(hypothesis | data)α Pr(hypothesis) ×Pr(data | hypothesis)

or more simply:

€ 

Posteriorα Pr ior × Likelihood

Some investigators like to think of the posterior probability as an updated form of the prior in the
light of the observed data.  The working out of a Bayesian posterior probability is thus a very
logical procedure and effectively encapsulates the process of learning (Sivia, 2002).

A SIMPLE EXAMPLE

We will now go through a trivial application of Bayes’ theorem to get a feel for the computations
involved.  Imagine two populations of Amazona bowie, a neotropical parrot species famed for
spectacular nocturnal vocal displays and wicked guitar rifts.  Individuals from these two
populations are nearly identical, save for eye colour.  Table 2.1 (below) describes the known eye
colour frequencies for the two populations that were determined from extensive previous
observations.

Table 2.1: Eye colour frequencies for the two populations of Amazona bowie derived from previous
observation.  To avoid rounding-off error these numbers are represented as fractions in the calculations.

Eye Colour Population A Population B
Blue 20% 60%

Green 30% 25%
Red 50% 15%

Because of these marked differences you decide that the populations warrant genetic
comparison.  Unfortunately both populations are deep within the Amazon and your NSERC
grant wasn’t large enough to allow you to travel there yourself, so you must depend on genetic
samples sent to you by local authorities.  You do this, but after having received two boxes of
samples you notice that the population identification stickers lost in transport.  The result: two
separate boxes of samples but no idea of which is which.  Fortunately a collector in one of the
populations included two pictures of birds that contributed to the samples from that particular
population.  Both birds have blue eyes.  What you would like to do is calculate the probability
that this box of samples represents population B.

Because we are working within a Bayesian paradigm we can incorporate evidence from the
previous studies into our posterior probability estimates.  Recall from above that:
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€ 

Pr(hypothesis | data) =
Pr(hypothesis) ×Pr(data | hypothesis)

Pr(hypothesis) ×Pr(data | hypothesis)
hypotheses∑

The above equation rewritten for the Amazona bowie problem becomes:

€ 

Pr(Pop.B | 2 blue) =
Pr(Pop.B)×Pr(2 blue |Pop.B)

Pr(Pop.B) ×Pr(2 blue |Pop.B) + Pr(Pop. A) ×Pr(2 blue |Pop. A)

Remember that 

€ 

Pr(data | hypothesis)  is a likelihood.  Assuming independence of the photographs
(i.e. the birds are not close relatives), for population A the likelihood of the data given the
hypothesis is:

€ 

Pr(2 blue |Pop. A) =
1
5
×
1
5

=
1
25

and for population B is:

€ 

Pr(2 blue |Pop.B) =
3
5
×
3
5

=
9
25

Also recall that 

€ 

Pr(hypothesis)  is the prior probability of the hypothesis.  Because we really have
no idea which box is which, and because prior probabilities across hypotheses must sum to one,
appropriate prior probabilities would seem to be:

€ 

Pr(Pop. A) = Pr(Pop.B) = 0.5

Substituting the above quantities into Bayes’ theorem gives us:

€ 

Pr(Pop.B | 2 blue) =

1
2
×
9
25

1
2
×
9
25

+
1
2
×
1
25

= 0.9

We can therefore say that we are 90% sure that the box from which the pictures originated
represent population B, given the data (granted, these results are based on little data).  Another
way to think about this result is that your prior beliefs of equal probability have been updated to
a probability of 0.9 for population B after considering the data.  It follows that, again because we
are dealing with true probabilities, that the posterior probability for the hypothesis “population
A” is 0.1 (it may be useful for you to try this for yourself using the same steps as above).  Now
imagine that you find a third photograph in the same box as the others and it depicts a parrot with
red eyes.  How would this new piece of information change your conclusions?  The likelihoods
would be as follows:

€ 

Pr(2 blue,1 red |Pop. A) =
1
5
×
1
5
×
1
2

=
1
50

    and    

€ 

Pr(2 blue,1 red |Pop.B) =
3
5
×
3
5
×
3
20

=
27
500
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You can see that because the frequency of the red-eye morph in population B is relatively low
this new information greatly diminishes the likelihood of the box in question representing
population B.  Using the same prior probabilities as above the posterior probability for
population B becomes:

€ 

Pr(Pop.B | 2 blue,1 red) =

1
2
×
27
500

1
2
×
27
500

+
1
2
×
1
50

= 0.73

We can see that our beliefs have been shifted again in the light of the new evidence, and we are
no longer so certain that the photographs came from population B, though it is still 2.7 times
more likely (

€ 

0.73√ 0.27 = 2.7).  Tearing the box apart you are able to find 6 more pictures to
give a total of 4 blue-eyed birds, 3 with green eyes, and 2 of the red-eyed morph.  The likelihood
equations are now:

€ 

Pr(4 blue, 3 green, 2 red |Pop. A) =
1
5
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 
4

×
3
10
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
3

×
1
2
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 
2

=
3
181

and

€ 

Pr(4 blue, 3 green, 2 red |Pop.B) =
3
5
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 
4

×
1
4
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 
3

×
1
20
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

=
9
121

and the posterior probability for the “hypothesis B” becomes:

€ 

Pr(Pop.B | 4 blue, 3 green,1 red) =

1
2
×
9
121

1
2
×
9
121

+
1
2
×
3
181

= 0.82

Once again the probability for “hypothesis B” has changed with increased data.  Because these
last results are based on more data than the first (2 photograph) calculation, they may be
considered more robust.  As a last twist let us imagine that we get a phone call from our
collaborator in São Paulo and he says that he is about 75% sure that the box with the photographs
contains samples from population A.  Up until now we have been using ignorant prior
probabilities simply because we had no reason to do otherwise, but from this simple phone call
we are furnished with information that allows us to alter our prior beliefs.  This is where
Bayesian inference diverges from that of likelihood, because prior information can be naturally
incorporated into the Bayesian analysis via Bayes’ theorem whereas the information cannot be
made use of in a likelihood framework.  Using the same data as above, the posterior probability
for “hypothesis B” changes to:
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€ 

Pr(Pop.B | 4 blue, 3 green,1 red) =

1
4
×
9
121

1
4
×
9
121

+
3
4
×
3
181

= 0.60

As a result we are less certain that the box represents population B as it is now only moderately
(1.5 times) more likely than population A.  We will see in forthcoming sections that the prior
probability has a large influence on the posterior probability when there is little data, but
diminishes as data increases.  Because we have very little data indeed in this example, it is clear
that the prior probabilities are having a considerable effect on the results.  The prior probabilities
described above are unquestionably contrived and dubious, and were only put forth for
illustrative purposes.

MARGINAL ESTIMATION

The likelihood function in complex applications of Bayes’ theorem typically contains many
parameters of the statistical model, only one of which is of real interest to the investigator.  For
example, a phylogeneticist may be interested in a tree topology, but could care less about
transition rate parameters, gamma shape parameter, ancestral states, etc.  These parameters that
are required to evaluate a problem but are of no direct interest are commonly referred to as
“nuisance parameters”.  In a classical approach, all parameters are jointly estimated in order to
find the highest peak on the likelihood landscape (Holder and Lewis, 2003).  This can be
problematic when the ratio of data points to parameters is low, as parameter estimates can be
quite unreliable.  Bayesian statistics, alternatively, deals with nuisance parameters in a
straightforward and intuitive manner.  Rather than find the values of the nuisance parameters that
maximize the likelihood function (as in the classical framework), Bayes’ theorem allows for
evaluation of the parameter of interest while “marginalizing” over the nuisance parameters.

Marginalizing over, or “integrating out”, nuisance parameters is a way to “take account of all
possible values of” each of these parameters (Lewis, 2002).  Let Z be a nuisance parameter,
required for computational purposes but otherwise superfluous.  Marginalization over Z
effectively integrates over all possible values of Z, or accounts for uncertainty in Z, when
evaluating the parameter(s) of interest.  Marginalization is of utmost importance for all Bayesian
probability inference: the information about a subset of the system’s variables is derived by
integrating out all nuisance parameters.  More generally, given parameters X, Y, and Z,
marginalization is the process to derive information about X and Y, given all possible values of
Z, as in the following equation:

€ 

Pr(X,Y) = Pr(X,Y,Z)dz
z∫

A Bayesian approach is hence not as affected by a low ratio of data points to parameters (though
this is never a good thing) because the results do not rely on point estimates of the parameter, but
instead considers all possible parameter values (Holder and Lewis, 2003).
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PRIOR PROBABILITIES

The long-standing schism between Frequentist and Bayesian schools of statistics is due largely to
the idea of prior probabilities.  The derivation of Bayes’ theorem is not in question; any
statistician will tell you that it is a valid and simple equation relating conditional probabilities.
Nor are prior probabilities per se in debate.  The controversy involves the choice of priors.  If
prior probabilities are universally agreed upon then there is no debate; the issue is whether usable
prior probabilities exist (Felsenstein, 2003).  Bayesian prior probabilities can be based on
theoretical expectations or previous experience by the investigator.  For example, an investigator
will have had flipped many a-coin in his or her lifetime, and hence has a “gut feeling” that the
probability of heads p for a fair coin should be about 0.5.  However, because different
investigators will have had different experiences, they may assign different prior probabilities to
the same problem.  In the coin flipping example, one investigator may allow a fair coin to have a
p value in the range of 0.4 to 0.6 for a finite number of flips, while another might constrict the
range to 0.45 < p < 0.55.  The objections made by classical statisticians, then, is simply the
inherent subjectivity of specified prior probabilities.  Since there may be no single correct prior
distribution, then all conclusions drawn from the posterior distribution are suspect (Bullard,
2001).  Felsenstein (2003) notes that a Bayesian is defined not by using a prior probability, but
by willing to use a controversial one.

Bayesian statisticians, on the other hand, view prior probabilities as a strength of their school.
For one thing, Bayesian statistics provides a solid, formal framework for incorporating prior
information into the statistical analysis.  Information gleaned from experiments made in the past
can thus be incorporated into the current analysis.  Prior probabilities, then, while being
subjective, need not be arbitrary (Bullard, 2001).  This property alone counts for much of the
attractiveness of Bayesian statistics.  Why should we not make use of information obtained
through extensive effort by a multitude of investigators?  Secondly, the subjectivity in selecting a
prior is explicit (as compared, for example, to cutoff values for significance, choice of null and
alternative hypotheses, and choice of likelihoods in a classical setting; Bullard, 2001) and must
be defensible (Lewis, 2001).  Lastly, and perhaps more alluring to skeptical Frequentists than to
Bayesians, the effect of the prior decreases with increasing data.  This means that given enough
data the prior will not overly influence the results (Figure 2.2).

Prior probabilities usually do not take specific values (as with our simplistic example above), but
instead form probability distributions.  [Technically, if the distribution deals with discrete data
then it is a probability mass function, and if it deals with continuous data then it is a probability
density function.  Both distributions have the property that the area beneath the probability
surface is equal to the posterior probability for the range of values of the parameter of interest.
The difference between the two is that in the discrete case the area is obtained by summing
across parameter values, while the continuous case requires integration.  However, to avoid
jumping back and forth between “probability mass function” and “probability density function”
for the duration this paper I will use the vague term of “probability distribution” for both prior
and posterior probabilities, the context making it clear the type of distribution involved.]  The
form of the prior probability distribution depends on the availability of relevant prior information
and the nature of the question being asked.  A primary distinction can be made between
informative and uninformative priors.  An informative prior can make use of information from



Figure 2.2: The effect of increasing data on the influence of the prior probability on the posterior probability in a coin flipping experiment.  The y-
axis represents the probability (blue curve = posterior, red curve = prior) and the x-axis represents the parameter being estimated (p, the probability
of heads).  Data increases from left to right: 5 heads in 10 flips, 25 heads in 50 flips, and 50 heads in 100 flips, respectively.  “Strength” of
misleading prior increases from top to bottom.  As can be seen, posterior probabilities for 100 flips are nearly identical despite substantial
differences in specified prior probabilities.
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Figure 2.3: Prior probability distributions used for binomial data (posterior probability distributions,
centered at approximately p=0.6, are also shown).  Figure A represents an informative prior: the
distribution gives added weight to the more probable values of the parameter of interest.  This weighting
information comes from either theoretical expectations or prior experimental results.  Figures B and C
represent vague priors.  Figure B gives equal weight to all possible values of p a priori, and hence is often
referred to as a “flat” prior.  Figure C is an example of a “bathtub” prior: this prior has higher variance
and thus has the least influence on the posterior probability distribution.

previous research (for example, from the output of a previous experiment) or directly from
theoretical expectations.  Such a prior will have a distribution that gives added weight to the
more probable values of the parameter of interest, as in Figure 2.3A.

An uninformative (vague) prior, alternatively, will have a distribution such that the influence of
the prior on the posterior probability is minimal.  In this case the prior distribution illustrates the
level of our ignorance about the truth of a hypothesis.  Often, uniform (flat) priors are used as
uninformative priors, as they attribute equal probability to all possible values of a parameter a
priori (Figure 2.3B).  When flat priors are used the posterior probability is directly proportional
to the likelihood (Lewis, 2002).  However, flat priors are not necessarily the best choice in all
situations (Holder, 2003).  This is because the posterior probability mode is tugged (the degree
determined by the amount of data) towards the mean of the prior distribution (Jones and
Browning, 2003).  A more vague prior, then, would have a higher level of variance so that this
effect is minimized.  Figure 2.3C above shows examples of vague prior probability distributions
used for binomial data.  The bathtub-shaped distribution on the right has increased variance and
hence a decreased influence of the prior on the posterior.  For firsthand experience in exploring
the relationship between priors, posteriors, and sample size, I strongly encourage the reader to
download the Windows program “Bayesian Coin Tosser” by Paul O. Lewis, available online at
the following address: http://lewis.eeb.uconn.edu/lewishome/software.html.

A second distinction in prior probability distributions has to do with the type of data being
analyzed (or the complexity of question being asked).  Binomial data (e.g. flipping a coin)
typically have beta distributions of the form Beta(α, β) for priors.  Beta distributions are a family
of distributions which are non-zero only over a finite interval 0 < X < 1 (Lee, 1997).  The
variables α and β are shape parameters that allow the distribution to take on variety of shapes.
These distributions are useful for modeling purposes as they are extremely flexible and can be
applied to a myriad of data sets.  Figure 2.3 (above) illustrates the plasticity of the beta
distribution.

Multinomial data cannot be expressed in terms of Beta(α, β), and so we must use another family
of distributions.  The Dirichlet distribution is a multivariate generalization of the beta distribution
and is as flexible for multinomial data (e.g. the substitution rates of the GTR model) as the beta
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is for binomial data.  A Dirichlet distribution behaves in much the same way as a beta
distribution (i.e. with respect to the construction of informative and vague priors) but cannot be
represented in a two dimensional figure because it has n dimensions, where n is the number of
parameters involved.

A final distinction involves proper and improper prior probability distributions.  A proper prior is
one that obeys the laws of probability, specifically that the distribution integrates to 1.  A prior is
improper if it does not integrate to 1 (i.e. there is no proportionality constant which will make the
integral of the probability function equal to 1), and thus not a true probability distribution (Lee,
1997).  Such a distribution would arise, for example, when placing uniform probability on all
values of a continuous parameter.  A prime example of an improper prior is Jeffery’s prior
(Figure 2.4), equivalent to a uniform prior distribution on the logarithm of the parameter, which
represents complete ignorance about the value of a scale parameter on behalf of the investigator
(Sivia, 2002).  The use of improper priors has the danger that it often, but not always, leads to an
improper posterior probability distribution (Huelsenbeck et al., 2002).

Figure 2.4: An example of Jeffrey’s prior used in a coin flipping experiment (figure from Holder, 2003).
The prior is an improper probability distribution because it fails to integrate to 1.  Jeffrey’s prior reflects
the complete ignorance of the value of the scale parameter.  This distribution has the property that
rescaling the horizontal axis makes no difference on the distribution that is assigned.

Regardless of the degree of comfort with the idea and construction of prior probabilities, some
effort should be made on the part of the investigator to examine the sensitivity of the results to
the choice of prior probability distribution (Jones and Browning, 2003).  Prior probability
misspecification is completely analogous to model misspecification, and as such should be of
utmost concern.

POSTERIOR PROBABILITIES AND CREDIBLE INTERVALS

In the simple example above we had distinct values for the posterior probability, one value for
hypothesis one and another for hypothesis two.  However, like prior probabilities, for more
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Figure 2.5: Posterior probability distribution for a simulated coin tossing experiment (the prior probability
distribution, beta(0.7,0.7), is also shown).  A coin was flipped 16 times, 10 flips of which resulted in
heads.  The mode of the distribution, marked by an asterisk, represents the most highly probable value of
p.

complex problems posteriors usually take the form of a probability distribution.  An example of a
posterior probability distribution for a coin tossing experiment in given in Figure 2.5.

How do we summarize the information in such a figure?  We might be first interested in
obtaining a “best guess” for the parameter of interest, here being p, the probability of heads.  In
the figure above the best guess would be represented by the asterisk which corresponds to a
value of p = 0.625.  We could thus state “our best estimate of the probability of heads is 0.625”.
However, upon close examination of the posterior probability distribution above we see that a
value 0.625 has a posterior probability of only 3.5!  This tells us that we are only 3.5% sure that
the true probability of heads is 0.625.  Granted that these results are based on little data, this
appears to be a very low value indeed and not very trustworthy at all.

To understand this result we must first note that Bayesian statistics treats parameters as random
variables rather than fixed (but unknown) values.  A Bayesian conclusion for complex problems
will thus often be expressed as a range of values rather than a point estimate.  [In the classical
sense, a parameter is unknown but constant (not random) and hence cannot have a distribution
(Bullard, 2001)].  The beauty of using a Bayesian framework is that the posterior, being a
probability distribution, must integrate to 1.  To be 95% certain of a conclusion we need only
find the area under the curve which represents 95% of the distribution.  The range of values that
flank this region is called a “credible interval” and is shown in Figure 2.6.
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Figure 2.6: Posterior probability distribution for a simulated coin tossing experiment (the prior probability
distribution, beta(0.7,0.7), is also shown). A coin was flipped 16 times, 10 flips of which resulted in
heads.  The 95% credible interval of the distribution is shown by the shaded region, (0.38,0.84).

From the figure above we can say “we are 95% certain that the probability of heads, p, is
between 0.38 and 0.84”.  Posterior probabilities have the immense advantage in that probability
statements are made about the parameters themselves rather than about the data (Shoemaker et
al., 1999).  As such a Bayesian uses probability as a direct measure of uncertainty on behalf of
the investigator. Contrast this with the classical confidence interval, where a 95% confidence
interval is interpreted as (given the model) one result of a procedure that had a 95% chance of
generating an interval that would contain the parameter being estimated.  In the classical sense
probability is interpreted as a long-term frequency and is made specifically about the data.  We
will return to the idea of probability in both the Bayesian and classical senses at the end of this
chapter.

BAYES FACTORS

Bayesian hypothesis testing sometimes takes the form of Bayes Factors, which is simply the
odds-ratio form of Bayes’ theorem.  Let H1 and H2 be competing hypotheses for some data.
From Bayes’ theorem above we can write the posterior probability of each hypothesis as:

€ 

Pr(H
i
| data) =

Pr(H
i
) ×Pr(data |H

i
)

Pr(data)

Put in ratio form, the two hypotheses can be compared via a Bayes Factor as in the following
equation:
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€ 

BF =
Pr(H1 | data)
Pr(H2 | data)

=
Pr(H1)
Pr(H2)

×
Pr(data |H1)
Pr(data |H2)

Given a parameter of interest, θ, the likelihood ratio in the above equation, becomes:

€ 

Pr(data |H1)
Pr(data |H2)

=
Pr(data |θ1,H1) ×Pr(θ1 |H1)dθ1θ1

∫
Pr(data |θ1,H2) ×Pr(θ2 |H2)dθ2θ 2

∫

Bayes Factors can then be interpreted as the odds in favour of H1 against H2 that are given by the
data (Lee, 1997).  The posterior odds ratio is simply equal to the prior odds ratio times the ratio
of the likelihoods under the data (Felsenstein, 2003).  A scale for interpreting Bayes Factors is
given in Table 2.2.

Table 2.2: A suggested scale for interpreting Bayes Factors (from Jones and Browning, 2003).

2log(BF) Interpretation
0 to 2 Not worth more than a bare mention
2 to 5 Positive

5 to 10 Strong
> 10 Decisive

Bayes Factors are more straightforward than classical approaches and circumvent some
important issues with likelihood ratio tests.  Most significantly, Bayes Factors do not require that
the hypotheses be strictly nested.  This aspect alone enables the investigator using a Bayesian
framework to ask many more and complex questions than their classical counterparts.  The
concern with Bayes Factors, as with Bayes’ theorem itself, is whether usable priors exist
(Felsenstein, 2003).

CONTRASTING CLASSICAL AND BAYESIAN STATISTICS

Regarding the controversial uses of Bayesian statistics, Felsenstein (2003) states that “the
arguments were old long before anyone thought of using Bayesian approached to inferring
phylogenies.  Nothing that biologists say is going to settle the matter.”  Nevertheless, it is
valuable for the biologist to understand the distinctions between classical and Bayesian inference
so that results from both approaches can be read critically.  This section serves to contrast the
major differences between the classical and Bayesian schools of statistics in terms of the
interpretations of probability, inference, and reliability.

Both Frequentist and Bayesian methods use probability to assess statistical confidence, but
interpret probability in very different ways.  Frequentist (classical) statistical methods are named
for their definition of probability as a long-term frequency (Shoemaker et al., 1999).  [Strictly
speaking, once an event is in the past it is no longer random, and so in a Frequentist sense it is
meaningless to discuss the probability that the event occurred (Bullard, 2001)].  A Frequentist
thus views probability in terms of (hypothetical) replicated experiments where most variables of
the experimental environment are kept constant to ensure identical conditions across replicates.
An experimental P value is then interpreted as follows: given that the null hypothesis of no
difference is true, a result as extreme or more so than the observed result would be expected to
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occur a proportion P of the time.  As was mentioned above, this is a statement made specifically
about the data (or the randomness of the sampling process) rather than about the parameter of
interest (Bullard, 2001).

Bayesian methods view probability in a different sense.  Rather than recognize probability as a
measure of repeatability, a Bayesian sees probability as a direct measure of uncertainty (made
directly about the parameter) and may or may not represent a long-term frequency (Shoemaker et
al., 1999).  What is more, only the data that are actually observed by the investigator are relevant
in determining the probability that any particular model is true; data that are not observed (e.g.
‘more extreme’ values) are irrelevant (Bullard, 2001).  On close examination it is clear that the
Bayesian interpretation of probability is a much more straightforward and intuitive measure of
“sureness”.  However, as Lee (1997) states, “the mere fact that [people] have difficulty with a
theory does not prove it wrong.”  Still, a Bayesian probability can apply to many situations
where a classical interpretation of probability does not conform naturally (Shoemaker et al.,
1999).  For example, consider the probability that I will complete my thesis within the next six
months.  It is hard to fathom this problem in terms of long-term frequency, but a Bayesian
conclusion is easily applied: “I am 63% certain that I will finish my thesis within the next six
months.”  A Bayesian framework thus addresses questions more directly and can be naturally
applied to situations that are unrepeatable (e.g. products of evolution).

Closely related to the idea of probability is that of hypothesis testing and inference, and again
Frequentists and Bayesians disagree on how to go about carrying out these tasks.  In the classical
sense, inference is performed by evaluating the probability of the observed data (or data more
extreme) given a hypothesized model.  As discussed above, this requires the viewpoint of
observing the data generated from many experiments run under similar conditions.  Here a null
hypothesis of no difference is typically assumed between two quantities of interest, the
experiment is run, and a test statistic is calculated from the data.  The test statistic is in turn
compared with a distribution of the test statistic under the null hypothesis.  An experimental test
statistic that is located in the extremes of the distribution is interpreted as evidence against the
null hypothesis.  A major problem with this approach, however, is that testing the significance of
the results confounds the amount of evidence with the degree to which the null hypothesis is
violated (Shoemaker et al., 1999).  Take a coin flipping experiment from Lewis (2002) as an
example.  Here the parameter of interest is p, the probability of heads.  Given a particular coin,
the null hypothesis for this experiment is that p = 0.5 (or the coin is fair) and the alternative
hypothesis is that it is not a fair coin (p ≠ 0.5).  However, because it is essentially impossible that
p equals exactly 0.5 (and not, for example 0.51, 0.501, or 0.50001), it is only a matter of
collecting enough data to prove this.  This, then, is not a test of whether the coin is fair, but
actually a test of whether we have flipped the coin enough times to prove that it is not perfectly
fair (Lewis, 2002).

A Bayesian approach to hypothesis testing, conversely, gives the probability of the model, given
the data (which is what we all really want), and provides evidence in favour of the model rather
than against it (Shoemaker et al., 1999).  Inference then is based on the posterior probability
distribution of the parameter of interest, and so conclusions are statements about the parameter
rather than the data.  What is more, while in the classical framework only two hypotheses can be
compared at a time, in a Bayesian setting multiple hypotheses can be compared at once with a
posterior probability for each hypothesis being calculated (Shoemaker et al., 1999).  A major
distinction to note between Frequentists and Bayesians is that instead of true and false being
discrete logical states, a Bayesian sees a logical continuum between zero and one, where zero
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represents the statement is false, or has probability of zero of being true.  A Bayesian thus sees
the idea of null and alternative hypotheses as being fundamentally flawed (Lewis, 2002).  Take
the coin-flipping example above.  While a Frequentist would say that a fair coin is one in which
p = 0.5, a Bayesian would define a fair coin by a range of values, for example 0.45 < p < 0.55,
and find the probability that p for a particular coin falls within this range.

Lastly, Frequentists and Bayesians disagree on how reliability estimates are generated (and thus
interpreted).  A classical confidence interval is interpreted as follows: a 95% confidence interval
is one result of a procedure that had a 95% chance of generating an interval that would contain
the parameter being estimated (Bullard, 2001).  This convoluted definition has driven many a
young statistics student to an emotional breakdown, and on dissection of the definition it clearly
is not what we are after.  The probability statement involved above refers to the randomness of
the sampling process rather than confidence in the estimated parameter value.  Contrast this with
the Bayesian interpretation of a credible interval: the probability is 95% that the parameter being
estimated lies in a 95% credible interval.  This statement is direct, intuitive, and gives us exactly
what we want: the probabilities of different hypotheses in the light of data (Felsenstein, 2003).
As we touched on above, this is accomplished through the use of the posterior probability
distribution.  Because (true) probability distributions integrate to 1, we need only take the area
under the posterior probability surface to give direct probability statements about a range of
values for a particular parameter.  This is impossible in the classical framework because
likelihood surfaces do not integrate to a fixed value, and even if they did they deal with the
probability of the data rather than the model.  The distinction, then, between reliability intervals
in the Frequentist and Bayesian senses is that the former deals with errors in sampling while the
latter deals with uncertainty in parameter value estimates.

A BAYESIAN FUTURE?

From the above it is clear that, despite uninformed claims to the alternative, classical inference is
“not just a special case of [Bayesian inference] corresponding to a conventional choice of prior
beliefs” (Lee, 1997).  Classical and Bayesian statistics deal with problems in very different
manners, and in many respects the Bayesian approach is more useful and direct.  The first and
most obvious distinction is on the use of prior information.  A Bayesian framework naturally
allows the incorporation of relevant prior information, be it theoretical or empirical in nature.
An attractive corollary of this is that many different types of data (e.g. morphological,
paleontological, genetic, behavioural, etc.) can be incorporated for resolution of the same
problem.  Such information is not admissible into a Frequentist framework as it does not allow
for the incorporation of prior information.

Secondly, Frequentists and Bayesians deal with nuisance parameters differently.  In a likelihood
framework, the maximum likelihood estimate (MLE), or the highest peak in parameter space,
requires that all parameters are jointly estimated.  As we saw above, this may lead to unreliable
results if the ratio of data points to parameters is low (Holder and Lewis, 2003).  Within a
Bayesian analysis, however, nuisance parameters are “integrated out” while the parameter of
interest is focused on.  Such an approach is not as adversely affected by a low ratio of data points
to parameters as it explicitly incorporates uncertainty in the nuisance parameter values into the
statistical problem via marginalization.  This is enormously attractive as rogue nuisance
parameters (i.e. those that are not well defined by the data) will not overly effect the results as
might occur in a classical framework.
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In addition to the benefits of incorporating prior information and marginalizing over nuisance
parameters, Bayesian statistics also has the advantage of direct testing of hypotheses and
straightforward, intuitive results.  We discussed above how classical approaches provide
evidence against a null hypothesis (this always being possible to reject) and give probability
statements that deal with errors in the sampling process (i.e. the data) rather than about the
parameters involved.  A Bayesian approach, conversely, provides evidence in favour of certain
parameter values and gives probability statements about the parameters themselves which
directly expresses the level of certainty on behalf of the investigator.  What is more, a Bayesian
framework allows for multiple hypothesis testing while classical analyses are limited to
comparing null and alternative hypotheses (Shoemaker et al., 1999).  All of this, together with
the ability to deal with unreplicable events, illustrates the immense freedom Bayesians have in
designing testable questions and the ease of interpretation of the results that are returned.

Lastly, the results of a Bayesian analysis provides the investigator with an idea of the shape of
the posterior probability distribution, rather than a point estimate (as in a maximum likelihood
approach).  In the likelihood school, many simulated data sets must be subjected to analysis
rather than one (or a few) search(es) of parameter space.  In contrast, the Bayesian school allows
for simultaneous estimation of parameter values and support.  Because of this (as we will see in
the next chapter) Bayesian methods are much faster than likelihood methods with regards to
generating intervals of ‘sureness’.  For particularly complex problems the speed of analysis
becomes a limiting factor and is a large reason for the recent interest in Bayesian methods.

Despite the many (and large) advantages of working in the Bayesian paradigm (Figure 2.7), there
remains the controversial use of (subjective) prior probabilities.  This is a very contentious issue,
and some people get very worked up about priors (Jones and Browning, 2003).  As stated
previously, prior specification is analogous to model specification, and as such should be treated
with the same caution.  We currently have two methods in our analytical toolbox to minimize the
influence of dubious priors: make the prior distribution vague by increasing the variance, or
increase the amount of data.  Clearly the latter is preferable, but often funding is a limiting factor.
It is not the aim of this paper to give suggestions on prior construction, but instead to inform the
reader on the issues so that informed choices can be made.

Bayesian statistics has also been limited in use until quite recently because of the complex
implementations required for statistically thorny problems.  However, as we will see in chapter
4, Markov chain Monte Carlo methods are allowing previously intractable questions to be
addressed in far less time than comparable likelihood methods.

Figure 2.7 (follow page): A mock debate between Sir Ronald Fisher and Reverend Thomas Bayes on the
relative merits of classical and Bayesian statistical approaches (adapted from a table in Bullard, 2001).
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On Probability:

   

On Inference:

On Intervals:

On Testing:

On Music:

Probability is interpreted as the long-run relative frequency with which an event occurs in many
repeated similar trials.  Probability lies objectively in the world, not in the observer.

Probability is interpreted as a measure of one’s degree of uncertainty about an event.
Probability lies in the mind of the observer and may be different for people having different
information or different past experiences.

Inference is performed by evaluating the probability of the observed data, or data more extreme,
given a hypothesized model.

Inference is performed by evaluating the probability of a hypothesized model given the
observed data.

A 95% confidence interval is one result of a procedure that had a 95% chance of generating an
interval that would contain the parameter being estimated.

The probability is 95% that the parameter being estimated lies in a 95% credible interval.

The P-value in a test of significance is the probability of getting a result at least as extreme as
the one observed, given that the null hypothesis is true.

One may evaluate the probability of any particular model or set of models given observed
data.  Data not observed (e.g. ‘more extreme’ values) are irrelevant.

David Bowie kicks ass.

I concur.
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3. APPLYING BAYESIAN THINKING TO PHYLOGENETIC INFERENCE

This chapter serves to recount the young history of Bayesian approaches to phylogenetics, to
contrast phylogenetic reconstruction in the traditional and Bayesian senses, and illustrate both
the current advantages and future promises of a probabilistic phylogenetic paradigm.

A BAYESIAN HISTORY

We saw in chapter 2 that Bayesian inference predates Frequentist thinking by well over a
century.  Why should we get so excited about the application of such an old theorem to the
phylogeny problem?  Huelsenbeck et al. (2002) give four reasons.  First, in the Bayesian
paradigm the likelihood function is the vehicle that extracts information from the data matrix.
Bayesian analyses can then use the same complex models of sequence evolution as conventional
maximum likelihood investigations.  As alluded to in the introduction, maximum likelihood is a
proven winner in phylogenetics, and Bayesian methodologies inherit some of the desirable
statistical properties via inclusion of the likelihood function.  Second, Bayesian inference allows
incorporation of relevant prior information into the phylogenetic analysis, and this is a property
that maximum likelihood lacks.  This is enormously attractive because it permits the inclusion of
past results and also different types of data (for example, morphological, behavioural, and
genetic data).  Third, Bayesian inference via MCMC methods is a computationally efficient
approach to approximating posterior probabilities.  MCMC methodologies are the subject of
chapter 4, so here we will simply state that these analyses can incorporate arbitrarily complex
models of evolution and run in a relatively reasonable amount of time.  Lastly, Bayesian
inference is the first approach that treats the phylogeny as a random variable.  This property
allows direct probability statements to be made at the conclusion of the analysis.  We will return
to this issue later.

It is generally agreed that the introduction of Bayesian inference to the phylogenetic problem
was due largely to the independent pioneering work of PhD dissertations by Bob Mau of the
University of Wisconsin and Shuying Li of Ohio State University, and papers by Bruce Rannala
and Ziheng Yang, all of which were published in 1996.  [However, as Huelsenbeck et al. (2002)
point out, inklings of Bayesian phylogenetics can be seen as far back as Joseph Felsenstein’s
1968 thesis where he discussed both posterior probabilities and credible sets of trees, though he
was unable to calculate these quantities.  Felsenstein (2003) cites further hints of Bayesian
leanings in the pre-1990’s phylogenetics literature, but these were not developed fully and hence
have had little to no influence on current work in the field].  The efforts of these three groups are
recognized as the impetus for much of the subsequent work in the adolescent field of Bayesian
phylogenetics, and so are ultimately responsible for the current incarnation of Bayesian
phylogenetic inference.

Li (1996; further developed in Li, Pearl, and Doss, 2000) developed an MCMC strategy for
approximating the posterior probability distribution of trees assuming a molecular clock, the
Jukes-Cantor model of DNA sequence evolution, and that all possible rooted trees were of equal
probability a priori.  Applied to both simulated data and empirical data sets they found their
implementation to recover the “true” phylogeny reliably in a reasonably short run time.  The
approach of Mau (1996; Mau and Newton, 1997; Mau, Newton, and Larget, 1999; Newton, Mau
and Larget, 1999) allows for analysis of both DNA and restriction site data.  Their
implementation permitted use of a more complex model of sequence evolution (specifically the
HKY85 model, but easily extended to more general models) and removal of the molecular clock
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assumption.  In this case all labeled trees are assumed to have equal probability a priori.
Felsenstein (2003) argues that both of these distributions are inadmissible as you cannot apply a
uniform non-zero probability distribution of node times if there is no limit on the age of the
oldest node.  Neither group explains how these issues are addressed.  We will return to use of
prior probabilities in phylogenetic inference shortly.

The method of Rannala and Yang (1996; Yang and Rannala, 1997) differ from those above in
that they assumed a birth-death process as a model for speciation and extinction, and used this
model to specify priors of phylogeny and branching times.  The initial incarnation of this method
required numerical integration to calculate posterior probabilities, and hence was limited to
phylogenies of few taxa.  The improved method (Yang and Rannala, 1997) used Markov Chain
Monte Carlo strategies to approximate the posterior probability distribution, and consequently
allowed the analysis of much more complicated data matrices.

Despite the pioneering efforts of the three groups described above, and subsequent influential
work by Larget and Simon (1999) and Li, Pearl and Doss (2000), it is really due to John
Huelsenbeck that the gospel of Bayesian statistics has spread and proliferated throughout the
phylogenetics community (Huelsenbeck, 2000; Huelsenbeck and Ronquist, 2001a, 2001b;
Huelsenbeck et al., 2000, 2001, 2002).  The program MrBayes (Huelsenbeck and Ronquist,
2001a, 2001b; Ronquist and Huelsenbeck, in press) is currently the state-of-the-art software
package for the Bayesian inference of phylogeny, though other packages exist (e.g. Larget and
Simon, 1999; McGuire et al., 2001).  In the next section we will discuss how Bayesian methods
such as those utilized in MrBayes differ from conventional phylogenetic reconstructions.

TRADITIONAL AND BAYESIAN APPROACHES TO PHYLOGENETIC RECONSTRUCTION

Maximum likelihood and Bayesian approaches to inferring phylogenies differ in many respects,
and these differences are intimately related to the statistical contrasts described in chapter 2.
With respect to the phylogeny problem these differences can be crudely classified into two
categories: what is being estimated, and how these estimates are reached.

We saw in chapter 2 that Frequentists and Bayesians view statistical problems in very different
ways, and the inference of phylogeny is no different.  Recall the equations:

€ 

Pr(data | hypothesis)  vs. 

€ 

Pr(hypothesis | data)

The term on the left is the likelihood while that on the right is the posterior probability.  Put into
a phylogenetic context we can rewrite the equations as:

Pr(data | topology, model parameters) vs. Pr(topology, model parameters | data)

[Though topology is a parameter of the statistical model, I have separated it from the others as it
is of prime interest.]  Take a moment to consider the two equations.  Which quantity would you
rather evaluate?  In my mind there is no question that the equation on the right is more useful, as
it uses the data to arbitrate between different models (topologies).  Also, implicit in this equation
is that the Bayesian stance treats topology (and other parameters) as a random variable
(Huelsenbeck et al., 2002; Douady et al., 2003).  As such it is valid for topology to have a
distribution of values, weighted by the posterior probability.  This leads to the advantages of
interpretation discussed earlier, in particular that the posterior probability for a given tree gives a
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direct index of certainty for that pattern of evolutionary relationships, given the data.  The
likelihood equation, contrastingly, regards the data as uncertain, and tries to quantify the
probability that these data could be generated by the given model (topology).  Clearly these
methods evaluate two very different aspects of the phylogenetic problem.

Not only does the statistical objective differ between likelihood and Bayesian approaches, but
also how these objectives are accomplished.  In a likelihood framework,  the ML tree is found by
finding the parameter values that jointly maximize the likelihood function (Huelsenbeck and
Rannala, 1997; Huelsenbeck and Ronquist, 2001b).  Clearly one would require very large (# of
nucleotides) datasets to obtain accurate estimates for all of the parameters in complex models of
evolution (e.g. GTR + I + G).  Holder and Lewis (2003) show that the accuracy of topology
estimation can be compromised when the ratio of data points to parameters becomes low.

Bayesians attack the problem in a different way.  Like their Frequentist counterparts,
investigators using Bayesian inference are usually interested primarily in only one parameter, the
other parameters of the statistical model being so-called “nuisance parameters”.  As with the
parameter of concern, these uninteresting but required parameters are not known with certainty,
but this can be dealt with through marginalization, or “integrating out”.  Marginalizing thus
allows the investigator to focus on one parameter while taking into account uncertainty in all
other parameters.  Figure 3.1 shows a simple cartoon example of marginalizing in a phylogenetic
problem (from Holder, 2003).  In phylogenetics, marginalization can involve any parameter at all
in the statistical model, though usually topology is of direct interest and so all of the remaining
parameters (transition rate parameters, gamma shape parameter, ancestral states, etc.) are
integrated out.  A Bayesian topological posterior probability is thus a marginalized probability,
rather than a joint probability, as in a likelihood treatment.

Closely related to this joint/marginalized dichotomy is the algorithmic search itself.  Maximum
likelihood, as the names suggests, maximizes the objective likelihood function (i.e. finds the
values of all statistical parameters that jointly gives the most positive likelihood value).  This can
be accomplished through either exact (exhaustive or branch-and-bound) or heuristic searches.
Regardless, the end result is the same: the most likely point found in parameter space is taken to
represent the final estimate.  In other words, it is a straightforward point estimate.  Points in
parameter space visited previously by the algorithm are disregarded.  As a result, though the tree
found does have the best likelihood score, there is no immediate indication of whether this score
is significantly better than that for any other tree.  Confidence estimates are typically generated
through use of the nonparametric bootstrap (Felsenstein, 1985).

Unlike maximum likelihood inference, Bayesian phylogenetics seeks to glean information about
the shape of the posterior probability landscape rather than simply locating the global maximum
(Lewis and Swofford, 2001; Figure 3.2).  Put another, rather poetic, way, to a Bayesian the
journey itself (through parameter space) is of greater interest than the destination (i.e. a best
guess; Cummings et al., 2003).  In a Bayesian analysis, then, not only is a best estimate obtained
(the tree with the highest posterior probability), but also an idea of the relative merit of all other
trees visited in the search.  Confidence in a particular evolutionary relationship is thus
accomplished through integration.  The result is a simultaneous estimation of both phylogeny
and support (Douady et al., 2003).  We will return to the issue of phylogenetic confidence in
detail in chapter 5.
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(A)

(B) (C)

Figure 3.1: Simple marginalization in the phylogenetic inference problem (figures taken from Holder,
2003).  (A) A hypothetical trivial parameter space where only two parameters are involved, the tree
parameter (topology) and ω (a representative substitution model parameter).  (B) Marginalization over ω:
the posterior probability of each tree is calculated by integrating over ω; trees with larger volumes have
higher posterior probabilities.  (C) Marginalizing over topology: here ω is of primary interest, and so
uncertainty in topology is accounted for by integrating over trees.

The parameters of a statistical model in the phylogenetic context are the trees (

€ 

τ ), branch lengths
(

€ 

ν ), substitution model parameters (

€ 

θ ), and gamma shape parameter (

€ 

α ).  Therefore, let 

€ 

X  be
the data and 

€ 

ψ = τ,ν,θ,α{ }  be a specific tree with a particular combination of branch lengths,
substitution parameters and gamma shape parameter (Huelsenbeck and Ronquist, 2001a).  The
probability distribution of interest is then the joint posterior probability distribution of the
parameters above and can be represented by Bayes’ theorem as:

€ 

f (ψ | X) =
f (X |ψ) f (ψ)

f (X)

The likelihood function alone is integrated over all possible values for the branch lengths and
substitution model parameters.  The ith tree, for example, has the following likelihood function:
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€ 

f (X | τ i) =
ν i

∫
θ

∫ f (X | τ i,ν i,θ,α) f (
α

∫ ν i) f (θ) f (α)dν i
dθ dα

As can be seen, the posterior probability distribution involves many high-dimensional
integrations, and as such cannot be solved analytically except in the most simplest cases, which
is of course no use to the practical phylogeneticist.  Instead, then, Bayesian phylogeneticists must
rely on this distribution being approximated.  The tool used in approximating the posterior
probability distribution in Bayesian inference is the Markov chain Monte Carlo (MCMC)
algorithm, and is the subject of the next chapter.

Figure 3.2: Contrasting search strategies in Bayesian and maximum likelihood inference.  For ease of
comparison the two underlying surfaces are depicted as identical.  The goal of a Bayesian analysis is the
learn about the shape of the posterior probability surface; the algorithm has no predefined termination
step, and can be run arbitrarily long.  Maximum likelihood inference, on the other hand, works to
maximize the likelihood function; beginning from a particular point in parameter space the algorithm
seeks to find parameter values that jointly maximize the function, and terminates when it can find no
more likely parameter value combinations (i.e. reaches a peak).

PRIOR PROBABILITIES FOR THE PHYLOGENETIC PROBLEM

The missing distinction between maximum likelihood and Bayesian inferences of phylogeny
above is the use of prior probability distributions.  In the previous chapter we dealt with the
concept of prior probabilities and the controversy that surrounds them.  In the phylogenetics
literature priors are no less controversial than in any other discipline, though they seem at present
to be less well understood.  This section briefly describes how priors are constructed and
implemented for the phylogenetic problem.

What constitutes a prior probability in phylogenetic inference?  To be a fully Bayesian
implementation, all parameters in the statistical model must have associated prior probability
distributions.  This includes, then, branch lengths, nucleotide frequencies, substitution rates, etc.
Because the field of Bayesian phylogenetics is still young, at present only vague priors are used
(Lewis, 2002).  For example, a transition-transversion ratio would have a simple flat beta
distribution prior, while priors for the substitution rate parameters of the GTR model would be a
flat Dirichlet distribution.  The idea here is to minimize the influence of specified priors on the
results (posterior probabilities) of the analysis.  This is done partly as a consequence of our
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ignorance with respect to the underlying distribution of a particular parameter, and partly to
placate the skeptics.  [Joseph Felsenstein (2003) argues that because priors are not universal,
researchers should publish likelihoods instead and let the reader provide their own prior.  As a
reader, I would personally much rather see both the posterior and prior probabilities; if the priors
seem sensible then I am willing to accept the posterior probabilities].  As such, prior probabilities
are currently viewed in the phylogenetics literature as mere imposed requirements for using
Bayes’ theorem rather than powerful conduits for the incorporation of relevant prior information.
In the future, as we become more comfortable with the idea of prior probabilities and we
accumulate the essential empirical data, we will no doubt experience a shift from looking at
priors as requirements to seeing them as compellingly valuable tools.

That said, there exists still other objections to the use of prior probabilities (which is the
equivalent to saying there exists objections to using Bayesian inference in phylogenetics), most
formidably by Joseph Felsenstein (2003).  First he points out the dependence of a parameter
estimate on the scale used in the analysis.  As a hypothetical example he inferred a tree with only
two species using the Jukes-Cantor model of evolution, so the only characteristic being estimated
is the distance between the two species.  If we place a flat prior on the net probability p of
change at a site we will get a uniform distribution on the interval (0, 3/4).  Figure 3.3 shows this
distribution and the implied prior on the branch length.  Clearly the prior on branch length is not
flat, and so his point is that the property of the estimate being independent of the scale (which is
true in the case of maximum likelihood) does not hold for Bayesian inference.

Figure 3.3: Priors probabilities for the 2 taxon hypothetical problem (figure modified from Felsenstein,
2003).  On the left is the flat prior probability specified for the net probability p of change at a site, and on
the right is the prior distribution for branch length t that the prior on the left implies.

A second objection deals with flat priors on unbounded quantities.  As we saw in chapter 2, a
distribution that does not integrate to 1 is improper because it does not conform to the laws of
probability.  The use of improper priors eventually leads (in most cases) to an improper posterior
probability distributions (Huelsenbeck et al., 2002).  [What is more, the use of improper priors
for some parameters in the phylogeny problem, such as branch lengths, is obviously
inappropriate].  Since we cannot have a uniform distribution on an unbounded parameter, the
distribution must be truncated.  Figure 3.4 shows why this may be a problem.  In the hypothetical
example above we may arbitrarily truncate the branch length t at 5.  If we plot this in terms of the
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probability of change at a site p we see that it is skewed towards p = 0.75.  Allowing the
truncation to occur at a higher value only compounds the problem.  These objections have not
yet been addressed in the Bayesian phylogenetics literature and their implications are unclear
(they may simply imply that “flat” priors are inappropriate, but other distributions may work
quite nicely).

Figure 3.4: Truncation point effects (figure modified from Felsenstein, 2003).  On the left is the flat prior
probability specified for the branch length, arbitrarily truncated at t = 5, and on the right is the prior
distribution for the net probability p of change at a site that the first distribution implies.  Allowing the
truncation point to be larger only increases the strength of the skew.

A redeeming feature of Bayesian inference is that given enough data the effect of the prior is
effectively washed out, and so the results of the analysis are driven by the data (Alfaro et al.,
2003).  Huelsenbeck and Ronquist (2001b) show that priors must be extraordinarily strong to
refute the information contained within a given data set.  While this is somewhat relieving, we
are now back to the point where the prior, rather than being a channel for prior information, is
again inconsequential.

ADVANTAGES OF A BAYESIAN APPROACH TO PHYLOGENETICS

All other things being equal, the advantage of computational efficiency (speed) is more than
enough reason to explain the increasing popularity in Bayesian inference of phylogeny.  Douady
et al. (2003) found that one Bayesian tree search in MrBayes ran 80 times faster than a single
(heuristic) PAUP* maximum likelihood bootstrap replicate.  We will see that this ratio is not
constant and will change depending on the specifics of the data matrix and search strategy, but
the bottom line is that there is a many-fold increase in computational efficiency in a Bayesian
tree search compared to a maximum likelihood one.  With the advent of PCR and automated
sequencing technology we have seen an explosion in both the number and sizes of genetic data
sets, and we can only expect this trend to increase as the technology becomes more widespread.
Speed of analysis will therefore become an even more important (limiting) attribute than it is
today, as it may mean the difference between a data set being analyzable or not.  At the rate that
the size of data sets are increasing we would be very optimistic indeed to believe computer
speeds will keep pace.
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Closely related to the computational efficiency advantage illustrated above is the ability of
Bayesian analyses to handle complicated models of evolution.  Complex models of nucleotide
evolution are recognized as being more realistic, and this becomes increasingly true as the
breadth of taxonomic scope broadens.  Ideally we would like to use the stochastic model of
evolution that best fits our data, and the program Modeltest (Posada and Crandall, 1998) was
designed explicitly for this purpose.  [Bollback (2002) designed an explicit Bayesian
phylogenetic method that evaluates the adequacy of different models using posterior predictive
distributions.]  The problem with adding parameters to the model is that we are also adding
entire dimensions to parameter space, dimensions that should be as adequately explored as the
existing dimensions.  The result is an enormous increase in computational burden.  To boot, we
saw above that maximum likelihood hill-climbing algorithms can give unreliable parameter
estimates when the ratio of data points to parameters is low (Holder and Lewis, 2003).  The
problem of increasing model complexity is therefore two-fold: problems with practical runtimes
and issues of reliability.  A Bayesian approach marginalizes over all nuisance parameters and so
doesn’t suffer from the affliction of poor reliability.

Taking increasing complexities of data matrices and stochastic models of evolution together, it is
clear that the Bayesian methodology holds much more promise for the future of molecular
phylogenetics than conventional maximum likelihood approaches.  However, care must be taken
in the selection of the stochastic model of evolution assumed. Because current Bayesian
implementations use flat priors, posterior probability distributions are largely dependent on the
structure of the likelihood model.  It follows that model misspecification may lead to “strong and
unreliable” inferences (Buckley, 2002), and that this effect can occur whether models are either
greatly underparameterized (Erixon et al., 2003) or overparameterized (Rannala, 2002).  Clearly,
then, an investigator wishing to use Bayesian inference in phylogeny must be more concerned
with model specification than when working in a likelihood framework, which appears to be
fairly robust the model of evolution assumed (e.g. Kuhner and Felsenstein, 1994).

Lastly is the issue of the interpretation of results from a phylogenetic analysis.  A primary matter
of distinction is what the two methodologies actually measure. As we have already
demonstrated, maximum likelihood inference measures the probability of the data, given the
model, while Bayesian inference measures the probability of the model, given the data.  Clearly
the latter is preferred as it gives the probabilities of different hypotheses (topologies) in the light
of the data (Felsenstein, 2003), which is what the phylogeneticist is really after.  A second
distinction deals with how reliability estimates are constructed.  Maximum likelihood analyses
rely on nonparametric bootstrap proportions to derive statements of confidence.  As we will see
later on, a bootstrap proportion is an index of repeatability, not of the accuracy of the results.  A
Bayesian posterior probability, conversely, is a direct probability statement that the results
reached are true, given the data.   On the matter of interpretation of results, then, a Bayesian
approach is undoubtedly ideal.

Considering both the current and future scales of phylogenetic inference we see that the Bayesian
paradigm outperforms the incumbent champion maximum likelihood on most counts.  These
advantages, however, all rely upon a proper MCMC search of parameter space.  The next chapter
deals with the mechanics of MCMC methods in phylogenetic inference and the issues that the
investigator should be aware of.
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4. MCMC METHODS

The posterior probability distribution of trees involved in a model-based phylogenetic analysis
involves both summation over all trees and (for each of these trees) integration over all possible
combinations of branch lengths and model parameter values (Huelsenbeck et al., 2001).  The
result is a problem that requires evaluation of high-dimensional summations and integrals
(Altekar et al., in press).  As mentioned above, such problems cannot be solved analytically and
so must rely on a stochastic simulation sampling scheme to approximate the posterior probability
distribution.  The most useful tools we have available for this approximation are based on
Markov chain Monte Carlo (MCMC) theory; in fact, without MCMC methods it would be
impossible to apply Bayesian principles to the problems of phylogenetic inference (Lewis, 2002).
In addition, the advent of MCMC methods has allowed the analysis of phylogenetic problems
that were previously intractable by classical statistical methods (e.g. maximum likelihood)
because of the size of the data matrix or complexity of substitution model (Huelsenbeck et al.,
2002).  Such problems, impossible to tackle even with high performance computing resources
over a period of months, can now be addressed within days on conventional desktop computers.
The reader interested in a fuller treatment of MCMC methods is referred to Tierney (1994).

MARKOV CHAIN MONTE CARLO (MCMC)

Markov chain Monte Carlo (MCMC) is, simply, a simulated random walk through parameter
space for the purpose of sampling from the posterior probability distribution of interest (Tierney,
1994).  More specifically, MCMC allows phylogeneticists to sample phylogenies according to
their posterior probabilities (Huelsenbeck and Ronquist, 2001a).  This is accomplished by
constructing a Markov chain that has as its state space the parameters of the statistical model and
a stationary (equilibrium) distribution that is the probability distribution of interest (Altekar et
al., in press).

A Markov chain is a programmed sequence (or “chain”) of random samples taken at a specified
interval during a walk through parameter space.  Markov chains have the so-called
“memoryless” property in that the probability that the chain moves from state x at time n to state
y at time n + 1 does not depend on states visited prior to time n (Jones and Browning, 2003).  Put
more simply, “given the present, the past and future [samples] are independent” (Lee, 1997).  A
chain programmed correctly will be both aperiodic (will not get stuck in cycles) and irreducible
(not having states with no paths joining them; Jones and Browning, 2003).  Such a chain will
produce random samples from the posterior distribution, weighted by their respective posterior
probabilities.

We saw earlier that we can summarize the necessary phylogenetic statistical parameters with the
variable 

€ 

ψ = τ,ν,θ,α{ } , where 

€ 

ψ  is a unique tree with a particular topology and specific
combination of branch lengths, substitution parameters and gamma shape parameter.  In the
context of MCMC, it is easiest to think of 

€ 

ψ  as a unique point in parameter space; a perturbation
in any of the statistical parameter values will necessarily alter 

€ 

ψ  to 

€ 

ψ' and therefore define a new
point in parameter space.  A Markov chain works by sampling parameter value combinations
(

€ 

ψ ) as it moves randomly through parameter space.  If the chain is constructed wisely (above)
and is run long enough then samples from the Markov chain are valid samples from the posterior
probability distribution of interest, commonly the posterior distribution of trees in phylogenetics
(Altekar et al., in press).
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Parameter values are perturbed in two ways in the MCMC implemented in MrBayes 3.0, one
way for substitution model parameters and a second way for topology and branch lengths.  Both
methods make use of the Metropolis-Hastings algorithm, which simply determines the
acceptance probabilities of new states (this will be developed verbally below).  For a substitution
model parameter x, a window of width δ is centered on the current value of x (Figure 4.1).  The
new proposed value of x is chosen through multiplying δ by a generated uniform random deviate
(Lewis, 2002).  If the proposed value of x lies outside of the range of x (i.e. less than zero) then it
is reflected back into the range (essentially, the proposed value is the absolute value of the
product of δ and the generated uniform random deviate).

Choice of an appropriate δ is very important, as an incorrect value may inhibit the mobility of the
Markov chain.  If δ is too small, then it will take the Markov chain a great (impractical) amount
of time to navigate through parameter space.  If, on the other hand, δ is overly high, then
proposed steps will be too large and consequently will rarely be accepted.  It should also be
noted that each statistical model parameter will have a different window width, δi, as each of
these parameters may have different ranges and different “malleabilities”.

Figure 4.1: Proposal windows of width δ centered on the current value of a parameter, in this case the
transition/transversion rate ratio parameter, κ (figure taken from Lewis, 2002).  Only values of the
parameter that lie within the shaded window are proposed.  Proposed values that are less than zero are
reflected back into the positive range.

Let the probability of proposing the new state (x’) conditional on starting at the current state (x)
be 

€ 

q(ψ '), and the probability of proposing the old state ( x) conditional on the new state ( x’) be

€ 

q(ψ) (this move is never done; Altekar et al ., in press).  Acceptance of the new state x is
determined with probability R:
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R =min 1, f (X |ψ ')
f (X |ψ)

×
f (ψ ')
f (ψ)

×
q(ψ)
q(ψ')

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

where 

€ 

f (X |ψ ')
f (X |ψ)

 is the likelihood ratio, 

€ 

f (ψ ')
f (ψ)

 is the prior ratio, and 

€ 

q(ψ)
q(ψ ')

 is the proposal ratio.

What this equation says is that if the acceptance ratio is larger than one (meaning that the
proposed state has a higher posterior probability than the current state) then the change in states
is accepted, allowing 

€ 

ψ  = 

€ 

ψ'.  If the acceptance ratio is less than one, however, a uniform
random variable, U, on the interval (0,1) is generated.  If U is less than the acceptance ratio then
the proposed state is accepted as above, otherwise 

€ 

ψ  remains unchanged and is recorded as
another sample.  It should be noted here that this algorithm never terminates.  It is therefore up to
the investigator to determine how long to run the chain, which essentially establishes the number
of samples collected.  Felsenstein (2003) relates this to the famous gambling casino at Monte
Carlo, the namesake of MCMC methods.  In a phylogenetic analysis we have the same
aspirations of the house: that given enough samples the expected results will be reached.  A
chain that is not run sufficiently long enough (not enough samples) can therefore have drastic
effects on the conclusions reached.  We will return to this idea later.

Put more simply, the equation above says that proposed states of higher posterior probability are
always accepted, while proposed states that lie “downhill” are accepted with a probability
inversely related to the extent of the “drop” from the current state to the proposed state.  This is
shown visually in Figure 4.2.  Proposed states that lie only slightly downhill, for example, will
yield acceptance ratios near 1.0; generating a uniform random number on (0,1) that lies below
this value will occur with high probability, and so acceptance of the proposed state is likely.  If
the proposed step takes the chain over a “cliff” in parameter space, however, the acceptance ratio
will be near zero; generating a uniform random number on (0,1) that lies below this value will
not occur often, and so acceptance of the proposed state is much less likely.

The result is that the Markov chain, through the acceptance probability used here, does tend to go
uphill (in the high posterior probability peaks in parameter space), but the algorithm is not a
strict “hill-climber” as in conventional phylogenetic heuristic algorithms.  The reason for this is
simple: Bayesian inference is interested in the shape of the posterior landscape, not merely in
finding the highest peak (Lewis and Swofford, 2001).  Such downhill steps are required if
valleys are to be traversed and new peaks explored.  The ability of a Markov chain to explore
isolated, high probability peaks is called the “mixing” of the chain.  A chain that gets stuck on a
particular peak thus exhibits poor mixing, and is not sampling all highly probable states.  Poor
mixing can lead to skewed results, the reason being alternate states (potentially of equal or higher
probability) are not sampled.  It should be noted that steps over cliffs in parameter space, though
of very low probability of acceptance, will occur eventually given that the Markov chain is
constructed correctly and is run for a sufficient amount of time.  However, such events may take
a prohibitive amount of time.  We will return to the problem of poor mixing in later sections.

Topology and branch lengths are perturbed together and in a very different manner from the
substitution model parameters.  The process is illustrated in Figure 4.3 and is described in Larget
and Simon (1999) as “LOCAL WITHOUT A MOLECULAR CLOCK”.  First, an internal branch on the
current tree is randomly selected along with two of its neighbours, for a total contiguous length
of m.  Second, the entire segment is expanded or shrunk by a small random amount according to
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the equation 

€ 

m* = m × eλ(U−0.5)  where 

€ 

U  is a uniform random variable on (0,1) and 

€ 

λ  is a
tuning parameter.  Third, one of the two branches that intersect with the selected segment is
selected with equal probability and is detached from the tree.  Lastly, the detached subtree is
reattached to the original segment at a point chosen through the use of another uniform random
variable.  Such a move may result in a change of topology (and three branch lengths) if the
subtree is reattached on the opposite side of the internal node than before (Lewis, 2002).  If it is
reattached on the same side of the internal node then the resulting tree will have the same
topology as before but with slightly different branch lengths.  The end result of this entire
process is a new proposal state for the Markov chain; acceptance of this change in state is subject
to the same acceptance probabilities as above.

In a typical Markov chain only one or a few parameters are perturbed at a time.  The reason for
this is that proposals requiring excessive changes to the state (

€ 

ψ ) of a Markov chain are
generally accepted with very low probability.  However, sometimes more complex proposals are
required.  A prime example of this is when there exists a significant co-linearity between two

Figure 4.2: The Metropolis-Hastings algorithm, which determines the acceptance probabilities of new
(proposed) states.  Proposed “uphill” steps are always accepted (as we are interested in regions of high
probability), but “downhill” steps are accepted with a probability inversely related to the extent of the
“drop” from the current state to the proposed state.  Using this algorithm, drastic drops in elevation are
unlikely (but not impossible).  Allowing suboptimal state changes allows the chain to traverse valleys in
parameter space, and therefore permits more thorough exploration.
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Figure 4.3: The LOCAL WITHOUT A MOLECULAR CLOCK algorithm of Larget and Simon (1999), used for
navigating through tree space using (figure taken from Lewis, 2002).  Acceptance of a proposed state
using this algorithm will entail, minimally, a slight change in branch lengths and maximally a change in
both branch lengths and topology.

parameters (Figure 4.4).  In this situation, altering a single parameter value will require stepping
off a cliff in parameter space.  Such a step will be taken with extremely low acceptance
probability.  As a result the chain will remain in a single position and will not explore the rest of
the high posterior probability peak.  Adequate searching of parameter space in this case would
necessitate a proposal scheme where both parameters are altered together.



36

MCMC has the desirable property that once having reached the stationary (equilibrium)
distribution, the values of the parameter of interest (e.g. tree topology) are visited in proportion
to their posterior probabilities.  Because topology is a discrete parameter, one need only count
the number of occurrences of a particular topology in the MCMC sample and divide this by the
total number of trees (not topologies) sampled to obtain an estimate of the posterior probability
of that particular topology.  Recall from above that parameters of no direct interest (nuisance
parameters) are integrated out.  Therefore, the posterior probability of a particular tree topology
is: 1) a directly interpretable probability of that particular topology being correct, and 2) takes
into account uncertainty in all other parameters involved in the statistical model.

Figure 4.4: The effect of co-linearity between model parameters (figure taken from Holder, 2003).
Taking a step in either one direction will entail an extreme drop in posterior probability and consequently
will not be accepted with high probability.  Efficient exploration of the high posterior probability ridge
will require varying both parameter values simultaneously.

A properly constructed Markov chain will eventually sample from the stationary distribution, but
this may take many, many generations to occur.  The reason for this is that a chain is usually
(ideally) started at a random point in parameter space which may be a fair distance from the
posterior probability peak of interest. The samples taken by the Markov chain prior to reaching
the peak are clearly not from the distribution of interest (have essentially zero probability) and so
are discarded prior to sample summary (Lewis, 2001).  This discarded portion is referred to as
the “burnin” of the chain.

The level of burnin required is determined post hoc through the use of history plots (Figure 4.5).
History plots typically have log likelihood (or log probability) on the y-axis and steps (iterations)
on the x-axis.  Likelihood is typically low at the beginning of a chain reflecting the fact that it
was not initiated in the distribution of interest.  As the number of steps increases the likelihood
begins to climb rapidly.  This climb in likelihood reflects the Markov chain converging on the
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stationary distribution.  Convergence of independent runs (starting from random positions in
parameter space) on the same results is a way to verify findings.  At a particular point the
likelihood will plateau and at this point it can be assumed that the Markov chain is sampling
from the stationary distribution.  The likelihood will bounce around about this point as samples
from the posterior distribution are taken (periods of constant likelihood indicate poor mixing;
Lewis, 2002).  Burnin is thus all of the samples taken before the plateau is reached.  Care must
be taken that the chain has been run long enough – a history plot of a chain getting stuck in a
local optima will look very much like a chain sampling from the posterior probability
distribution.

Figure 4.5: A history plot for a Markov chain, with log likelihood on the y-axis and number of steps
(iterations) in the chain on the x-axis (figure from Holder, 2003).  Likelihood climbs initially as the chains
progresses towards peaks of high posterior probability.  When the likelihood plateaus then the chain is
sampling from the distribution of interest.  Samples recorded before this plateau is reached is the burnin
of the chain and are discarded.  The bouncing around of the likelihood after reaching the plateau indicates
that the chain is exploring the high posterior probability peak and not getting stuck in a particular point in
parameter space.

Despite the “memoryless” property of the Markov chain, due to the sampling nature in the
MCMC approximation of the posterior probability distribution samples from the MCMC chain
are somewhat autocorrelated.  The degree of autocorrelation depends largely on the construction
of the Markov chain, in particular the choice of proposal window widths, δi.  If, for example, δi is
very small, then successive samples from the Markov chain will have very similar parameter
values for the parameter of interest (i.e. samples will have a high level of autocorrelation).  What
is more, different parameters may be autocorrelated to different degrees.  Samples from an
MCMC chain are therefore valid, albeit dependent, samples from the distribution of interest
(Altekar et al., in press).  If samples are overly autocorrelated then a substantially larger sample
must be taken in order to draw valid conclusions (Tierney, 1994).

Autocorrelation among samples can be combated by “thinning” the Markov chain.  Thinning an
MCMC chain means simply that not all samples are recorded; rather, samples are recorded
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periodically at a rate that can be specified by the investigator.  For example, an investigator
might choose to record every 100th sample in their Markov chain (a “lag” of 100 steps).
Recording non-successive samples decreases autocorrelation (increases independence) between
samples.  Some applications make use of an autocorrelation plot (Figure 4.6) to determine
optimal thinning.  An autocorrelation plot informs the investigator when correlation (for a
particular parameter) between samples has decreased to an acceptable level (Jones and
Browning, 2003).  MrBayes does not presently have a simple way to determine optimal thinning,
but investigators can “play it safe” by conservatively thinning the Markov chain (e.g. every 50 or
100 steps).  This does not come without a price, however.  Thinning a Markov chain necessitates
that the chain be run that much longer to obtain a sample of equivalent size.  This can be
understood through the use of a simple equation:

€ 

chain length = # recorded samples × (# skipped samples+1)

The result of thinning is a near-linear increase in computation time needed to complete the
analysis, which could mean an unreasonable increase in runtime for computationally expensive
problems.  Ideally, then, thinning should be optimized for each parameter through use of
autocorrelation plots.  Hopefully such a tool will become available soon for use with MrBayes.

Figure 4.6: An autocorrelation plot (figure from Jones and Browning, 2003).  For a particular parameter,
samples from a Markov chain are autocorrelated to some degree.  This tool is used to determine optimal
thinning of a Markov chain.  The investigator determines what level of autocorrelation is acceptable and
sets the lag in their Markov chain accordingly.

However, MCMC is not necessarily the panacea it first appears.  As Geyer (1999) states (quoted
in Huelsenbeck et al., 2002) “MCMC is a complex mixture of computer programming, statistical
theory, and practical experience.  When it works, it does things that cannot be done any other
way, but it is good to remember that it is not foolproof.”  The first concern is that enough
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samples are taken to satisfactorily approximate the posterior distribution.  A chain that is run too
short will not sample all of the probable states densely enough, and may lead to skewed (or
blatantly inaccurate) results.

A second concern is that  MCMC can potentially get stuck in local optima like heuristic searches
used to find optimal trees in other frameworks (Altekar et al., in press).  If a chain is sampling
from one peak of high probability it may be difficult to cross deep valleys in tree space to search
other peaks.  If the Markov chain is constructed well then it will eventually cross the deep
valleys if the chain is run long enough.  However, because the steps required would occur with
such low probability, it would take an exorbitant amount of time to explore a particularly rugged
posterior probability distribution of trees; in other words, the chain would suffer from poor
mixing.  As a result, many peaks (trees) may not be visited.  Metropolis coupled MCMC, (MC)3,
appears to be an effective method for improving the mixing of MCMC.

METROPOLIS COUPLED MARKOV CHAIN MONTE CARLO [(MC)3]

Metropolis coupled Markov chain Monte Carlo, (MC)3, is a variant of the MCMC algorithm
above, and involves n Markov chains running concurrently, n  – 1 of which are heated
(Huelsenbeck and Ronquist, 2001a). Each chain computes the posterior probability for the
currently sampled value for the parameter of interest (usually topology in phylogenetic studies)
and then raises the posterior probability to a power β (Altekar et al., in press).  β is the heat
value, or “temperature”, of the chain and takes on the values 0 < β < 1.  In MrBayes chains are
incrementally heated and β is calculated as follows:

€ 

β =
1

1+ T(i −1)

where i is the labeled Markov chain (i = 0, 1, 2, …, n – 1) and T is a temperature parameter that
is set to an appropriate value (0.2 by default in MrBayes, but this value may be changed by the
investigator; Huelsenbeck and Ronquist, 2001b).  The unheated, or “cold”, chain is labeled 0,
and as such is raised to the power 1 making it unaffected by heating; heated chains are raised to
powers between 0 and 1.  Heated chains thus have a posterior probability distribution of the form
Pr(τ|X)β.  The process of heating a chain effectively “melts down” the posterior probability
landscape, making valleys less deep and peaks less high, even though all chains are exploring the
same parameter space.  As an extreme example, a chain raised to the power β = 0 would be
exploring a completely flat landscape as the posterior probability value at every point in
parameter space would be equal to 1 (Lewis, 2002).  The effect of heating can be seen visually in
Figure 4.7.

Heating of Markov chains ultimately has the effect of increasing the acceptance probability of
new states (Altekar et al., in press), as can be seen in the equation below:
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R =min 1, f (X |ψ ')
f (X |ψ)

×
f (ψ ')
f (ψ)

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

β

×
q(ψ)
q(ψ ')

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 



40

Figure 4.7: “Heating” of a hypothetical posterior probability surface.  Robots represent Markov chains
exploring the probability surface.  Figure A represents a cold surface: the posterior probability of the
chain exploring this surface is raised to the power 1 and hence in unaffected by heating.  Figures B and C
represent successively heated landscapes; chains exploring these surfaces would have their respective
posterior probability ratios raised to a power 0 < β < 1.  Each chain in A, B, and C are exploring the same
parameter space.  Heating has the effect of “melting” the posterior probability landscape, decreasing
extremes in peaks and valleys.  A heated chain can more easily cross valleys because the required
“downhill” steps are smaller in magnitude.
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Again, a uniformly distributed random number is generated on the interval (0,1); if the random
number is less than the acceptance probability above then proposed state is accepted.  As a result
heated chains tend to accept new states more readily than a cold chain, and so can more easily
cross valleys in the posterior probability landscape because the landscape has lesser “altitudinal”
extremes relative to the same landscape for the cold chain (Altekar et al., in press). As such the
heated chains can more easily move between isolated hilltops than cold chains that may get stuck
on local optima, effectively better exploring parameter space.

Despite the increased mobility of heated chains, their sole function is to provide the cold chain
with intelligent proposals of new states (Huelsenbeck et al., 2002).  The reason for this is that
only the cold chain records samples from the posterior probability distribution; heated chains act
merely as scouts, searching the surface of the posterior probability distribution for isolated areas
(peaks) of high probability.  As such the chains must be periodically in communication with one
another, adding yet another level of complexity to the analysis.  Some researchers like to think of
the various chains in an (MC)3 analysis as separate robots exploring the landscape in tree space,

Figure 4.8: Communication between Markov chains in an (MC)3 analysis.  The function of heated chains
is to provide the cold chain with intelligent proposals of new states.  Because heated chains can more
easily cross valleys in the posterior landscape, they can identify regions of substantial posterior
probability that may be quite far away from the region simultaneously being explored by the cold chain.
The result is that by swapping states with a heated chain, a cold chain may traverse a particularly deep
valley in one step rather than the many (unlikely) steps required otherwise.  Swapping thus acts to
increase the mixing ability of the cold chain.
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each equipped with a walkie talkie to communicate their respective “altitudes” to one another, as
in  Figure 4.8.

The communication referred to above occurs at a set interval (say, each iteration) and only
involves two chains at a time.  At the set period two chains, j and k, are chosen at random to
exchange states, commonly referred to as “swapping”.  The chains communicate their state
information and accept a swap with probability:
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This equation simply compares the product of the likelihoods of the two states before and after
the proposed swap.  As with the acceptance probabilities above, if a uniformly distributed
number on (0,1) is less than quantity calculated above then j and k swap states; otherwise the
chains proceed to the next iteration with unchanged state information.  Swaps can occur between
heated chains or between a heated chain and a cold chain.  The potential for swapping is truly the
beauty of Metropolis coupling in MCMC analyses.  In (MC)3 a cold chain that may be stuck on a
particular peak can jump to another isolated peak in one generation, a process that may take a
prohibitive amount of time (depending on the breadth of the valley separating the peaks) in the
absence of Metropolis coupling (Lewis, 2002).  The function of Metropolis coupling is thus to
facilitate the mixing of the cold chain within the posterior probability landscape.  The addition of
several heated chains can allow a more appropriate sampling of the posterior probability
distribution by the cold chain, sampling peaks (trees) that may not have been visited in a
conventional MCMC analysis (at least, not within an allowable period of time).

The advent of Metropolis coupling had an immediate impact on the field of phylogenetic
inference (amongst others), and continues to do so.  Huelsenbeck et al. (2002) remark how the
limits of phylogenetic analysis have been extended because of (MC)3.  The largest (MC)3 model-
based phylogenetic analysis conducted to date (Huelsenbeck et al., 2001) integrated over a “tree
space that is several hundred orders of magnitude larger than the tree spaces that have been
successfully analyzed without Metropolis coupling.”  Such an analysis could have never been
performed using MCMC alone.  The size and complexity of problems that can be handled by
MCMC are determined primarily by convergence and mixing of the chains (Huelsenbeck et al.
2002), so methods that improve in these two areas will extend the scope of phylogenetic
inference.  In the coming years we will without a doubt see the sizes of analyzable data matrices
increase far beyond the largest data sets of today (let alone those analyzable by maximum
likelihood), and this is due in large part to Metropolis coupling.

The benefits of Metropolis coupling in MCMC analyses are undoubtedly great, but they also
come with a price.  Each additional heated chain added to the analysis considerably increases the
time to completion (Lewis, 2002).  The reason is simple: within each chain, each iteration
requires the calculation of a computationally expensive likelihood function; running n chains
therefore requires n calculations of the likelihood function each iteration.  What is more, each
chain requires a burnin, which is wasted computing effort (Jones and Browning, 2003).  This
constraint forced investigators to consider the tradeoff between the necessity for running multiple
heated chains (at least 4 chains are required for sufficient mixing; Altekar et al., in press) to
better explore parameter space and the requirement of running the cold chain long enough to
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obtain a sufficiently valid sample from the posterior probability distribution from which to draw
meaningful conclusions.  The recent advent of parallel computing, however, has greatly
diminished this conflict (Ronquist and Huelsenbeck, in press).

PARALLEL METROPOLIS COUPLED MARKOV CHAIN MONTE CARLO [P(MC)3]

Altekar et al. (in press) describe the implementation of a parallel version of MrBayes in order to
explore the relationship between the increase in the number of chains (processors) for better
mixing and the scalability of the computations.  The beauty of parallel Metropolis coupled
Markov chain Monte Carlo, hereafter referred to as p(MC)3, is that the Markov chains are spread
across processors (one chain per processor) and in essence can all run simultaneously rather than
sequentially as on a conventional desktop computer.  The actual implementation of p(MC)3,
however, is somewhat more complex than simply spreading chains across processors, as
swapping between chains (the purpose of running multiple chains, and the way to achieve better
mixing) must be accounted for.  In order for successful swapping, chains must both synchronize
and communicate state information.  Since chains are being run on different processors,
communication between chains necessitates communication between processors.  If this
communication cost is too severe then it will degrade the scalability of the parallel analysis.

To minimize costs Altekar et al. (in press) used a number of programming tricks to decrease the
amount and frequency of information transmitted between processors.  First, rather than
exchanging state information between chains, “temperatures” were exchanged instead.  The
reason for this is two-fold.  State information of a chain includes tree data structures and
associated likelihoods, resulting in several megabytes worth of data compared with a few bytes
of information when exchanging heat values.  Additionally, exchanging of temperatures requires
only one round of communication while exchanging of state information require two bouts.  This
is accomplished by communicating the random number used in decision making with the swap
acceptance information (both chains must make identical swap acceptance decisions).  The result
of this process is that state information is effectively swapped between chains through exchange
of a few bytes of data.

The second programming trick involves synchronization of the chains, which is a requirement
for swapping.  The implementation of p(MC)3 in the parallel version of MrBayes makes use of a
point-to-point exchange scheme, minimizing idle processor time.  In this scheme it is recognized
that only two chains are involved in a swap at one time.  The identity of the chains involved in
the swap in each iteration is predetermined by a pseudo-random number sequence available to
each processor.  A chain can therefore check to see if is involved in a swap in the present
generation (and, indeed, generations to come) by checking the random number sequence.  The
result is that chains uninvolved in the present swap can proceed to the next generation, rather
than all chains being synchronized each generation (global exchange scheme; Figure 4.9).  What
is more, because swapping involves only two chains, the amount of synchronization is not a
function of the number of chains (processors).  This ultimately makes the analysis more
computationally efficient by greatly reducing idle time of processors waiting for swaps to
complete.

To test the speedup of the p(MC)3 algorithm in MrBayes Altekar et al. (in press) observed run
times for both large (# of species) and small data sets with various numbers of chains.  Speedup
was determined by comparison of parallel run times with analogous sequential run times.  Small
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data sets have comparably simpler likelihood calculations, so communication between chains is
more important and can be costly.  Large data sets, on the other hand, have more complicated
likelihood functions, and so communication between chains is less costly.  In both data sets
swaps were made a requirement every generation to obtain worst-case communication costs.

Figure 4.9: Possible communication schemes between parallel MCMC chains (figure taken from Altekar
et al., in press).  In the non-interacting scheme, idle time is minimized but chains do not communicate
with one another, thereby not increasing mixing efficiency.  Such a scheme could be implemented if
results from one Markov chain needed verification.  Practical phylogeneticists would not use the non-
interacting scheme.  In the global exchange scheme, all chains are synchronized at a predetermined set
interval.  This scheme ensures that chains are in step, a requirement for swapping state information.  The
point-to-point exchange scheme capitalizes on the fact that only two chains are involved in a swap at a
time, and so synchronization of all chains effectively wastes valuable computation time.  Chains not
involved in a swap are allowed to proceed to the next iteration.

Figure 4.10 shows that comparable near linear speedups were found for both data set sizes.  This
high scalability permits an investigator to run multiple chains (far more than previously
possible)and thus allows for better mixing and exploring of parameter space – a necessity for
particularly rugged landscapes.

It is quite conceivable that the implementation of p(MC)3, with its high level of concurrency and
low communication costs, will have as large an impact on Bayesian phylogenetic inference as
did Metropolis coupling, further extending the limits of modern model-based phylogenetic
analysis.  The only obstacle to this appears to be the present limited access to high performance
computing resources.
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Figure 4.10: Achieved speedup of MrBayes 3.0 through use of parallel Metropolis coupled Markov chain
Monte Carlo (p(MC)3; figure taken from Altekar et al. in press).  “Speedup” is measured by comparing
runtime using x processors with the same analysis (# generations, chains, etc.) run serially.  Leviviridae
represents a small (# of species) data set while Astragalus represents a large data set.  Both data sets scale
near-linearly.
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 5. ASSESSING RELIABILITY IN PHYLOGENETIC TREES

The goal of many a phylogenetic investigation is ultimately a tree.  However, a best estimate of a
tree is rarely good enough; some level of confidence in the tree must also be expressed.  Support
indices are important, especially when trees serve as the conceptual framework for study of the
evolution of particular a trait (Alfaro et al., 2003).  As will be seen below, Frequentist and
Bayesian frameworks construct and interpret reliability estimates in very different ways.  Despite
using identical stochastic substitution models and measuring similar attributes, the estimates are
not interchangeable and cannot be directly compared (Douady et al., 2003).  Nevertheless, a
contrast can be useful to understand exactly what each statistic is measuring, how each can be
interpreted, and why they might behave differently.

THE BEST TREE

In the traditional maximum likelihood approach, all parameters (those of interest plus the
nuisance parameters) are jointly estimated and the MLE is obtained by finding the values of the
parameters which maximize the likelihood function (Huelsenbeck and Ronquist, 2001b).  If an
exact search has been performed then the MLE will represent the global maximum of the
likelihood surface.  The best tree, then, is that tree which highest (most positive) log likelihood
score.  It should be noted here that no level of confidence whatsoever is attached to the MLE
tree; though the tree may have the best likelihood score, there may be several (or even hundreds)
of trees that have scores that are not significantly different from the MLE tree.

A Bayesian best estimate is obtained in much the same way as above, except here we are dealing
with a posterior probability distribution rather than a likelihood surface.  Typically the “best
tree” is that with the maximum a posteriori probability, referred to as the MAP tree (Rannala and
Yang, 1996).  Three major distinctions should be made between MLE and MAP trees.  First,
while maximum likelihood uses jointly estimated parameter values, a Bayesian approach
marginalizes over the nuisance parameters, and hence takes into consideration the uncertainty in
the nuisance parameter values when determining tree posterior probabilities.  Second, while one
is guaranteed to find the best (MLE) tree in a traditional exact tree search (exhaustive or branch-
and-bound), this is not necessarily true in the Bayesian case.  The degree of approximation of the
posterior probability distribution is determined by the MCMC search, most importantly by the
length (number of samples) of the run.  Because an MCMC analysis deals with random samples,
a run that is too short will miss many trees, possibly even trees with very high posterior
probability.  This can be remedied, however, by running the analysis multiple times from random
positions in parameter space.  The final distinction deals with confidence in the best tree.  We
saw above that no confidence can be attached to the MLE tree, but the MAP tree is different.
Because we are dealing with a (discrete) posterior probability distribution (i.e. all trees are
recorded and sum to probability 1), every tree sampled in the MCMC search has a probability
attributed to it.  Thus, unlike the MLE tree, in the Bayesian approach it is possible to attach
confidence to a point estimate.

CONFIDENCE IN A TREE

Ideally we would like to secure confidence estimates in trees and more importantly in clades of
direct interest.  Such indices of support (or reliability, or robustness) are important because they
quantitatively illustrate how well results are jointly supported by both the data and the chosen
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model of evolution (Cummings et al., 2003).  We saw above that it is not possible to obtain these
estimates in a conventional maximum likelihood approach, and the posterior probability for a
MAP tree may be extremely small depending on the extent of the MCMC sampling and the
number of candidate trees with probability greater than zero.  So it is clear that confidence in a
tree must be obtained in a different way.

In the traditional framework, statistical confidence is most often inferred through use of the
nonparametric bootstrap, introduced to the estimation of phylogenetic trees by Felsenstein
(1985).  The procedure is summarized as follows: the original data matrix is sampled with
replacement to produce n pseudo-replicate matrices, and a tree search is performed on each
replicate.  Groupings (taxon bipartitions) within the n trees are kept track of and the proportional
frequency (multiplied by 100) of a particular grouping is equal to its bootstrap percentage, or
simply bootstrap score.  For example, if within 1000 bootstrap trees we find 850 of which
contain the grouping of A and B, the bootstrap score for that grouping would be 85.  Bootstrap
scores are typically summarized on a majority-rule consensus tree, as in Figure 5.1.  The
bootstrap is an enormously useful tool that can be applied to virtually any type of analysis
(Holder and Lewis, 2003).  As such, the bootstrap procedure can be applied to any parameter in
the phylogeny problem, though its use is limited almost exclusively to topology (Cummings et
al., 2003).  Despite the widespread use of the bootstrap, its interpretation is not directly intuitive
and hence has been periodically subjected to upwellings of debate.  A bootstrap proportion does
not give an indication whether the result is correct; rather, it gives an idea of the repeatability of
the results (i.e. if n more similar data sets were sampled, what percentage of them would we
expect to contain the particular taxon bipartition?).  Put another way, the distribution of
pseudoreplicates around the observed data is a valid approximation of the distribution of
observed data sets on the true, unknown process that generates the data (Alfaro et al., 2003).
Nevertheless, most authors still tend to interpret bootstrap proportions as direct measures of
endorsement for a particular bipartition.  That said, the nonparametric bootstrap, though it does
not deliver direct clade probabilities, is generally agreed by phylogeneticists to be a conservative
measure of support.

Aside from the indirect interpretation of bootstrap proportions, a far greater concern deals with
the computational burden involved (Holder and Lewis, 2003).  If an analysis involves n bootstrap
replicates it will effectively take n times as long as a single tree search on the original data
matrix.  For data matrices that currently take weeks or months to find a tree of highest likelihood,
such a computation burden (e.g. 1000 bootstrap replicates) is clearly impractical and limits the
application of the nonparametric bootstrap to model based phylogenetic problems (Douady et al.,
2003).  Investigators have typically taken two approaches to the problem of excessively long
runs.  First, rather than run exact searches (exhaustive or branch-and-bound) on each
pseudoreplicate, a heuristic search is performed instead.  Heuristic searches, though much
quicker, suffer from failing that the tree with the highest likelihood is not guaranteed to be found.
Consequentially, another source of variance, that of not finding the tree of maximum likelihood,
is  added to the analysis (Cummings et al., 2003).  Secondly, researchers have turned to high
performance computing laboratories for data analysis.  Unfortunately such facilities are still the
exception rather than the rule, and exact runs may still take several weeks to complete.

Posterior clade (or split) probabilities are obtained in a far different manner than bootstrap
proportions.  As reiterated throughout this paper, Bayesian statistics is interested in the shape of
the posterior probability distribution rather than maximizing an objective function (Lewis and
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Figure 5.1: An example of a majority-rule consensus tree illustrating nonparametric bootstrap proportions
for clades within the tree.  The tree itself, as the names implies, is the one which occurs the most
frequently throughout the bootstrap replicates.  Numbers at the nodes indicate the proportional frequency
that a particular grouping occurs across bootstrap replicate trees.

and Holder, 2003).  The result is a simultaneous estimation of both phylogeny and support
(Douady et al., 2003).  As we have seen, Bayesians typically construct credibility intervals
around parameters of interest based on the posterior probability distribution; this same procedure
is used to generate reliability intervals on trees and clades.  Summary of reliability estimates can
take many forms.  One way, first hinted at by Felsenstein (1968), creates a credible set of trees
by starting with the MAP tree and adding trees in order of decreasing probability until the
cumulative probability is, say, 0.95 (Huelsenbeck et al., 2002).  The most popular, and perhaps
intuitive, form of summary, however, involves applying the results of the MCMC analysis on the
MAP tree (Larget and Simon, 1999).  This is accomplished through computing posterior
probabilities for the clades on the MAP tree from the sample of trees recorded during the MCMC
analysis.  Recall from above that posterior probabilities for discrete parameters (e.g. topology or
taxon bipartition) are calculated simply as a proportional frequencies.  In this respect the
calculation of a posterior clade probability from the MCMC sample of trees is comparable to the
calculation of a bootstrap score for the same clade from the bootstrap sample of trees.  Summary
of results in this form allows simultaneous display of both bootstrap proportions (or Bremer
decay values, if that be your taste) and posterior clade probabilities.

Though both indices can be illustrated for the same clade, ostensibly measuring a similar
quantity, some important distinctions between bootstrap proportions and posterior clade
probabilities should be noted here.  Firstly, posterior probabilities, unlike bootstrap proportions,
are not measures of repeatability; rather, they can be directly interpreted as the probability that
the underlying clade in question has been correctly recovered (Wilcox et al., 2002).  Recall the
interpretation of bootstrap proportions above (i.e. if n more similar data sets were sampled, what
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percentage of them would we expect to contain the particular taxon bipartition?).  A posterior
clade probability, conversely, answers the question: given the data observed, what is the
probability that the clade of interest is present in the true tree? (Lewis, 2002).  The second
distinction deals with uncertainty in tangent (nuisance) parameters.  Likelihood methods, we
have seen, jointly estimate all parameters; an MLE tree, then, deals with fixed values for the
parameters of the statistical model.  Bayesian methods, on the other hand, by virtue of exploring
the shape of the posterior probability distribution rather than maximizing an objective function,
marginalizes over nuisance parameters.  Thus Bayesian methods explicitly incorporate
uncertainty in these tangential parameters, which is clearly of preference because the values for
these parameters are not known without error.  Finally, bootstrap proportions and posterior clade
probabilities differ in their respective computational burdens.  While likelihood analyses require
a run length of 

€ 

n × t  to construct bootstrap reliability (where n is the number of bootstrap
replicates and t is the time required to complete one tree search), the Bayesian approach does not
suffer from this syndrome.  This is because of simultaneous estimation of phylogeny and
support.  We saw above that Douady et al. (2003) found that one Bayesian tree search in
MrBayes ran 80 times faster than a single (heuristic) PAUP* maximum likelihood bootstrap
replicate.  Clearly this ratio will change depending on the data matrices and substitution models
involved in the analysis (as well as the MCMC specifications – an analysis can be run arbitrarily
long), but clearly the Bayesian approach has an enormous advantage in terms of computational
efficiency.  This property alone accounts for much of the excitement surrounding Bayesian
phylogenetics, partly because it allows reliability estimates to be calculated for trees that are all
but intractable in a likelihood framework.

DIFFERENCES IN RELIABILITY ESTIMATES

Given that it is clear that split probabilities and nonparametric bootstrap proportions measure
fundamentally different attributes of the data, it is not surprising that discrepancies can arise
when analyzing a data set using both frameworks.  Instinctively, we would hope that the values
are in agreement most of the time, and expect only slight differences of no real consequence.  In
fact, Efron et al. (1996) noted that while the theory for each index is largely independent,
bootstrap proportions and posterior clade probabilities should be equivalent.  However, many
studies have shown that the indices in fact do differ to a large degree in many circumstances.  In
fact, Huelsenbeck et al. (2002) stated that “Perhaps the most vexing mystery is the observed
discrepancy between Bayesian posterior probabilities and nonparametric bootstrap support
values.”  This mystery has been the focus of several papers since, and the findings to date are
explained below.

In empirical circles it is almost a ubiquitous result that posterior probabilities are consistently
higher than analogous bootstrap proportions (Buckley et al., 2002; Leaché and Reeder, 2002;
Whittingham et al., 2002), however it wasn’t until Wilcox et al. (2002) that the relationship
between these two indices were rigorously examined.  They generated 120 data sets of 500 bp in
length based on the maximum likelihood estimated tree, and bootstrap proportions for
subsequent likelihood searches were compared to analogous posterior probabilities for each data
set.  The two methods were then contrasted for phylogenetic estimation accuracy sensu Hillis
and Bull (1995), defined as the probability of reconstructing the correct bipartitions.  They found
that the average support values were consistently higher (sometimes twice as high) for Bayesian
compared to likelihood analyses, and that the Bayesian posterior probabilities were much better
indicators of phylogenetic accuracy than the corresponding bootstrap scores (Figure 5.2).
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Figure 5.2: A comparison of phylogenetic estimation accuracy sensu Hillis and Bull (1995; figure from
Wilcox et al., 2002).  The y-axis shows the phylogenetic accuracy (percentage of correct partitions found)
and the x-axis shows the percentage support values for the respective bipartitions for both Bayesian and
likelihood analyses of 120 simulated data sets.  The diagonal represents a perfect correspondence between
phylogenetic accuracy and support.  Both the posterior probabilities and the bootstrap scores
underestimate accuracy at greater than 30% support, but the Bayesian values are much better estimates of
phylogenetic accuracy (closer to the diagonal).

Based on these findings Wilcox et al. (2002) recommended that Bayesian posterior probabilities
be used in preference to nonparametric bootstrap proportions to assess support for estimated
clades in phylogenetic trees as both are indices are conservative, but posterior probabilities are
closer to the truth.

Suzuki et al. (2002) object to the findings of Wilcox et al. (2002) above for two reasons.  First of
all, the model used in the phylogenetic reconstructions was the same model use to generate the
data, which they see as ineffectual as the substitution model used for reconstruction will
realistically never be the same as the true substitution pattern.  Secondly, they object with the
findings because no clearly defined null hypothesis is given.  They therefore performed a
simulation study of their own.  In this case, sequences of 5000 bp were generated according to
the three different topologies possible for the four taxon case (Figure 5.3).  These sequences
were then concatenated to form one 15000 bp sequence that should (barring stochastic error)
generate the three topologies with equal probability.

This process was repeated 50 times each for 6 combinations of transition/transversion ratios,
internal and external branch lengths.  The resulting 600 data sets were each analyzed using
Bayesian, neighbour-joining, and maximum likelihood approaches.  An examination was then
performed on the relative false-positive rate of the three methods in order to discern whether the
bootstrap is too conservative or the posterior probability too liberal.  Because each topology
should be returned with equal probability, significant support (bootstrap ≥ 95% or posterior
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Figure 5.3: Figure from Suzuki et al. (2002).  Sequences of length 5000 bp were generated according to
the three possible topologies for four taxa (A, B, and C).  bE and bI represent external and branch lengths,
respectively.  The sequences were then concatenated to form a single 15000 bp sequence that would
equally support topologies A-C, and is represented above as a star tree (D).

probability ≥ 0.95) for a particular topology represents a false positive.  Table 5.1 summarizes
these results.

Table 5.1: Results of the simulation study of Suzuki et al. (2002).  The sequences analyzed were
generated in such a way that all three possible topologies (A-C) should be equally likely (i.e. no one
topology should receive significant support).  Bayesian posterior probabilities show both a higher
frequency of false-positives (expected 5%) and higher averages across replications.

As can be seen from Table 5.1, Bayesian posterior probabilities exhibited an immensely higher
false-positive rate when compared to both neighbour-joining and maximum likelihood analyses.
Suzuki et al. (2002) speculate that the maximum likelihood tree (or set of trees) is visited again
and again in the MCMC search, the result being that a stochastic result is sampled many times
and so receives a high posterior probability.  Neighbour-joining and maximum likelihood
analyses, conversely, actually had a false-positive rate lower than the expected 5% (confidence
level was 95%), corroborating previous studies that have found the nonparametric bootstrap to be
a conservative measure of support.  Additionally, the average posterior probability score across
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replicates was much higher than corresponding bootstrap scores. Figure 5.4 illustrates the direct
pairwise relationships between the three nodal scores for several combinations of
transition/transversion ratios, internal and external branch lengths.

Figure 5.4: Corresponding pairwise relationships of the three nodal scores (partial figure from Suzuki et
al ., 2002).  The groups (ABC), (DEF), and (GHI) represent different combinations of
transition/transversion ratios, internal and external branch lengths.  Bayesian posterior probabilities are
significantly higher than both maximum likelihood and neighbour-joining bootstrap proportions
(additional scenarios, not shown, show even stronger trends), but the two bootstrap scores show a high
level of correlation.

Based on their findings Suzuki et al. (2002) came to the conclusion that posterior probabilities
are “excessively liberal” and that conservative methods (i.e. bootstrap proportions) should be
preferable to an overly lax method in phylogenetic analysis because conclusions are drawn
exclusively from statistical analyses without experimentation.  They go on to say that empirical
phylogenetic studies using Bayesian inference may suffer from overcredibility and should thus
be viewed with caution.  Cummings et al. object to these findings because the use of the Jukes-
Cantor model for analyzing data generated using a Kimura model confounded the effects
attributable to the general properties of the underlying analytical methods.

Douady et al. (2003) investigated the relationship between nodal scores obtained from
bootstrapped data matrices analyzed using maximum likelihood and Bayesian approaches for
both empirical and simulated datasets.  One hundred bootstrap pseudoreplicates were generated
from each of eight original empirical data sets spanning different kinds of characters, types of
sequences, genomic compartments, and taxonomic groups.  This study differs from the previous
two in that (in addition to comparing posterior clade probabilities and bootstrap proportions) here
a “Bayesian bootstrap proportion” score is obtained and compared directly to the corresponding
bootstrap score from maximum likelihood for the same data matrix.   They found three results of
note.  First, posterior probabilities were found to be consistently higher than corresponding
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bootstrap proportions for maximum likelihood for both true and false nodes (Figure 5.5).
Reiterating previous studies they concluded that bootstrap proportions might be less prone to
strongly supporting a false phylogenetic hypothesis.

Figure 5.5:  A linear correlation of nodal scores obtained from Bayesian and maximum likelihood
analyses on simulated data for both true and false nodes (figure taken from Douady et al., 2003).  PP
represents the Bayesian posterior clade probability, BPBay represents bootstrapped Bayesian posterior
clade probability, and BPML represents the bootstrap clade proportion using maximum likelihood
inference of phylogeny.  Circles illustrate the relationship between PP and BPML, while triangles illustrate
the relationship between BPBay and BPML.  Bayesian indices of support are consistently higher than their
maximum likelihood counterparts, for both true and false nodes.

Secondly, they found that, while posterior clade probabilities and maximum likelihood scores
can show significant correlation, the strength of this correlation is highly variable and sometimes
very low (Figure 5.6).  Bayesian inference, they conclude, may be sensitive to small model
misspecifications, a sentiment shared by Huelsenbeck et al. (2002) and Erixon et al. (2003).
Lastly, Douady et al. (2003) found that the bootstrap scores from respective Bayesian and
maximum likelihood analyses were very highly correlated (0.95 < r2 < 0.99).  Bayesian analysis
of bootstrapped data was much faster than corresponding maximum likelihood analyses, and
gives comparable results.  This technique, they propose, may be used to explore the range of
node support estimates.  My criticism of this paper is that they did not explicitly define what a
Bayesian bootstrap proportion actually measures and consequently I regard these as nebulous
results.

Alfaro et al. (2003) simulated 17-taxa topologies under 18 evolutionary scenarios to compare
bootstrap proportions from maximum parsimony and maximum likelihood to posterior clade
probabilities (using vague priors) for both correct and incorrect nodes.  The 18 scenarios differed
in tree-shape, and were meant to represent a spectrum of possible tree topologies (Figure 5.7).
The results were largely congruent to those above: posterior clade probabilities were consistently
higher for both correct and incorrect nodes, though overall assignment of incorrect nodes was
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Figure 5.6: A linear correlation of nodal scores obtained from Bayesian and maximum likelihood analyses
for both true and false nodes (figure taken from Douady et al., 2003).  Symbols are explained in Figure
5.5.  Posterior probabilities are significantly higher than maximum likelihood bootstrap proportions,
though bootstrapped posterior probabilities show a near 1:1 relationship.

low.  Posterior probabilities were found to have lower type 1 error rates (the frequency of
rejecting true monophyletic groups) than bootstrapping, but when jointly considering support
values for wrong monophyletic groups both methods performed similarly in recovering correct
internodes.  Like Wilcox et al. (2002) they also found that posterior probabilities are better
estimators of phylogenetic accuracy than bootstrap scores and reiterate that phylogenetic
accuracy is not a quantity that bootstrapping tests.  They also found that posterior probabilities
and bootstrap proportions, when they diverged, tended to differ most on short internodes.  They
attribute this finding to the putatively greater sensitivity of Bayesian methods to the signal in a
data set, echoing Douady et al. (2003).

Figure 5.7: Some of the tree topologies (pectinate, above; symmetrical, below) used by Alfaro et al.
(2003) to simulate data sets for the comparison of bootstrap proportions and posterior clade probabilities.

What really sets apart the study by Alfaro et al. (2003) from those above is the direct
examination of the effects of increasing character number on nodal support value for both
clocklike and nonclocklike symmetric topologies.  They found that Bayesian posterior
probabilities assigned 95% support to all internodes with a smaller number of characters than
either bootstrapping method.  In some cases posterior probabilities reached support values of
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95% or higher with fewer characters than maximum parsimony required to reach support values
of 70%.  This is an appealing attribute of Bayesian inference of phylogeny because of the
ubiquity of short internodes in empirical data sets that receive low bootstrap scores.  However,
because of the increased sensitivity of Bayesian methods mentioned above this may lead to high
confidence in incorrect nodes when character sampling has not been sufficient to recover the
correct topology.  Bootstrap proportions, which have an inherent lower sensitivity when few
characters contribute to a particular node, may then be preferable.

Alfaro et al. (2003) conclude by reaffirming that bootstrap proportions and posterior clade
probabilities measure different, informative features of the data.  They give an example of an
internode with high posterior probability and moderate bootstrap support.  Such a node should be
interpreted as having a high probability of being correct (conditional on the data that have been
collected and the model of evolution), but also being highly dependent on the particular data
matrix and thus may not be observed when further data are gathered.  To decide between
Bayesian posterior probabilities and classical bootstrap proportions, then, the investigator should
have in mind what they would like their confidence method to measure.

Finally, Cummings et al. (2003) have performed the most rigorous comparison of bootstrap
proportions and posterior clade probabilities yet attempted and, like Suzuki et al. (2002), they
dealt with the four taxon case.  They simulated data sets of 1000 bp each using the GTR + Γ
model of sequence evolution to test the null hypothesis of:

E(maximum likelihood bootstrap proportion) = E(Bayesian posterior probability)

for a myriad of tree shapes.  Sequences were generated according to various relationships of the
5 requisite branches which can be displayed on a two dimensional graph where the axes
represent branch length combinations (Figure 5.8).  The experimental model space of Cummings

Figure 5.8: Model space of Cummings et al. (2003).  The y-axis represents the lengths of three branches,
the internal and the upper two, while the x-axis represents the other two external branches.  Region A is
referred to as the “neutral zone”, B the “near two-branch corner”, and C the “two-branch corner”.  The
model space contains 1369 elements for each of which 1000 data sets of 1000 bp were generated.
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et al. (2003) contained 1369 elements, or 1369 unique combinations of the 5 branches.  For each
element 1000 replicate data sets were generated.  The breadth of tree shape is thought to
encompass the range of realistic empirical topologies.  Maximum likelihood analyses were
performed with the branch-and-bound methodology to ensure that the maximally likely tree was
guaranteed to be found for each replicate.  Bayesian and maximum likelihood analyses were
paired to eliminate a source of variance due to analysis of different sequences.

Three topologies were recognized: the model topology (τ1), the attractive topology (a result of
long branch attraction; τ2), and the remaining third possible topology (τ3; Figure 5.9).

Figure 5.9: The three possible topologies for 4 taxa (figure from Cummings et al., 2003).

Cummings et al. (2003) plotted separately for each of the three topologies the difference, d,
between the mean proportion of bootstrap replicates and the mean posterior probability values
for each element in the model space (Figure 5.10). Plotting the results in this manner is important
as the three topologies are interrelated; high bootstrap support for one topology necessarily
means low support for the two alternative topologies. Permutation tests were performed to

Figure 5.10: Permutation test results to determine the significance for values of d, the difference between
the mean proportion of bootstrap replicates and the mean posterior probability values for each element in
the model space (figure from Cummings et al., 2003).  Magenta denotes elements where bootstrap values
are significantly greater, cyan denotes elements where posterior probabilities are greater, and white
denotes no significant difference in the two support indices.
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determine the significance of d for each element in the model space.   From these plots we can
see that three apparent regions in the model space.  In the “neutral zone” (from the lower left
corner to the upper right), results are mixed in each plot as to which support index is higher, and
results from the permutation tests show that the differences that arise are not significant.

The “two-branch corner” (upper left corner) is where the effects of long branch attraction can be
seen.  The third region is the “near two-branch corner” and is adjacent to both the neutral zone
and the two-branch corner.  It can be seen from Figure 5.10 above that mean bootstrap scores are
significantly higher than pairwise mean posterior probabilities in the two-branch corner for the
model topology, but that the opposite result is seen for the attractive topology. Cummings et al.
(2003) describe these findings by the fact that the branch-and-bound search allowed the
maximally likely tree to be found for every maximum likelihood replicate while the Bayesian
search visited both the attractive topology and the model topology.  Bayesian inference of
phylogeny, it follows, appears to be susceptible to long branch attraction.

Cummings et al. (2003) also plotted quantile-quantile plots to compare maximum support scores
with theoretical maximal values for the null model of a star topology (Figure 5.11).  Both indices
differ significantly from expectation over much of the range.  Bootstrap scores tend to be
markedly higher than expectation from 0.6 < max(Pboot) < 0.7, but are conservative for max(Pboot)
> 0.95.  Bayesian posterior probabilities, on the other hand, differ from expectation from about a
score of 0.6 upwards, and especially from 0.85 – 1.0.  The relationship between bootstrap
proportions and posterior probabilities, they conclude, is a complex one (depending on the
underlying tree space, fit of the likelihood model to the data, tree search specifics, etc.), but in
general posterior probabilities are excessively high, corroborating many of the results above.

Figure 5.11: Permutation test results to determine the significance for values of d, the difference between
the mean proportion of bootstrap replicates and the mean posterior probability values for each element in
the model space
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The problems of excessively high support outlined above constitute the major force opposing
mainstream Bayesian phylogenetic inference.  With all of the promising advantages of a
Bayesian approach to the phylogenetic problem, posterior probability calculations are, I believe,
the last stumbling block to this emerging revolution in phylogenetics; people can get used to the
idea and design of prior probabilities, but they will never tolerate excessively high posterior
probabilities.  It remains to be seen, then, whether appropriate renovations can be made to the
currently implemented Bayesian phylogenetic inference methodologies, or if the inflated support
indices will mean the young demise of this promising field.
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6. POTENTIAL DRAWBACKS

We have touched on most of the potential drawbacks to the Bayesian inference of phylogeny
throughout this paper, but it is useful to reiterate them here.

MCMC ISSUES

The issues surrounding the use of Markov Chain Monte Carlo techniques for phylogenetic
inference are no different than in any other field.  Recall that purpose of using MCMC
algorithms is to approximate the posterior probability distribution when numerical integration is
impossible.  Clearly, the more samples that are taken, the better approximation.  But how many
is enough?  The truth is that we can never be absolutely sure that we have collected an
appropriate number of samples (Lewis, 2002). In other words, it is not possible to determine
suitable run-lengths theoretically, and so this requires some experimentation on the part of the
user.  The concerns here are: 1) is the MCMC sample representative of distribution that it was
sampled from, and 2) are enough samples collected to estimate a particular parameter with
reasonable precision (i.e. low variance; Jones and Browning, 2003).  Roughly speaking, Monte
Carlo error decreases as the square root of the number of iterations (e.g. to reduce error by a
factor of 10, increase the number of iterations by a factor of 100).  As a rule of thumb I
recommend running sequential analyses of different chain lengths (i.e. different number of
samples from the posterior distribution); if runs of various sample sizes give you roughly the
same results, it would seem logical that you have approximated the distribution appropriately.

A strict number of samples is not the only concern in an MCMC search, however.  As we saw in
chapter 4, samples from an Markov chain are autocorrelated (Jones and Browning, 2003).  In
other words, the absolute number of samples taken is far greater than the effective number of
samples.  There are two strategies to get around this: 1) take a far greater number of samples, or
2) thin your Markov chain.  Option 2 appears to be the preferred method, in part because
autocorrelation can be directly measured and thus controlled for.  Using an autocorrelation plot
(Figure 4.6) from a pilot run, the lag time (n, the number of iterations) required for effective
independence of samples can be determined.  The user can then take samples every n iterations
in the actual analysis and be confident that samples are independent.  Regardless of the strategy
taken, dealing with autocorrelation of MCMC samples requires far greater run times.

The two issues above assume that the stationary distribution has been found and is being
sampled.  How can be sure of this?  Again, we can never be completely sure that chains are run
long enough (Lewis, 2002).  Two related considerations must be made when determining the
adequacy of a Markov chain: burnin and convergence.  Burnin refers to the samples taken by the
Markov chain en route to the stationary distribution.  As these samples have essentially zero
probability we do not want them in our MCMC sample or they will skew our results; therefore
they are discarded prior to sample summary (Holder, 2003).  The problem is determining the
burnin cutoff.  This is accomplished through use of a history plot (Figure 4.5).  Once values
begin to plateau it can be inferred that the stationary distribution has been reached.  However, it
must be noted that getting stuck in a local optima will resemble exactly the stationary
distribution.

This last point deals directly with the idea of convergence.  Though we can never prove that we
are sampling from the bone fide stationary distribution, there are steps we can take to increase
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our confidence (Tierney, 1994).  First, we can run the analysis multiple times starting from
random points in parameter space; if the same results are obtained across runs we can be fairly
confident that the chain has converged on the desired distribution.  Secondly, we can run
multiple chains simultaneously with communication between the chains (Altekar et al., in press).
This latter method not only increases the likelihood of convergence, but also increases the
mixing ability of the chain (i.e. explores isolated peaks in parameter space).

MCMC methods are undoubtedly powerful tools that allow us to evaluate problems in a
Bayesian context that would otherwise be intractable.  However, to reiterate Geyer (1999; quoted
in Huelsenbeck et al., 2002), “MCMC is a complex mixture of computer programming,
statistical theory, and practical experience.  When it works, it does things that cannot be done
any other way, but it is good to remember that it is not foolproof.”  Care must be taken, then, to
scrutinize our results as best we can.  Unfortunately, the diagnostic tools currently in use are all
qualitative, but they are all we have.

BAYESIAN ISSUES

Some of the contentious issues deal not with MCMC sampling, but instead with the underlying
Bayesian methodology.  As with any Bayesian analysis, the priors specified are the most
controversial.  Presently only vague priors are used in phylogenetic inference (Lewis, 2002),
partly because of the lack of empirical data with which to construct priors and partly to placate
skeptics.  Prior probabilities have been a litigious issue since Bayes’ theorem was first published
150 years ago, and, in the words of Joseph Felsenstein (2003), “Nothing that biologists say is
going to settle the matter.”  The issue here is whether usable prior probabilities exist.  Personally
I am optimistic that, with the explosion in the amount of genetic data currently being generated,
within the coming decade informative priors will be available to apply to the problem of
phylogenetic inference.

Of far more practical concern is the discrepancy between posterior clade probabilities and
maximum likelihood nonparametric bootstrap proportions (Huelsenbeck et al., 2001, 2002).
Even the most adamant Bayesian devotee will admit that this is cause of great concern.  Reasons
for the marked incongruence are somewhat unclear, possibly dealing with prior or model
misspecifications, or perhaps to inappropriate MCMC elements.  Regardless of the cause, the
effect is intolerable.  Until this issue is resolved it appears that phylogeneticists may need to
resort to generating bootstrapped posterior clade probabilities (Douady et al., 2003), which have
a much better correlation with maximum likelihood nonparametric bootstrap proportions.   With
this, however, comes two additional concerns: 1) bootstrapping Bayesian analyses will increase
the computational effort required immensely (speed is currently a major advantage of Bayesian
inference over likelihood), and 2) no explicit interpretation of a bootstrapped posterior clade
probability has been given.

Lastly, model misspecification has been indicated by several studies to lead to erroneous results.
Buckley (2002) notes that because current Bayesian implementations use flat priors, posterior
probability distributions are largely dependent on the structure of the likelihood model.  It
follows that strong and unreliable posterior inferences can be made if the model is misspecified.
It appears that this effect occurs whether models are either grossly underparameterized (Erixon et
al., 2003) or overparameterized (Rannala, 2002).  Clearly, then, an investigator wishing to use
Bayesian inference in phylogeny must be more concerned with model specification than when
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working in a likelihood framework, which appears to be fairly robust the model of evolution
assumed (e.g. Kuhner and Felsenstein, 1994).  The program Modeltest (Posada and Crandall,
1998, 2001) was designed explicitly for the purpose of finding the stochastic model of evolution
that best fits the data, and Bollback (2002) designed a Bayesian phylogenetic method that
evaluates the adequacy of different models using posterior predictive distributions.

All in all, Bayesian inference of phylogeny does require much more thoughtfulness on the part of
the investigator than conventional maximum likelihood inference where, minimally, a model is
selected and the data are subjected to nonparametric bootstrap analysis.  I believe, however, that
this is not cause for concern.  MCMC diagnostics, though qualitative, do exist, and model choice
should be of utmost importance to any practicing phylogeneticist.  The next logical step, I think,
is to combine model selection and phylogenetic inference into the same analysis.  This, however,
has not even been hinted to in the literature, and because of the enormous computational burden
that this would require (i.e. moving between parameter spaces of various dimensions), it is
unlikely that anything like this would be feasible for at least a decade.
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7. CONCLUSIONS AND THE FUTURE OF BAYESIAN PHYLOGENETICS

Bayesian phylogenetics using Markov chain Monte Carlo technology has unquestionably
revolutionized the field of phylogenetic systematics, and represents the first treatment of
topology as a random variable (Huelsenbeck et al., 2001; Holder and Lewis, 2003; Lewis and
Swofford, 2001).  Bayesian inference has allowed successful analysis of some of the largest and
most complex empirical data sets ever compiled, including examining the ordinal relationships
of placental using complete mitochondrial genomes for 44 taxa (Murphy et al., 2001), and
inferring the closest living relatives of land plants using more than 5000 bp for 40 taxa (Karol et
al., 2001).  These data sets were could not have been analyzed a scant five years ago, and,
though computer processor speeds have advanced considerably since then, it is due chiefly to
Bayesian methodologies that they can be analyzed today.  True, such data sets could be analyzed
in a likelihood framework, but it would require enormous computer facilities that the average
phylogeneticist does not have access to.  Part of the appeal of Bayesian phylogenetics, then, is
that reconstructions can be performed on conventional desktop computers in a reasonable
amount of time.

Bayesian inference of phylogeny has a seemingly endless number of advantages over
conventional likelihood methods.  Speed, mentioned above, seems to top the list, as it allows the
investigator to use far more complex (realistic) models of evolution, and more thorough
exploration of parameter space, than ever before possible.  Not only can these complex models
be applied to standard genetic data sets, but also to novel heterogeneous data sets that contain
information from morphological, paleontological, genetic, and behavioural sources.  If improved
Bayesian implementations show to be concordant with analogous likelihood methods, it is clear
that an investigator will turn to the former as it ensures that he/she will get their damn tree before
their NSERC runs out.

Related to speed is the way that Bayesian phylogenetic inference is carried out.  The
simultaneous estimation of parameter values and support gives not only a speed benefit, but also
provides the investigator with more information than in a likelihood search (i.e. the shape of the
posterior probability distribution, rather than a point estimate).  I agree with Buckley (2002) that
“systematists should be more concerned with identifying the total set of trees that can be
reasonably supported by the data, rather than focusing on point estimates of topology.”  Bayesian
inference is the first methodology in phylogenetics that generates probabilistic calculations of
such sets, and the probabilistic properties involved allow for direct interpretation that has until
now been sorely missing from phylogenetic systematics.

But Bayesian inference has been utilized for purposes other than strictly inferring phylogenetic
relationships.  Many comparative studies in evolutionary biology require control for phylogeny.
A major benefit of using Bayesian inference is that it explicitly accounts for uncertainty in
phylogeny when estimating parameters of interest, rather than assuming phylogeny is known
without error.  This technique has been successfully applied to estimating divergence times,
identifying recombination points, testing molecular clocks, and detecting selection, to name only
a few examples (see Huelsenbeck et al., 2001; Holder and Lewis, 2003).

If you are anything like me then you probably experienced a range of emotions during your trek
through this paper.  First, you may have been curious about the Bayesian methodology and
interested in the inner workings.  Next you may have been impressed by the seemingly vast
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advantages of a Bayesian approach as compared to conventional maximum likelihood methods.
You may have then progressed from awe of the complexity of MCMC implementations to
uneasiness with the realization that posterior clade probabilities, the values that most
phylogeneticists are interested in, can be “excessively liberal” (Suzuki et al., 2002).  I apologize
for the emotional roller coaster but, as I stated in the introduction, I will not pay your shrink bills.

I am, admittedly, very optimistic about Bayesian inference, and see it as the future of
phylogenetic systematics.  Like with all new techniques, the initial mania has subsided as
investigators have become aware of the limitations inherent in this analytical method.
Regardless of whether I have convinced you, it is clear that the present Bayesian revolution has
changed forever the way we think about phylogeny, and that it will have “a lasting and profound
impact on the future of evolutionary biology” (Lewis and Swofford, 2001).
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8. GLOSSARY

Bayes’ theorem: Published posthumously in Bayes’ 1763 paper Essay Towards Solving a
Problem in the Doctrine of Chances.  Bayesian statistics is a formal method for incorporating
prior evidence into the inference of the probability that an event occurs together with a
consideration of the current data.  Let D represent the data and H represent a hypothesis.  Bayes’
theorem can thus be expressed as:

€ 

Pr(H |D) =
Pr(H) ×Pr(D |H)

Pr(D)

In the equation above, 

€ 

Pr(H |D) is the posterior probability of the hypothesis given the data, is
the  

€ 

Pr(D |H) is the likelihood of the data given the hypothesis, and 

€ 

Pr(H)  is the prior
probability, or simply “prior”, of the hypothesis and represents our state of knowledge (or
ignorance) about the truth of a hypothesis before we have observed the data (Sivia, 2002).  The
final quantity, 

€ 

Pr(D), is the marginal probability of the data given the model; this is simply the
sum of the numerators over all possible hypotheses.  The posterior probability is sometimes
thought of as an updated version of the prior probability in the light of the data.  Bayes’ theorem
thus fundamentally encapsulates the process of learning (Sivia, 2002)

Burnin:  A Markov chain Monte Carlo (MCMC) term.  A Markov chain typically starts from a
random position in parameter space.  This random position is likely to be some distance from
areas of high posterior probability (peaks in parameter space) and consequently of lower
posterior probability.  Initial samples taken by the Markov chain en route to the peak have
essentially zero probability since they are not from the distribution of interest.  These samples are
therefore discarded before summarizing the sample results.  This discarded portion of the
Markov chain makes up the “burnin” of the chain.  The extent of burnin required is determined
through use of a history plot.

Cold chain: A Metropolis coupled Markov chain Monte Carlo [(MC)3] term. In an (MC)3

analysis several Markov chains are run simultaneously. Each chain computes the posterior
probability for the currently sampled value for the parameter of interest and then raises the
posterior probability to a power, β (0 < β < 1), which is the heat of the chain.  The “cold” chain
is raised to the power 0 (and hence is unaffected) while the other “heated” chains have posterior
probability distributions of the form Pr(τ|X)β.  The cold chain is the only chain that records
samples from the posterior probability distribution, though it communicates with the heated
chains for tips on areas of high posterior probability to sample in parameter space.

Convergence: A Markov chain Monte Carlo (MCMC) term.  “Convergence” of a Markov chain
is its ability to converge upon the posterior probability peak of interest when starting from a
random position in parameter space.  As the chain approaches the stationary distribution the
likelihood climbs rapidly until a plateau is reached.  At this point the high posterior probability
peak of interest is being sampled.  Monitoring of convergence (via a history plot) can be used as
a diagnostic tool.  Convergence of independent runs (starting from random positions in
parameter space) on the same results can be used to verify results.
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Flat (uniform) prior:  All possible values of the parameter of interest are given a uniform prior
probability before the data are observed.  Also called an uninformative prior, though this is
inaccurate because priors that are much more vague can be designed.  Though at first glance this
may appear to represent the more “objective” choice of prior (i.e. removing the subjectivity in
choice of prior by the investigator), upon closer inspection it is clear that in many cases a flat
prior is a poor choice as it gives excessive weight to extremely unlikely possibilities.  When a
flat prior is used the posterior probability is directly proportional to the likelihood.

Heated chains: A Metropolis coupled Markov chain Monte Carlo [(MC)3] term.  In an (MC)3

analysis, n Markov chains are run concurrently, n – 1 of which are heated.  Each chain computes
the posterior probability for the currently sampled value for the parameter of interest and then
raises the posterior probability to a power, β (0 < β < 1), which is the heat value of the chain.
Heated chains thus have a posterior probability distribution of the form Pr(τ|X)β.  Heating a chain
effectively “melts down” the posterior probability landscape, making valleys shallower and
peaks lesser in height.  Chains of higher “temperature” thus explore a more flattened landscape
and so are more able to cross particularly deep valleys.  Despite the increased mobility, the sole
function of heated chains is to provide the cold chain with intelligent proposals of new states.
Heated chains do not record samples themselves, and therefore act merely as scouts, searching
the surface of the posterior probability distribution for isolated areas (peaks) of high probability.

History plot: A plot of the number of steps (iterations; x-axis) by likelihood (y-axis), used in
MCMC analyses.  History plots allow for monitoring of convergence and mixing of the Markov
chain, as well as determining the appropriate amount of burnin.

Likelihood:  The conditional probability of the data given a particular model.  In the classical
approach all parameters are jointly estimated to maximize the likelihood function.   In the
Bayesian paradigm the likelihood for a parameter of interest (e.g. topology) is a marginal
likelihood over all other parameters of the statistical problem.

Marginalization:  Also referred to as “integrating out”.  Given a nuisance parameter, Z,
marginalization effectively means to take account of all possible values of Z when evaluating the
parameter(s) of interest.  Marginalization is of utmost importance for all Bayesian probability
inference: the information about a subset of the system’s variables is derived by integrating out
all nuisance parameters.  More generally, given parameters X, Y, and Z, marginalization is the
process to derive information about X and Y, given all possible values of Z, as in the following
equation:

€ 

Pr(X,Y) = Pr(X,Y,Z)dz
z∫

In a phylogenetic context an investigator could focus on one parameter (e.g. topology) while
marginalizing over all other parameters (transition rate parameters, gamma shape parameter,
ancestral states, etc.).

MCMC (Markov chain Monte Carlo):  A stochastic simulation sampling scheme used in most
Bayesian and some maximum likelihood analyses; in a Bayesian framework it allows integration
over high-dimensional parameter spaces.  No objective function is maximized; instead, the shape
of the posterior probability distribution is of interest rather than locating the highest point on the
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likelihood surface.  A Markov chain samples parameter value combinations and moves randomly
through parameter space with no memory of where it has been; future samples are dependent
only on the immediately prior sample.  Put another way, “given the present, the past and future
are independent” (Lee, 1997).  In the context of Bayesian phylogenetic inference, MCMC has
the desirable property that, once having reached the stationary distribution, the values of the
parameter of interest (e.g. tree topology) are visited in proportion to their posterior probabilities.
MCMC thus acts to approximate the posterior probability distribution of the parameter of
interest.

MCMCMC ([MC]3; Metropolis coupled Markov chain Monte Carlo):  An MCMC analysis
where n Markov chains are run concurrently, n – 1 of which are heated.  The addition of heated
chains enhances the mixing ability of the cold chain, thereby more efficiently exploring
parameter space.  The advent of (MC)3 has drastically extended the limits of model-based
phylogenetic inference (Huelsenbeck et al., 2001).

Mixing:  A Markov chain Monte Carlo (MCMC) term.  “Mixing” describes the ability of a
Markov chain to explore isolated, high posterior probability peaks in parameter space.  A poorly
mixing Markov chain is one that gets stuck on a particular peak, and consequently is not
sampling all highly probable states.  Poor mixing is dangerous in that it can lead to skewed
results, the reason being alternate states (potentially of equal or higher probability) are not
sampled.  While steps requiring large drops in posterior probability (for example, while
traversing a valley between two peaks) will occur eventually (given that the Markov chain is
constructed correctly and is run for sufficiently long enough), the time required may be
impractical.  Poor mixing is best combated through running multiple Markov chains
concurrently, some of which are heated.

Nuisance parameter:  A parameter that is required to evaluate a problem (e.g. a likelihood
equation) but is not itself of direct interest.  In a phylogenetic problem where topology may be
the ultimate goal, parameters of the substitution model (transition rate parameters, gamma shape
parameter), ancestral states, etc. would be considered nuisance parameters.

Parallelization:  The running of an analysis simultaneously across several computer processors
rather than serially on one processor.  Parallelization of (MC)3 analyses have shown near linear
scaling with the number of processors available (Altekar et al., in press).

Posterior probability:  A conditional probability, the posterior probability is the probability of
the hypothesis given the data, and is proportional to the product of the likelihood and the prior
probability of the hypothesis.  The posterior probability thus represents our state of knowledge
about the truth of a hypothesis in the light of the data.  Sometimes described as an updated
version of the prior probability after having observed the data.  The posterior probability is a
direct measure of uncertainty (unlike in the classical framework) and may or may not represent a
long-term frequency.

Prior probability:  The prior probability, or simply “prior”, represents our state of knowledge
(or ignorance) about the truth of a hypothesis before we have analyzed the current data (Sivia,
2002).  The prior is  modified by data through the likelihood function to yield the posterior
probability.  Viewed by classical statisticians as a weakness of Bayesian inference because of its
inherent subjectivity.  Viewed by Bayesian statisticians as a strength as prior information can
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enter the analysis.  Priors may be proper or improper (distribution fails to integrate to 1),
informative or uninformative.  Prior probabilities can be based on previous experiments or
theoretical expectations and must be defensible.

Probability:  “Probability” has different meanings in the different schools of statistics.  In the
Frequentist school (championed by Sir Roland Fisher) probability is interpreted as the long-run
relative frequency with which an event occurs in many repeated similar trials.  To a Frequentist,
probability lies objectively in the world, not in the observer.  In the Bayesian school of statistics
(founded on work by Reverend Thomas Bayes) probability is interpreted as a measure of one’s
degree of uncertainty about an event. This may or may not represent a long term frequency.  To a
Bayesian, probability lies in the mind of the observer and may be different for people having
different information or different past experiences.

Random variable: A variable whose values are random but whose statistical distribution is
known.

Reverend Thomas Bayes (1702-1761): An English Presbyterian minister and mathematician.
His posthumously published paper An Essay Towards Solving a Problem in the Doctrine of
Chances (1763) is the basis of modern Bayesian inference.

Swapping: A Metropolis coupled Markov chain Monte Carlo [(MC)3] term.  Periodically in an
(MC)3 analysis two Markov chains are given the opportunity to trade or “swap” state
information.  Swaps can involve heated chains or a heated chain and the cold chain.  Swapping is
the beauty of Metropolis coupling in an MCMC analysis as it allows the cold chain to effectively
traverse a deep valley in parameter space in one step rather than the many (unlikely) steps
required otherwise.  Swapping thus acts to increase the mixing ability of the cold chain.

Thinning:  Due to the sampling nature in the MCMC approximation of the posterior probability
distribution, samples from the MCMC chain are somewhat autocorrelated (the degree of
autocorrelation depends on the construction of the Markov chain, in particular the choice of
proposals).  Thinning an MCMC chain means that not all samples are recorded; rather, samples
are recorded periodically at a rate that can be specified by the investigator (say, every 100th

sample).  Recording non-successive samples decreases autocorrelation (increases independence).
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