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The basic mechanics of evolution have been understood since Darwin.

But debate continues

over the relative importance of the structure of genotype space and of ecological interaction in
driving macroevolutionary phenomena. In this paper we propose a simple, abstract model capturing
some key features of fitness-landscape and ecological models of evolution. Our model describes
evolutionary dynamics in high-dimensional, structured genotype space with a significant role for
interspecific interaction — thus incorporating context and contingency. We find some promising
qualitative similarity with the empirical facts about macroevolution, including broadly distributed
extinction sizes and realistic exploration of the genotype space. The abstraction of our model permits
numerous interpretations and applications beyond macroevolution, including molecular evolution

and technological innovation.

I. INTRODUCTION

What drives evolution? Since the days of Darwin, the
prevailing explanation has emphasized heritable varia-
tion and selection. But while the mechanism of heredity
and the importance of random mutation for generating
variation have both been thoroughly explicated, the na-
ture and causal agents of selection remain rather myste-
rious. As a result, we still struggle to explain those most
striking events in the drama of life: the mass extinctions,
adaptive radiations, and even the prosaic local specia-
tions that generate the millions or tens of millions of ex-
tant species (which are, nevertheless, but a hundredth
of the number that at one time or another occupied this
planet) [1].

Theories tackling these (macro)evolutionary questions
fall into two broad categories, distinguished both in their
originating impulse and their central metaphor. The first
approach, coming from molecular genetics, focuses on the
fitness landscape introduced by Sewall Wright [2]. For
selection cannot act on genotype directly; rather, geno-
types are selected based on the phenotype they gener-
ate. The fitness landscape metaphor therefore focuses
on the genotype-phenotype/fitness map, that is, the as-
signment of some scalar fitness value to every point in
the genotype space. This fitness value in turn influences
the population-genetic process of mutation and selection
occurring on the genotype space. Mutations to higher
fitness genotypes are favored, with lower fitness mutants
tending to extinction with high probability. The sec-
ond approach, coming from ecology and dynamical sys-
tems theory, emphasizes the role of interactions in driv-
ing species to extinction. Here the genotype space is
essentially ignored, and the fate of species in some (often
fixed) ecology is determined by interacting population
dynamics (e.g. the replicator dynamics of evolutionary
game theory [3]), with extinct species usually replaced

by a random extant species e.g. [4, 5]. As an example,
abundant prey may drive the growth of a predator pop-
ulation, which in turn drives some third prey species to
extinction.

Both approaches capture important qualitative fea-
tures of macroevolution. Given recent insight into the
subtleties of the genotype-phenotype map, e.g. its many-
to-one character, it seems clear that the interaction be-
tween genotype (the realm of heredity and variation) and
phenotype (the realm of selection) is of central impor-
tance to phenomena like speciation, adaptive radiation
(e.g. the Cambrian explosion [6]), and punctuation in
the rate of evolution [4, 7]. Likewise, variants of the eco-
logical approach have established an important role for
endogenous interspecies dynamics in generating extinc-
tion, up to and including mass extinctions that eliminate
most biodiversity. In other words, both models capture
important aspects of context (e.g. particular ecological
configurations rendering some genotypes unfit) and con-
tingency (e.g. particular mutational histories limiting or
enhancing accessible genotypes) in evolution. In this pa-
per we marry the stylized facts captured by the two ap-
proaches into a simple, unified model of evolutionary dy-
namics. Briefly, our model describes evolution on a richly
structured fitness landscape, where context and contin-
gency strongly determine the subsequent evolution of the
simulated biosphere. Our model captures some qualita-
tive features of empirical evolution, including broad dis-
tributions of extinction sizes and the rather surprising
result that evolution takes place as an advancing front
through genotype space.

In Section IT we summarize the Fitness Landscape and
Ecological Models discussed in the Introduction. In par-
ticular, we gather the stylized facts that guide the con-
struction of our model. In Section III we describe the
model and the numerical methods used in our simula-
tions. Section IV reviews the results, and in Section V



we discuss these results and offer our conclusions as well
as an outline of future work.

II. BACKGROUND

Our model of evolutionary dynamics lies at the nexus
of two important traditions in the mathematical model-
ing of evolution. In both cases, researchers have sought
to distill invariant and universal features of the evolution-
ary process into mathematics. In reviewing such models,
we similarly seek a list of essential “stylized facts” which
can inform the construction of a parsimonious, realistic
abstraction of the evolutionary process.

A. Fitness Landscapes

Since their introduction by Sewall Wright [2], fitness or
adaptive landscapes have played a dominant role in evo-
lutionary theory [1]. This dominance follows from their
exceeding conceptual simplicity: the genetic code of the
organism defines a space of potential genetic configura-
tions or genotype space (denoted G henceforth) on which
is defined a fitness function ®(related to the likelihood
of survival). This fitness function is a map ® : G —
R* from genotype to some scalar measure of fitness. A
population of individuals is then defined over G, the pop-
ulation dynamics of which are influenced by ®(G).

In much of the literature following Wright’s original
suggestion, the “landscape” is literally modeled on a
landscape: these so called “rugged landscapes” have
many adaptive peaks, of various heights, separated by
adaptive valleys [1]. But this simplification of Wright’s
picture has several major flaws. First, in low-dimensional
models (which, as suggested by direct interpretation of
the landscape metaphor, look like real-world landscapes),
it is rather difficult to generate speciation with any rea-
sonable probability. Since selection pushes the popula-
tion up adaptive peaks and away from adaptive valleys,
crossing a fitness valley to a new (perhaps better) peak
is unlikely. Shifting balance, wherein the population is
subdivided so that stochastic shift across a valley is more
likely and higher fitness types can then sweep the popu-
lation, fails to explain the observed fecundity of the bio-
sphere [1]. Founder effect speciation, wherein a small
number of individuals found a new, small population in
which the crossing probability is enhanced, is likewise
unsuccessful [1].

The second flaw also follows directly from the land-
scape picture. For the low-dimensional picture suggested
by real peaks and valleys is grossly inaccurate. G is in fact
enormously high dimensional, as most organisms have
thousands of genes and millions or billions of base-pairs
(hence dim G ~ 105 — 107) [1]. Fisher already observed
that this high dimensionality should convert “adaptive
peaks” into saddle points, and favored a single peaked
landscape, albeit in enormously high dimensions [8].

Third, Kimura’s claim that most evolutionary change
is neutral (i.e. indifferent with respect to fitness [9])
seems to have been at least partially validated by exten-
sive experimental evidence of neutrality. For example,
the genotype/phenotype map for RNA and proteins is
now known to be many-to-one, implying that many se-
quences are selectively neutral (here the phenotype seen
by selection is the fold of the RNA or protein) [7]. Neu-
trality if taken to its extreme would lead to a totally flat
fitness landscape rather than a rugged one; here selection
would play no role whatsoever.

An important compromise embracing ruggedness, high
dimensions, and neutrality was suggested by John May-
nard Smith: “It follows that if evolution by natural se-
lection is to occur, functional proteins must form a con-
tinuous network which can be traversed by unit muta-
tional steps without passing through nonfunctional in-
termediaries” [10]. The essence of this suggestion —
that genotype space is percolated by a network or net-
works of more-or-less equally fit genotypes, which nev-
ertheless represent a small fraction of all possible geno-
types — forms the core of the neutral network or holey
landscape approach pioneered theoretically by Gavrilets
[1, 8, 11, 12]. Selection plays a role, defining the neutral
network(s) and keeping populations from mutating into
the “holes” of the landscape (or alternately driving rapid
evolution out of the holes onto the ridges). But so does
neutrality, as most evolution takes place neutrally along
the networks (which through their interweaving define
the adjacency and accessibility of various protein folds or
morphological types associated to the networks). Some
advocates of the neutral network picture go so far as to
claim that the structuring of the genotype space by these
neutral networks plays a primary role in shaping the phe-
nomena of speciation, adaptive radiation, and punctu-
ated equilibrium [7]. Even adopting a moderate version
of this view makes clear that the continuous, topologi-
cally trivial fitness landscapes of the “peaks and vallyes”
picture are a far cry from the actual complexity of acces-
sible genotype space.

The holey landscape picture is amply supported by
both theoretical evidence (in which neutral networks
seem to be an inevitable consequence of a surprising va-
riety of model specifications) and by empirical evidence
from studies of RNA and proteins [1, 11, 12]. Later in
the paper we shall present an extended interpretation
of our model in terms of both proteins and RNA, in
which specific evidence is reviewed. Theoretically, we
follow the very simplest variant of the holey landscape,
which Gavrilets calls Russian roulette: each genotype is
assigned a fitness of 1 with probability p and 0 with prob-
ability 1 —p [1]. Summarizing the stylized facts: we want

e selection to matter, while ignoring small differences
in fitness;

e very few genotypes to be fit;

e the genotype space to be suitably high dimensional;



e neutrality to play a substantial role;

e neutral networks to exist in the genotype space.

In Section III it will become clear that these facts lead
naturally to several components of our model.

B. Ecological Models

While fitness landscape models focus on genotype
space and the way it is structured by selection (hence
highlighting the puzzle of speciation), so-called ecological
models focus on interspecific interaction (hence highlight-
ing the puzzle of extinction, both background and mass
[4, 5]). Evidence for extinction played an important role
in overturning the static pre-Darwinian biology. More re-
cently, the discovery of mass extinctions (most famously
the KT extinction that wiped out the dinosaurs) raised
questions of causation that were originally answered ex-
ogenously. For example, there is ample evidence for the
asteroid impact now thought to have precipitated the KT
extinction (if not caused it entirely) [5]. Physics models
of self-organized criticality suggested that these mass ex-
tinctions could also be caused by the same mechanism
that operates at small scales, i.e. ecological interaction
between species [4, 5].

The Bak-Sneppen model is perhaps the most famous
“ecological model” [13]. Here N species are arranged in a
circle, with each species ¢ assigned a “fitness” B;, which
represents a barrier to mutation. Because of exponen-
tial separation of timescales under a barrier-dependent
probability of mutation p; ~ e~ B¢/T (with T setting the
timescale of mutations) the species with the lowest bar-
rier By, at some timestep is always assumed to mutate.
This species and its two neighbors are assigned new, ran-
dom fitness values (the mutation in Bj,,, presumably al-
ters the fitness landscape of its neighbors). The model
self-organizes into a critical state characterized by scale-
invariant power laws, with the exponents of the power
laws sensitive to the dimension of the lattice defining the
interaction structure [4]. For example, if the lifetime of a
species is defined as the time between two mutations at
that site, then the distribution of lifetimes ¢ is N (¢) ~ t~¢
with a = 1.1 for the 1-d lattice (the empirical distribu-
tion for fossil genera has o = 2) [4]. Now define an
avalanche as a series of mutations that are causally re-
lated (i.e. a change in species i’s barrier makes j’s the
least fit, causing it to change, in turn causing one of its
neighbors to change, etc.). The size of an avalanche s is
thus the number of causally related mutations forming a
given avalanche. The distribution of avalanche sizes also
obeys a power law N(s) ~ s~ 7 with 7 = 1.1 [4] (the
empirical 7 & 2 [5]).

Solé, Manrubia and collaborators defined a somewhat
more realistic ecological model of extinction and specia-
tion in which there is some notion of inheritance as well
as population dynamics [5]. In this model they define
a connectivity matrix ;; valued on the interval (—1,1).

These matrix elements represent the interactions between
species, and are not strictly speaking “food web” inter-
actions but rather some generalized positive or negative
influence of the species j on the species i. Species vi-
ability is binary: S; = 0 or S; = 1 (extinct or extant,
respectively). Using a step function ®(z) = 1,z > 0,
they define dynamics on this ecology [5]:

Sit+1) =2 | 30050 (1)

The model proceeds by randomly varying 7;; (external
driving); implementing the population dynamics, which
may render some species extinct; and replacing extinct
species with e-varied mutants of an extant species ran-
domly chosen to undergo adaptive radiation. This eco-
logical model reproduces the power law of extinctions
with 7 = 2.05 £ 0.06, consistent with fossil evidence [5].
These authors also track the role of positive and negative
interactions in supporting and destabilizing the ecology,
respectively.

There are a number of extensions and close relatives of
this model [14-16] and indeed the perspective provided
by this and the Bak-Sneppen model has become an essen-
tial component of a complete mathematical understand-
ing of the macroevolutionary process [17, 18]. We take
from this literature the following stylized facts:

e interactions are an essential component of the evo-
lutionary process;

e these interactions should be generalized away from
“food web” pictures;

e interactions should be able to render species more
or less viable;

e interacting models tend to exhibit self-organization

An important element that we will not capture in the
current model is the role of external driving. In [5] this
appears through random changes in +;;. In [16] the driv-
ing is explicitly environmental. For simplicity we exclude
these effects. In Section IIT we will synthesize the stylized
facts of Section II into a simple model.

III. THE MODEL

With our model we aim to unify the fitness landscape
and ecological approaches to evolutionary dynamics. We
recover some qualitative features of the empirical data
about macroevolution, including some properties of ex-
tinctions and the way genotype space is explored by the
population . In construction of the model, we will make
frequent reference to the stylized facts that are being im-
plemented at each step.
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FIG. 1: Hypercube of dimension 4. Note that each vertex
is labeled with a string of 4 0’s and 1’s. Hence 1111 has
neighbors 0111, 1011, 1101, and 1110. The colored sites are
elements of percolation clusters.

A. The Hypercube in dimension n

The most primitive choice concerns the structure of
the genotype space G. Since we desire simplicity, we
restrict ourselves to a binary genetic alphabet with no
further structure (e.g. diploidy). The standard model
for G under these considerations is the hypercube of n
dimensions, e.g. [19].

For a natural number n, we construct the graph B™ (n-
dimensional hypercube or n-cube) with vertices labeled
by all 0, 1 sequences (ey, €3, ..., €, ) of length n; e; € {0,1}.
Two 0,1 sequences s; and s; are neighbors if they are of
Hamming distance Hs;,s;] = 1, i.e. if they differ by
one member of the sequence. For example, 0001100 and
1001100 are neighbors in the graph, and are hence con-
nected by an edge. Note that consequently each vertex
has n neighbors and n is the “coordination number” of
the n-cube. The total volume (number of sites) of the
n-cube is 2". In Figure 1 we show a labeled hypercube
with coordination number 4.

This geometry models the genotype space of our uni-
verse of organisms. Because of the high level of abstrac-
tion, we can interpret the sequences variously: as a simple
genetic alphabet; as hydrophobic or hydrophilic amino
acids in a protein primary structure; or as some kind of
binary morphological traits. The neighborhood relations
indicate what sequences can be reached via a single point
mutation. We do not permit insertions, deletions, or du-
plications, so the dimension n remains fixed. We also
forbid recombination (which would be a type of non-local
mutation). Note that even for a relatively short sequence
e.g. n = 50 the size of the space is enormous (2°° possi-
ble genomes). Because our fitness function assignment is
equivalent to percolation, we will refer to the vertices as
“sites” henceforth.
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FIG. 2: The Bethe lattice approximation. Here the coordina-
tion number is n = 3. As n — oo the approximation becomes
exact.

B. Fitness function via Percolation

Recall from the stylized facts that selection should
matter, but that small differences in fitness should be
irrelevant. Further, recall that few genotypes should be
fit. Following Gavrilets, we thus independently assign
fitness 1 with probability p and fitness 0 and with prob-
ability 1 — p to each site s;. Denote this assigned value
si(1,,); respectively s;(0,,). The notation will become
clear as the exposition continues. Assigning a fitness of
0 or 1 is of course a drastic approximation to the actual
complexity of the genotype/phenotype map; for example
we have introduced no correlation structure on the fitness
function (which one might expect a priori). The fitness
value assigned to each site is called the viability in the
literature [11, 12]. The underlying assumption is that
an overwhelming majority of sequences are simply non-
viable either due to developmental (in the morphological
case) or folding errors (in the RNA or protein case), or
due to lack of niche (in an ecological perspective). Hence
the important distinction is not between the fitness lev-
els of genotypes but rather between those genotypes that
are in any way viable (fitness 1) and those that are not
(fitness 0).

This fitness function assignment is identical to a per-
colation process on the n-cube. If H[s;(1,,),s;(1,,)] =1
then s; and s; are defined to be in the same cluster of fit
sequences. A common tactic for dealing with very high
dimensional spaces is to approximate the space by a tree
with branching number equivalent to the coordination
number. This is the so-called Bethe lattice approxima-
tion, see Figure 2. The approximation becomes exact
as n — oo. In the Bethe lattice approximation for or-
dinary lattices, one takes the limit of infinite lattice size
(for lattices of sufficiently high coordination number) and
hence expects to see finite size corrections for any prac-
tical realization. In our case the thermodynamic limit of



infinite size is equivalent to an infinite dimensional limit,
and one sees finite dimension corrections [21]. Tt is easy
to calculate for the Bethe lattice the critical p at which
a “spanning cluster” will appear, p. = 1/(n — 1). At
this p any occupied site will have on average at least one
occupied neighbor, so the cluster can persist indefinitely
[1, 11, 20]. We also note under the Bethe lattice approx-
imation that [20]:

e the average size of the cluster to which an occupied
site belongs scales as x(p) ~ (p. —p)~ 1, p — po;

e the characteristic cluster size scales as s¢ ~ (p —
Pe) %P = e

e the cluster size density scales as n(s,p) ~
s Texp(—s/s¢), T = 5/2 close to pe;

e the “surface area” or number of neighbors of a clus-
ter of size s is t = 2 + s(n — 2).
The scaling of n(s,p) ~ s~%/2 is confirmed in our simu-
lations and in studies of percolation on the hypercube in
the context of spin glass relaxation [21]. Note that for
n quite small the fraction of occupied sites at the per-
colation threshold is correspondingly small (1/(n — 1)),
consequently satisfying our stylized fact that fit geno-
types should be rare while nevertheless having neutral
networks “span” the genotype space.

Here we have adopted the biological interpretation of
a cluster as a “neutral network”. See Figure 1 for an
example with two percolation clusters. Point mutations
from an extant viable genotype allow the occupation of
neighboring viable genotypes. We will study the dynam-
ics near the percolation threshold, as this is where the
fitness function is interesting. For sub-critical percola-
tion p < p. we expect many clusters, the largest clusters
being of size n [11]. These are relatively loop-free [11, 21]
for large n, i.e. they contain few pairs of sites linked by
multiple paths within the cluster. Furthermore, for a ran-
domly chosen site in G, there exists some cluster passing
within n steps of that site [11]. For supercritical perco-
lation, p > p., the largest cluster is of order 2" /n, passes
arbitrarily close to every site in the sequence space G,
and is typically loopy [11].

In the subcritical case it is easy to interpret a cluster
as a “phenotype” i.e. a particular morphology, RNA or
protein fold, etc. This is more difficult for the super-
critical case without additional genetic complications as
studied by Gavrilets [11, 12]. In some empirical neutral
networks, the percolating cluster would be naturally par-
titioned into various phenotype (fold) subclusters, which
nevertheless percolate — the subclusters are connected
by one mutational step [7, 22, 23].

After setting up the neutral landscape in this fashion,
we initialize the model by occupying a randomly chosen,
viable site sg. For simplicity, we will refer to an occu-
pied site as a “species”, although without a clear notion
of biological species (as in [11]) this choice is somewhat
arbitrary.

C. Interactions

So far the model construction has followed the fitness
landscape tradition. Now we include complications com-
ing from the ecological picture. Namely, we incorporate
generalized interactions, capable of rendering sites more
or less viable.

With probability ¢ place a dotted directed edge be-
tween each ordered pair of distinct sites (s;,s;),7 # j
(note we independently try (s;, s;)). For each edge gener-
ated, the edge is + with probability 0.5 and — with prob-
ability 0.5. Thus we have a directed, signed Erdos-Rényi
graph with expected edge number (L) = (2")(2" — 1)g
and with, on average, half + and half — edges. The mean
degree is (k) = (L)/(2™), making no distinction on edge
direction.

If a site s; has incident edges (i.e. edges pointing to-
wards it) and the sites from which these edges originate
are occupied (call these “activated” edges) we sum the
total activated edge symbols with + = 1 and — = —1.
If the sum is positive, we write s;(e,+,), where e €
{0,1} is the viability. If the sum is negative we simi-
larly write s;(e, —,). We interpret these symbols as fol-
lows. s;(0,4,) is conditionally viable, i.e. some other
species have created a niche for species ¢ (in the molecu-
lar RNA /protein interpretation, other molecular species
facilitate a fold). s;(1,+,) is viable. s;(1,—,) is con-
ditionally inviable, meaning that the other species have
eliminated the niche via predation, resource destruction,
ete. s;(0, —, ) remains inviable. Note that +, — is subject
to change as the sources of other incident edges become
occupied. Thus a viable site can become viable, then in-
viable, then viable again depending on the history of the
system.

D. Dynamics

We have put extensive structure on our genotype space
G. We can now describe dynamics — an implicit stylized
fact of the ecological approach. Start the system by oc-
cupying some site so(1,,). Notationally, the occupation
of sequence s can be written so(1,,1). This means that
s is viable, it has no interactions (because no other sites
are occupied) and it is occupied. At every time step,
we choose a random occupied site, i.e. extant genotype,
choose one of its n neighbors at random and send a mu-
tant to that sequence. Note:

e for realistic (small) mutation rates, the probability
of two simultaneous mutations is negligible (thus
justifying the choice of one genotype to mutate per
time step);

e having a mutant at every time step (as opposed to
having some mutation probability) is just a matter
of setting the timescale.

e p is very small so most mutations will fail;



If the neighbor s; is viable or conditionally viable, i.e.
s;i = s;(1,+,0) or s;(0,4,0) then the step is successful
(the last element of the triple can be 1 but then no new
species is created). We update in this case

L4 si(la +70) - si(la +7 1)
e 5,(0,+,0) — s;(0,+,1).

Otherwise the mutation fails. Note that we allow “back”
mutations implicitly. At every occupation, the arrows
originating from the newly occupied site become active
and influence the sites to which they point. This can
cause extinction as well as the creation of conditionally
viable sites. We iterate these steps until no further suc-
cessful mutation is possible. In principle, interactions will
create “bridges” across gaps between neutral networks,
allowing major “speciation” events to occur.

We illustrate the dynamics in Figure 3. Mutation ex-
plores the upper cluster (red) until a conditionally vi-
able site (gray with white boundary) is created linking
the upper and lower clusters. This site is then occupied
and the lower cluster explored, rendering an element of
the upper cluster conditionally inviable (white with gray
boundary).

E. Numerics

Because of the small value of p — that is, the stylized
fact that few genotypes should be viable — most muta-
tions will be failures. If we were to simulate the dynamics
directly, as described above, most computer time would
be wasted on unsuccessful jumps to inviable sites. Conse-
quently, we use an event-driven Gillespie scheme to select
the next successful mutation and randomly generate an
appropriate waiting time [24].

Specifically, every potential mutation from an occupied
site s; to a viable but unoccupied site s; is assigned an
equal propensity pr(i,j) = 1. All such ordered pairs have
an equal probability of being selected for implementation.
After a pair is selected, we generate the amount of sim-
ulation time t(,7) that passes before the event occurs.
Let X be a random number chosen from the uniform
distribution over [0,1), and T = Y pr(i,j), i.e. the num-
ber of potential viable mutation steps. Then the waiting
time t(i,7) = % log (%) [24]. This approach conserves
computing time by assuring that every simulation step
involves a successful mutation.

IV. RESULTS

Our model is parameterized by the dimension of the
genotype space, n; the percolation probability, p; and
the interaction probability ¢g. It is obviously desirable to
study G with as high dimension as possible. With avail-
able computational resources we were able to simulate
n = 50. Each n = 50 simulation lasted approximately

70,000 simulation steps, the limiting factor being mem-
ory usage.

We selected values of p close to the critical value
pe = 1/(n —1) = 1/49 =~ 0.02041. The choice of just
sub- or super-critical p appeared to have little impact on
model outcome for fixed values of q. The selection of ¢
was slightly more difficult. For subcritical p we scanned
the parameter space of ¢ near ¢ = 1/n?, evaluating the
probability that a simulation runs for its full lifetime
(strictly speaking, we used as an indicator the success-
ful occupation of n? sites — much larger than any initial
cluster size — suggesting that the simulation has escaped
the initial cluster with overwhelming probability). This
“escape probability” as a function of ¢ is plotted in Fig-
ure 4. We find that indeed near ¢ = 1/n? = .0004 the
escape probability is non-zero. Most simulations were
conducted for ¢ = 2/n?, where we expect between 10%
and 20% of simulations to “escape”.

How are sites occupied in the model over the course of a
simulation run? It is conceivable, for example, that most
activity occurs “near” the originating site, with sites con-
tinually discovered, rendered inviable, and then reoccu-
pied when they become viable again. But keeping track
of the number of realized sites, (i.e. sites that are ever
occupied in the course of a simulation) and the number of
extant sites (i.e. sites occupied at a particular simulation
step) reveals a very different picture. In Figure 5 we see
that the total number of realized sites (upper green line)
increases almost linearly with the number of simulation
steps. Hence at almost every simulation step the unfold-
ing biosphere is discovering new sites or genotypes, rather
than revisiting occupied territory. The fact that the num-
ber of extant species (lower blue line) fluctuates around
2000 species over the course of the simulation indicates
that there is an advancing front of activity, which ex-
plores genotype space while eliminating older genotypes
as it advances. This behavior is typical of simulations
that escape the initial cluster.

Rather surprisingly, this picture of an advancing front
is consistent with the morphological diversification of
blastozoans discussed by Gavrilets [25]. In this analy-
sis the species are scored on n characters. Gavrilets then
measures the average morphological disparity within ex-
tant species, the taxonomic diversity, and the average
morphological distance from the founder species. The
picture described by Gavrilets of a “compact group” mov-
ing away from the founder species in morphospace is ex-
tremely similar to the interpretation offered here of our
simulation results. We can test the similarity of the two
pictures by explicitly calculating at each simulation step
the average Hamming distance from the founding site
(among extant, occupied sites) and the average pairwise
Hamming distance between extant species. Gavrilets
finds for the fossil data that the former increases while
the latter grows initially but then shrinks and stabilizes
at a small value. We will measure these quantities in fu-
ture work, and predict behavior very similar to the fossil
data.
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FIG. 3: Model Dynamics for n = 4. Note the interactions rendering sites viable (thus connecting the upper and lower clusters)

and inviable (eliminating a member of the upper cluster).

We now turn to the role of interactions in facilitating
the initial exploration of genotype space and subsequent
stability at roughly 2000 extant species. Consider all
pairs of viable sites (7,j). Let the number of such pairs
at time T be N(T). Define a time dependent quantity
fr(i, j) taking the value —1 if the interaction is negative
at time T and +1 if the interaction is positive (recall
that when set up, roughly half of the edges are positive
and half negative; but we restrict here to edges between
viable sites). Then the interaction bias, summing over
all pairs (i, 7):

Lo (T) = ﬁ > f26.) )

provides a measure of the overall bias of interaction to-
wards viability. If I,,(T) = 0 then positive and negative
interactions are perfectly balanced, and indeed absent
any dynamics this is what we should expect, on average.

In Figure 6 we see a typical time series (in fact the
same time series from Figure 5) against which we also
plot the interaction bias as a function of simulation time
T (rather than simulation steps). We have focused on
the “interesting region” after the simulation has grown
towards its typical number of occupied sites. The period
of growth is associated with a strong positive interac-
tion bias, while the stabilization of the simulation into a

steady state fluctuating around 2000 occupied sites corre-
lates with a decrease in interaction bias towards a small
but nevertheless positive bias. This indicates that the
steady state is “supported” by a bias towards positive
interactions, while there are simultaneously enough in-
teractions and enough occupied sites that a substantial
number of negative interactions can take place between
viable sites without rendering those sites extinct. There
seems to be some correlation between increases in the
interaction bias and increases in the number of extant
species, and likewise between decreases in the bias and
periods of sequential extinction, though this remains to
be quantified. The apparent correlation is somewhat sim-
ilar to the relationship between interaction entropy (sim-
ilar to our interaction bias) and extinction measured in
[5].

In order to understand the behavior of the time se-
ries, we performed a detrended fluctuation analysis [26].
We briefly summarize this technique. The data are di-
vided into windows of length L. Within each window,
we calculate a best-fit trend, in this case a polynomial
of degree 2. Then all fluctuations around the trend are
summed for each window, normalized by the length of
the window, and summed in turn, giving the total fluc-
tuation F(L). Plotting F(L) against L gives a power-law
fit for self-similar time series, F'(L) = L*. For our data
we estimate a = 1.5065 for simulations on a hypercube
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FIG. 6: The relationship between number of species and in-
teraction bias. The blue line (upper after T' = 8.0, left axis)
shows the number of occupied sites (extant species) as a func-
tion of simulation time 7. The red line (lower, right axis)
shows the interaction bias. Note that the interaction bias re-
mains relatively constant as the simulation settles into the ap-
parent steady state. Model parameters are n = 50, p = .02037
(slightly subcritical) and ¢ = .0008 = 2/n?.

of dimension n = 50, see Figure 7. The fit of o ~ 3/2
works well for n = 40 and n = 30 as shown in the Fig-
ure. @ = 3/2 indicates that the correlations in the time
series are similar to those observed in Brownian motion.
Generally, the time series exhibits fractal scaling insensi-
tive to the dimension of the underlying genotype space.
Comparison with detrended fluctuation analysis of tax-
onomic diversity data such as that from [25] will be a
fruitful direction for future work and a direct test of the
model.

We now consider the time series of the extinction rate,
as observed in simulations that survive to full simulation
time. Dividing the simulation time into suitably coarse-
grained periods of length 1000 (to emulate the division of
fossil data into stratigraphical periods), we consider the
ratio of the number of species that went extinct during
that time period to the number of species that existed
during that time period. This provides an estimate of
the probability that a randomly selected, living species
(or occupied site) will go extinct during the time period.
We show a typical plot of this time series for subcritical
p (using the same n = 50 data as in previous plots) in
Figure 8. Comparison with typical fossil data, e.g. Figure
2(A) of [4] shows strong qualitative similarity but a much
smaller variation in amplitude. Our simulations typically
show somewhere between 25% and 42% extinction, while
the fossil data varies from close to 0% up to 50%. It seems
that the interactions of the model are unable to generate
really catastrophic biodiversity loss, while paradoxically
also maintaining a high background rate of extinction.
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In other words, we do not see periods of “statis”, i.e.
comparably low extinction rate, as in (for example) the
Bak-Sneppen model [4].

Recall that when a new site is occupied (i.e. a new
“species” appears) the interactions thereby created may
make other sites inviable, i.e. cause other species to go
extinct. If we define the number of sites rendered inviable
as S, and consider each such instance an “avalanche”,

10
104,
.-
°

10% &
—_ o
n o0
= y

...~
10% \
L4
‘.
. o%
10 %o
®
o0
-«
®
\Ol L
10100 10t 102

Avalanche size (S)

FIG. 9: N(S), the number of extinctions of size S, for three
typical simulations. Extinctions are caused by the occupation
of a new site at each time step, and their size is defined as
the number of species that go extinct in that time step. Red
dots are for a genospace of dimension n = 30, blue dots are
n = 40, and green dots are n = 50. p is slightly subcritical,
p=1/(n—.9) and ¢ = 2/n? for the appropriate values of
n. The distribution is fat-tailed but spans too few orders
of magnitude for a reliable power-law fit. The distribution
is insensitive to changes in n and small changes in p and gq,
including supercritical p (not shown).

we can measure the size distribution N(S) of extinction
events. Several typical distributions are plotted in Fig-
ure 9. Note that the distributions are essentially identical
despite variation in the size of the underlying hypercube
(n = 50,n = 40,n = 30, simulations used in Figure 7).
Although our data span only one and a half orders of
magnitude, they seem to be fat-tailed and one could fit
a power law N(S) ~ S~ with a between 2.5 and 3.0.
Such power law scaling is typical of ecological models
[4, 5, 13, 18] and while we come as close to the empirical
value oo = 2.0 as Bak-Sneppen type models, other models
[5, 16] generate exponents almost identical to the empiri-
cal value. Our result is unchanged by any suitable gener-
alization of avalanche causality, and appears insensitive
to changes in n as well as small changes in p (including
supercritical) and ¢. It is perhaps a result of the memory
limitations of our model, which forbid the very long runs
where one might expect to see large extinctions typical
of most self-organized critical models. But the absence
of a clean power-law or very large events indicates that
our model may not be a case of self-organized criticality.

Further evidence that our model is not an example of
self-organized criticality comes from consideration of the
waiting time T between extinction events. T is defined
as the simulation time that passes between two extinc-
tions events. For self-organized critical models this dis-
tribution is typically power law, i.e. N(T) ~ T~7 for
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FIG. 10: The distribution of waiting times, T' between extinc-
tion events. The distribution is almost certainly exponential
(straight line on a log-linear plot). Parameters are n = 50,
p = .02037 (slightly subcritical) and g = .0008 = 2/n?. The
exponential distribution is insensitive to changes in p and q.
Were our model an instance of self-organized criticality, the
distribution would be power law [14].

v = 3.0+0.1 as in [14]. A typical distribution for a
simulation of our model, shown in Figure 10, is by con-
trast exponential. This feature appears robust against
small variations in p and ¢ (and measuring T in simu-
lation steps). We have some evidence of n insensitivity
as similar results hold for n = 20. We should also note
that the interpretation of extinctions as a self-organized
critical phenomenon has been questioned [27].

V. DISCUSSION, INTERPRETATION, AND
FUTURE WORK

A. Discussion

Our model was designed to encapsulate the basic styl-
ized facts about evolution encoded in the fitness land-
scape and ecological approaches. We believe each of
these approaches provides an important perspective on
the nature of selection and the drivers of macroevolu-
tion. In a sense, our model remedies important defects
in each approach. To ecological models it adds the no-
tion of an underlying genospace, whose topology, induced
by the fitness landscape, guides the speciation driven by
the ecological dynamics. To fitness landscape models
it adds explicit notions of coevolutionary dynamics and
the construction of niches by other species. In fact, our
model illustrates that one need not impose percolation
of a neutral network by hand, setting a supercritical p
as in [1, 11, 12]. Rather, ecological interactions create a
context in which bridges can be built between the neu-
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tral networks of subcritical percolation. As a first step
towards constructing a coherent model of evolutionary
dynamics — one that honors most underlying qualita-
tive features without sacrificing simplicity — our model
is an important contribution and starting place.

Turning to the results, we note that our exploration
of parameter space has been somewhat limited, concen-
trating on near critical p and values of ¢ for which es-
cape probability first becomes non-zero. Nevertheless, we
find a satisfying robustness of many statistical features to
variation of these parameters, as well as the dimension
of G. Furthermore, we rather unexpectedly observed a
movement of extant species through genospace (the “ad-
vancing front”) in striking similarity to the empirical re-
sults for blastozoans [25]. This feature is even more sur-
prising when we consider that the model generating sim-
ilar behavior in [25] not only omits the fitness landscape
but also uses exogenous events rather than endogenous
dynamics to drive extinctions. Further exploration of this
similarity is a major goal of further research.

Our model also self-organizes a system of positive, self-
supporting interactions, stabilizing the number of extant
species. In other words, we observed the emergence of a
sort of ecology, where the various species create and sus-
tain niches for one another. However, we need to explore
the correlations between overall interaction bias and ex-
tinction to understand this niche construction mechanism
more fully.

The time series of species observed in our simulations
displays self-similarity consistent with Brownian motion.
At the moment it is rather unclear how to interpret this
result. An obvious first step would be to examine e.g.
the blastozoan data [25] and subject it to detrended fluc-
tuation analysis. The robustness of the Brownian motion
result indicates that this is probably an inevitable conse-
quence of the current model, so supplying paleontological
or empirical evidence of such behavior elsewhere is quite
important.

We finally note that our model produced some but not
all features of self-organized criticality models of evolu-
tion [4, 5, 16, 18]. While we generate time series of extinc-
tion rates that are superficially similar to empirical time
series, they display limited range and very high back-
ground extinction rates. We find fat-tailed and possibly
scale free distributions of extinction size, but do not find
the very large events characteristic of the best ecological
models or the fossil data. This perhaps follows from cur-
rent limitations on simulation run time, which may be
overcome in the future. Most crucially, we do not find
power law distributed waiting times, which suggest that
our model is not an elaborate form of self-organized crit-
icality. This result in itself is quite interesting, as one
might wonder how many empirical features of macroevo-
lution can be reproduced without a self-organized critical
model (although again see [27]).

In the next subsection we turn to possible interpreta-
tions of the model. While we have followed a concrete,
ecological interpretation throughout the exposition, we



believe the rich set of possible interpretations illustrates
the power of our approach.

B. Interpretation

The model proposed in this paper is highly abstract.
While this abstraction complicates direct comparison
with data, it facilitates a wide range of interpretation
and hence application. The interpretation guiding the
development and exposition of the model was explicitly
macroevolutionary and ecological. The underlying se-
quence space G in this case is interpreted morphologi-
cally [25], and each site can reasonably be interpreted
as a new “species” (in which case clusters would be in-
terpreted as some higher taxonomical unit). The fitness
function measures the evolutionary viability of a particu-
lar collection of morphological traits, i.e. the traits must
be achievable developmentally and they must fit into an
ecological niche. The interactions further shape these
ecological niches. As an example, consider an expen-
sive morphological innovation like a heavy beak, which a
predatory bird might use for cracking open the shells of
turtles. In the absence of prey requiring the innovation,
heavy-beaked mutants would be at an extreme disadvan-
tage and disappear: the cost of the beak is not worth
its benefit. But if a shelled creature were to emerge, in-
vulnerable to extant predators — but vulnerable to the
shell-cracking “shredder” beak of this mutant — then
strong selective pressure would favor the appearance of
such large-billed predators. The “heavy-beak” mutation
might in turn open up a new area of sequence space (i.e.
a new cluster) to these birds, providing developmental
raw material which could be shaped by mutation into a
variety of specialized morphologies.

To illustrate the flexibility of this model, we provide
three alternate interpretations, one in terms of protein
evolution, one in terms of RNA evolution, and one in
terms of technological innovation. This in no way ex-
hausts the space of interpretations; one can also frame
the model as a sort of autocatalytic set of chemical re-
actions, as a self-assembly process, etc. One can even
formulate a spin-glass-like model closely related to our
model, in which relaxation is localized.

1.  Protein Evolution

If we interpret the model as a description of protein
evolution, each site in G represents a protein sequence
of a given length n (the coordination number of the hy-
percube). The genotype space (better, sequence space)
contains all possible protein sequences of that length. In
full generality this would be 20™ sites, as there are 20
amino acids. As we set the linear dimension of the hy-
percube at 2 (a binary hypercube) we implicitly assume
two possible amino acids (or a coarse-graining into hy-
drophobic and hydrophilic amino acids). A cluster of a
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priori viable sites is a web of neutral neighbors — se-
quences that differ, but that share the same basic three-
dimensional structure or fold. We call these neutral be-
cause it is generally the three-dimensional structure of a
protein, as opposed to its specific sequence, that deter-
mines protein function. This illustrates the degeneracy of
the genotype-phenotype map. Three-dimensional protein
structures are generally far more conserved through evo-
lution than amino acid sequences [28]. Many sequences
with no detectable sequence similarity share essentially
the same structure, and presumably, function [29].

In the current version of the model, we only allow
forces internal to the model to change the viability of
sites. The “universe” only includes proteins of a given
chain length, so changes to viability occur only through
proteins of this single length. We do not consider changes
to the viability of sites that might occur through forces
not represented in the genotype space — proteins of dif-
ferent lengths, environmental changes, etc.

On this interpretation of the model, viable sites are
those that can fold without the help of chaperone pro-
teins (at least those in the model “universe”, i.e. those
of length n) into a stable minimum free energy state. Re-
call that conditionally viable sites can be occupied if sites
with + arrows pointing into the conditionally viable site
are also occupied. The “activation” of a site with a + ar-
row is like the evolution of a chaperone protein (of length
n) that allows a potentially unfoldable protein (of length
n) to fold and hence become viable. Chaperones pre-
vent protein aggregation by binding polypeptide folding
intermediates as soon as they emerge from the ribosomal
exit tunnel, thus playing a crucial role in the creation of
functional proteins with well-defined, three-dimensional
conformations [30]. Such intermolecular interactions are
strongly favored in a crowded cellular environment where
numerous unfolded polypeptides are translated in close
proximity to one another.

Sites that are conditionally inviable due to — arrows
coming into them can be thought of as proteins adversely
affected by mutant copies acting in a dominant negative
manner. This kind of mutant protein interferes with the
activity of an otherwise functional, normal copy of the
protein— for example, via competitive inhibition (where
a non-functional protein can still bind a target, blocking
the normal protein from binding) or dimerization (where
non-functional copies of the protein combine with func-
tional copies).

An obvious extension of the model would allow node
viability to be changed by forces that are external to the
explicitly modeled genotype space. Anything affecting
protein viability that is not another protein of the same
length n would count as external — e.g. developmental
and environmental changes that open up new realms of
possibility for protein evolution.

It would also be interesting to allow two sites to re-
combine, thus permitting a jump across sequence space.
This extension is especially important in the context of
protein evolution because innovation via recombination



may well be the primary means by which proteins explore
new structures (i.e. clusters of viable sites) [31-34].

2. RNA FEwvolution

Interpreting our model in terms of RNA evolution is
even more straightforward than the protein case. For in
the protein case we suppress the actual genetic code un-
derwriting the amino acid sequences , dealing only with
the space of all amino acid sequences (although it is the
genetic code that undergoes mutation). In the RNA case,
the RNA sequence itself both undergoes mutation and
folds into the structures that are acted upon by evolu-
tion. Another way of putting this: in the RNA case, the
genotype-phenotype map is quite direct [7].

In reality RNA sequences are specified over a four el-
ement alphabet {A,U, G,C} so that the genotype space
for sequences of length n would contain 4™ sites. There
are several possible levels of resolution at which RNA
structure can be specified; the best compromise between
theoretical tractability and empirical accessibility is at
the level of secondary structure [22]. So in our model
viable sites represent RNA sequences that fold reliably
into some “fit” secondary structure and clusters are neu-
tral networks of sequences all folding into the same sec-
ondary structure. It is known from empirical, numerical,
and mathematical work that the neutral networks cor-
responding to any pair of different secondary structures
almost touch, and indeed can be found within a few point
mutations of an arbitrarily chosen point of G — the so
called shape space covering conjecture [7, 35]. Thus the
picture from our model of neutral networks nearly perco-
lating sequence space is quite realistic in the RNA case.

RNA-RNA interaction is by now a well-known phe-
nomenon, underwriting RNA interference, microRNA-
messengerRNA binding, antisense interactions, etc. In-
teraction is a crucial feature of our model, and — in-
teractions could be interpreted as instances of RNA in-
terference or competitive binding, while + interactions
could represent RNA chaperones, of which there are em-
pirical examples [36]. RNA interaction can be modeled
directly with contemporary thermodynamic and folding
algorithms [37, 38]. This means that in fact we could
quite easily study realistic coevolution of short RNA (e.g.
microRNA of 19-25 nucleotides) by supplementing our
model with these techniques. As in the protein case, our
limiting of the mutation operator to point mutations, (ex-
cluding insertions, deletions, duplications, and recombi-
nations) is a substantial limitation and simplification.

3. Technological Innovation

Departing from the biological context of prior inter-
pretations, we now offer an economic interpretation of
the model. Since the early work of Schumpeter [39] and
von Hayek [40], the tradition of evolutionary economics
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[41, 42] has emphasized close similarities between evolu-
tionary biology and economic development. We follow
this intuition in attempting this third interpretation.

Consider a product defined by n binary characteristics.
The space of all 0, 1 sequences of length n then defines G,
the space of all possible products. We assume that inno-
vations may occur only by altering one particular prod-
uct trait (e.g. developing a teddy bear with posable limbs
from one with “floppy” limbs) and that the binary eco-
nomic viability (something like the a priori demand for
the good) is independently, identically distributed. Vi-
able sites under the percolation process are “in demand”,
in the absence of other goods, and would be successful if
developed.

Interactions are similarly interpreted as altering the
market niche of the good in question. For example, the
development of posable teddy bears might create a niche
for teddy bear furniture, which would be useless in the
context of “floppy” bears. Products can also weaken or
destroy the viability of other goods, as for example next
generation game systems tend to do for their predecessor
systems.

At the moment this interpretation merely illustrates
the flexibility of our model (or alternately its extreme
abstraction). It is not too difficult to imagine, however,
experimental economics investigating the evolution of n
binary trait goods. One could also try to collect economic
data similar to the blastozoan data used in morphological
evolution models and validate or reject the general set-up
of this economic model with such data [25].

C. Future Work

While investigation of ecological models of macroevo-
lution has slowed considerably, interest in holey fitness
landscapes remains high. Indeed the framework provided
by our extension of the holey fitness landscape idea may
be instrumental in understanding e.g. recent work on
epistasis and evolvability [43]. We thus outline several
promising avenues for future work. These divide broadly
into work providing better understanding of the present
model and work extending the model in more realistic
directions.

Most immediately, a more thorough characterization
of the parameter space of the present model is necessary.
This is an area where analytic work would be of great
help, as it would be free of the memory limitations hin-
dering numerical work. Thus far our exploration of the
model has been exclusively numerical, despite the success
of analytic work on holey fitness landscapes [1, 11, 12, 35].
Even more interesting is the possibility of empirically
testing predictions of the model, for example the com-
parison of the time-dependent geometry of the set of ex-
tant species with fossil data [25]. Another fruitful line
of investigation would involve the definition of plausi-
ble phylogenetic trees based on simulations of the model.
Many statistical features of empirical phylogenetic trees



cannot be reproduced by simple models and perhaps the
structuring of genotype space by fitness landscapes and
coevolutionary interaction is precisely the missing ingre-
dient [44]. And comparison with in vitro RNA coevolu-
tion models would provide an extraordinary opportunity
to put the model to direct test. From a more math-
ematical perspective, modern computational homology
techniques could provide considerable insight into the ge-
ometry of holey fitness landscapes and their descendants
in our model, rare examples of complicated high dimen-
sional spaces with immediate empirical relevance [1].
Turning to realistic extensions of the model, an ob-
vious first step would be adding external driving in the
form of exogenous extinction. Omne could also imagine
extending the set of mutation operators so that n could
change over the course of a simulation run. Thus we
could incorporate insertions, deletions, and duplications,
as well as recombinations. This would enhance the real-
ism of mutation in the model considerably, at the cost of
numerical complication. Another realistic modification
would copy the interaction structure of a mutant largely
from the parent, with some small variation. Indeed in-
heritance of interaction is crucial in ecological models for
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the self-organization of large extinction events [5]. Even
more realistic, but computationally more difficult, would
be context dependencies for the activation of outgoing
interactions from a viable site.

The ease with which we can identify directions for fur-
ther research and plausible extensions of the model illus-
trates the still largely untapped potential of unifying the
two major metaphors in evolutionary modeling: fitness
landscapes and ecology. We believe our model provides
an important first step into this as yet unexplored ter-
rain, and look forward to much fruitful work following in
these tentative footsteps.
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