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Abstract

We study a stochastic model for the coevolution of a process of opinion formation in a population of agents and the network which underlies
their interaction. Interaction links can break when agents fail to reach an opinion agreement. The structure of the network and the distribution of
opinions over the population evolve towards a state where the population is divided into disconnected communities whose agents share the same
opinion. The statistical properties of this final state vary considerably as the model parameters are changed. Community sizes and their internal

connectivity are the quantities used to characterize such variations.
© 2006 Published by Elsevier B.V.

PACS: 05.65.+b; 87.23.Ge; 89.75.Hc

Keywords: Self-organization; Network evolution; Social systems

In a complex system, the spontaneous emergence of collec-
tive non-equilibrium behaviour, such as coherent spatiotempo-
ral structures or synchronized dynamics, is driven by mech-
anisms which involve both the interactions between the sys-
tem’s components and external influxes [1,2]. In segregation
phenomena, a form of self-organization well known to physi-
cists and chemists, an ensemble of interacting elements be-
comes split into subensembles whose components share cer-
tain individual states. Segregation occurs also in biological
and social systems [3—5], where it plays a crucial role in sus-
taining diversity at many levels—cellular, functional, organi-
zational, ecological, cultural. Though it is usually associated
with phase separation in space, segregation not always takes
place in the spatial domain. In human societies, for instance,
two or more subpopulations or communities may coexist in
the same geographical region and, yet, exhibit mutually ex-
cluding cultural traits [6]. With respect to those traits—which
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may involve religious beliefs, professional or generational jar-
gons, artistic inclinations, etc.—such communities are scarcely
interacting, and can be effectively considered as segregated
from each other. A key mechanism in this kind of social seg-
regation is the feedback between the construction of agree-
ment within a community and the enhancement of distinc-
tions with other communities: specific traits become better
established as differences between communities develop and
grow.

In the last years, physicists have been increasingly inter-
ested in the dynamical and statistical modelling of complex
systems of biological and sociological inspiration as popula-
tions of agents whose interaction patterns are described through
graphs, or networks. Much attention has been paid to dynamical
processes defined over quenched networks [2,7], and to network
growth—both purely stochastic [8] or driven by adaptive mech-
anisms [9]—with emphasis in the statistical properties of the
resulting patterns. On the other hand, the possible coevolution
of the network structure and the dynamics taking place over
them seems to have been less studied (see, however, Ref. [10]).
This kind of coevolution is at the basis of the feedback phe-
nomenon pointed out above, where the formation of internally
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homogeneous subpopulations and the weakening of their mu-
tual interactions enhance each other.

The aim of this Letter is to present a very simple model for
coevolution of a population of agents and their interaction net-
work. The agents’ dynamics is based on an elementary model
of opinion spreading [11]. The population starts in a situa-
tion where every agent is able to interact with any other agent,
and evolves towards a segregated state with disconnected com-
munities. Interactions between agents with similar or different
opinions are respectively favoured or penalized. In spite of the
simplicity of the evolution rules, the population can reach a
variety of social patterns, which range from splitting into two
communities of similar sizes and opposite opinions, to a single
large community with homogeneous opinion. Typical connec-
tivities and opinion distributions, resulting from the combined
evolution of the network and the agent states, change consider-
ably with the control parameters.

The system consists of N agents situated at the nodes of a
network. Initially, the network is fully connected, so that any
pair of agents can potentially interact. The individual state of
each agent is assigned at random one of two possible values, say
+1 or —1, with equal probability. Individual states represent the
agents’ opinions, which may eventually change by interaction
between agents connected by the network.

The evolution runs as follows. At each step, a pair of con-
nected agents is chosen at random from the whole population.
If both agents have the same opinion, nothing happens. Other-
wise, with probability p; either agent adopts the other agent’s
opinion, so that the two opinions become identical. With the
complementary probability 1 — pj, opinions are not changed.
In this case, however, the link between both agents is bro-
ken with probability p;, and the interaction network looses
one of its edges. These rules are successively applied until
no further changes are possible. Since network edges are irre-
versibly deleted by the evolution, a frozen final state is even-
tually reached where, generally, the network is split into dis-
connected subsets. Within each of these communities all agents
share the same opinion.

The frequencies of the individual events that drive the dy-
namics depend on the probabilities p; and p,. With respect
to the evolution of the system, these probabilities are indepen-
dent control parameters. The statistical properties of the final
state, however, are completely determined by the relative fre-
quencies of the different processes that effectively change the
state of the system. In other words, they depend on p; and p;
through certain algebraic combinations only. To realize this, let
p—(t) be the fraction of network links connecting agents with
different opinions. The probability that any agent changes its
opinion at a given step is 71 (t) = p_(¢) p1, and the probabil-
ity that a connection is broken is w2 (t) = p_(¢)(1 — p1) p2. The
sum 7 (t) = w1 (t) + ma(¢) is the probability per evolution step
that any change takes place, and thus fixes an overall evolu-
tion time scale. If p; and p, vary in such a way that the ratios
qg=m1()/m(t) and 1 —q = my(¢)/m(¢) are kept constant, such
overall time scale will change, but the relative frequency of the
two processes will be the same, giving rise to statistically equiv-
alent final states. Thus, the only independent combination of the

probabilities p1 and p; relevant to the determination of the final
state is

_ T (1) _ D1
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The behaviour at the two extreme values of g is imme-
diately assessed. For ¢ = 0 (i.e. p; = 0), where no opinion
changes take place, the final structure consists of two mutu-
ally disconnected communities with similar sizes and opposite
opinions. Internally, each of them stays fully connected, so that
the total number of remaining connected pairs R is close to
2(N/2)(N/2 —1)/2~ N?/4. For ¢ =1 (i.e. p; = 1), on the
other hand, interacting agents with initially opposite opinions
always reach consensus, so that no interaction links are broken.
At the final state, all agents share the same opinion and the net-
work is still fully connected, with its N (N — 1)/2 &~ N?/2 links
intact.

These two limits suggest that the fraction of remaining con-
nected pairs, r = 2R/N(N — 1), provides a first quantitative
characterization of the final state. Fig. 1 shows r as a function
of g, for systems of various sizes N. For each value of ¢q, the
fraction r has been obtained as the average over 500 to 5000
realizations of the initial condition and the evolution. Rather
unexpectedly, we find that » reaches a minimum for an inter-
mediate value of ¢g. The position gnin and depth rpyi, of this
minimum depend on N, and seem to tend to zero as the pop-
ulation grows, as shown by the plot in insert (b). The network
connectivity at the minimum is considerably lower than at the
extreme values ¢ = 0 and 1. For N = 100, for instance, we have
rmin ~ 0.13, which implies an average connectivity of about 13
links per site. In this intermediate regime, thus, the network is
poorly connected and the population structure correspondingly
degraded.

The minimum at g, defines two regimes in the parame-
ter g. To the left (¢ < gmin), as expected from the behaviour
for ¢ = 0, the population becomes split into two separate com-
munities with similar sizes and opposite opinions. As g grows
towards gmin, the internal connectivity of these communities de-
creases. Simultaneously, several small separate clusters, each
of them containing just a few agents (typically, less than 5 for
N = 500), are also found at the final state.

To the right of the minimum, we still have realizations where
the population splits into disconnected communities. The two
largest communities always have opposite opinions, but their
size is much more variable than for ¢ < gpin. Moreover, the
number and size of small communities grow. At the same time,
it becomes increasingly frequent to find realizations where the
whole population stays connected into a single community. In
these realizations, the final network is not fully connected, but
its connectivity is significantly larger than in the cases where
separate communities are formed. As a matter of fact, it is the
contribution of these realizations which determines the growth
of the fraction of connected pairs r for ¢ > gmin. As g keeps
growing, the fraction of realizations with a single-community
final state increases and, eventually, all realizations end on
such states, with a homogeneous opinion all over the system.
Fig. 2 shows the fraction f of realizations where the popula-
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Fig. 1. The fraction r of remaining links as a function of the parameter ¢, for N = 20 (x), 50 (o), 100 (full line, and 500 (e). The dashed line represent the analytical
approximation for large ¢ discussed in the text. Insert (a): Close-up of the same data for small g. The dashed lines represent the small-¢ approximation discussed
in the text. Insert (b): The position g, (o) and the depth i, () of the minimum of r as functions of N. Straight lines are least-square fittings with slopes —0.28

(full line) and —0.75 (dashed line).
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Fig. 2. The fraction f of realizations ending in a single community (e), and
the contribution frg of those realizations to the fraction of remaining links (o),
where r( is the average number of remaining links in a single-community final
state. Curves ar Bézier splines, added for clarity.

tion reaches a single-community final state as a function of ¢
for N = 500, and the contribution of those realizations to the
fraction of remaining links.

In order to compare the regimes at both sides of the mini-
mum, we have chosen to study in more detail the final structure
of a population of size N = 500 for two values of g where
the fraction of remaining connected pairs r attains similar lev-
els, namely, ¢ = 5 x 1073 and 0.3 (r ~ 0.27; see Fig. 1).
Fig. 3 shows, for the two chosen values of g, the size of the
second largest community (N;) as a function of the size of
the largest community (Ni), for 10° realizations. Generally,

N> # 0, except in realizations where the final state consists
of a single community, where Ny = N and N, vanishes. The
straight full line stands for the function N, = N — Ny, so that
the vertical distance from each dot to the line represents the
size No = N — N1 — N, of the population not included in the
two largest communities for the corresponding realization. The
dashed line, in turn, corresponds to N> = (N — Np)/2. Dots
below this line represent realizations where the second largest
community is smaller than Ny.

For ¢ < gmin, we find that the size of the largest com-
munity reaches, at most, N1 &~ 340 ~ 0.7N. Moreover, most
dots lie over the straight line, which implies that essentially all
agents are in one of the two largest communities (No =~ 0). For
q > qmin, on the other hand, the largest community can reach
the maximum size N1 = 500 = N, indicating that some realiza-
tions already correspond to single-community final states. Now,
all sizes between N1 < N/2 and N seem to be possible. Except
in the close proximity of Ny = N, where the largest community
comprises practically the whole population, dots are sensibly
below the full line. The population Ny not belonging to the two
largest communities is typically around 0.1N. Moreover, for
most realizations where N 2> 400 = 0.8 N, this population is
above the size of the second largest community. In this situa-
tion, we can no longer properly speak of splitting into two main
communities. The final structure is in fact closer to the single-
community state, with the addition of several small separated
communities.

The distribution of internal connectivities in the resulting
communities is also strongly dependent on the parameter g.
Fig. 4 shows the number of links P; within each community as
a function of the community size Nj;, for the two largest com-
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Fig. 3. The size N of the second largest community as a function of the size Ny
of the largest community, for two values of the control parameter ¢, in a series
of 10 realizations of a system with N = 500 agents. Each dot corresponds to a
single realization. The straight and the dashed lines represent, respectively, the
functions Np = N — Ny and Np = (N — Np)/2.

munities in each realization (i = 1, 2). Two different symbols
identify the largest (o) and the second largest (o) communi-
ties. A third symbol (M) is used for realizations with a single-
community final state (N = N). The full curve represents the
function P12 = Nj2(Nj2 — 1)/2, corresponding to fully con-
nected networks. The dashed curve stands for P12 = Nj2 — 1,
the minimum number of links in a connected network.

For ¢ < gmin, the number of remaining links in each of the
two largest communities exhibits a limited dispersion between
realizations—just like their size Nj . As a result, all the re-
alizations are represented by dots in a rather compact cloud.
Within each community, roughly one half of the total possible
connections are actually present, Pj 2 ~ Ny 2(Ni2 — 1)/4, so
that the average connectivity per site is about Ny /2. In this
situation, thus, the internal connectivity of both communities is
quite high.

For g > gmin, in contrast, the number of remaining links
is broadly distributed. For practically all sizes, the number of
links of second-largest communities is just above the minimum,
P12 = Ni2 — 1, indicating a barely connected structure. The
average connectivity per site within these communities is, in
fact, close to one. The number of links in the largest commu-
nities, on the other hand, are always considerably above the
minimum. However, even the better connected among these
communities are still far from the situation of full connectivity.
For realizations where Ny < N /2, P; reaches at most 10% of its
maximum value. The number of links almost attains the max-
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Fig. 4. The number of remaining links P; within the largest (o) and the second
largest (o) community (i = 1, 2, respectively), as a function of the community
size Nj, for two values of ¢, in a series of 103 realizations of a system of
N =500 agents. Realization with single-community final states are indicated
by a different symbol (H). The full curve in each plot represents the function
P1p = N12(Nip—1)/2; the dashed curve is P; o = Ny o — 1.

imum in some of the realizations where the population stays
connected in a single community. These realizations, in fact,
fill the gap between the best connected communities in the case
of split populations and fully connected networks. Interestingly,
while the above description emphasizes the differences between
the internal structure of second-largest communities, largest
communities, and single-community populations, the fact that
all the dots in the lower panel of Fig. 4 seem to lie over a smooth
curve suggest that those different structures belong to a sole
class. The internal connectivity varies continuously as the com-
munity size changes.

Obviously, the coevolution of the distribution of opinions
and the interaction network creates strong correlations between
the individual states of those agent pairs that remain connected.
These correlations make an accurate analytical treatment of our
model particularly difficult. Some of the features found in the
numerical results, however, admit an analytical explanation un-
der suitable hypotheses. Let us begin by the regime of large
q where, as we have seen, most realizations end in a single-
community state. The evolution towards a homogeneous opin-
ion all over the population is fully driven by fluctuations. In
fact, the number N of agents with opinion +1, for instance,
performs a random walk, N — Ny &£ 1, each step an opin-
ion changes. Starting at N4 &~ N /2, the process ends when N
reaches either 0 or N. From standard results on first-passage
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time distributions in random walks [12], we find that the av-
erage number of active steps needed to reach one of these ex-
treme values is § = N2/4p;. An active step is here defined as
an evolution step where any change, either the flip of an in-
dividual opinion or the deletion of a network link, occurs. In
an active step, a link is deleted with probability (1 — p1)pa. If
we assume that this latter event is not correlated with opinion
changes, the total number of links deleted in S active steps is
N?(1 — p1) p2/4p1. Taking into account that the initial number
of links is, approximately, N2/2, we have

o L[N Nd-pop]_, -4
N2/2| 2 4 12 N 2q

Note that this estimation for the fraction of remaining links
is independent of N. It is represented by the dashed curve in
Fig. 1. We see that the agreement with numerical results is ex-
cellent for large ¢. While neglecting correlations between link
deletion and opinion changes is not strictly correct—as a matter
of fact, links are deleted precisely in those steps where opinions
do not change—for g & 1 deletion events are so rare that such
correlations can hardly accumulate into a relevant effect before
the final state is reached.

For small g, on the other hand, the final state always cor-
responds to essentially two large communities with opposite
opinions. Since, in this limit, p; is small, most links connecting
agents with different opinions are deleted before any significant
number of opinion flips occurs. At any time, thus, essentially all
links connect agents with the same opinion, except just after an
opinion flip: when an agent’s opinion changes, most of its links
are now connections with agents with the opposite opinion. The
total number P, of links connecting agents with the same opin-
ion remains constant until an opinion flip takes place. In such
event, the decrease in Py is given by the number of links of the
agent whose opinion is changing, which can considerably vary
among agents. As a kind of mean-field approach, we assume
that this number is proportional to the average per-agent num-
ber of links connecting agents with the same opinion, 2P, /N,
so that P, = —2ap; Py/N. The derivative is performed with
respect to a time variable whose units are active steps, and the
heuristic factor « represents the proportionality assumed above.
The solution to this equation is

N2 2
Pi(s) = Texp(— ‘fj”s), 3)

where s is the number of elapsed active steps. Moreover, as
discussed above, the total number of links after s active steps is

2

N2
P(S)=7—(1—P1)P2S- )

The evolution ends when P, (s) = P(s), so that the fraction r
of remaining links is determined by the equation

1
r = —exp —aNL(l—r) . (®)]
2 1—gq

Insert (a) of Fig. 1 shows fittings of the numerical results for
small g, obtained from this equation with & = 0.4. The fact that
a does not depend on the size N implies that » depends on ¢

and N through their product g N. This explains, at least quali-
tatively, that the minimum in r shifts to smaller g as N grows.
This shift is a direct consequence of the different dependence on
N of the two mechanisms which drive the system for small ¢.
While at each active step only one link can be deleted, the num-
ber of links connecting agents with equal or different opinions
can change in a quantity of order N.

In summary, we have shown that our simple model of coevo-
lution for a population of agents and the underlying interaction
network gives rise to an interesting variety of population struc-
tures. The evolution rules represent the spreading of a bivaluate
opinion on a network whose links can break when agents do not
succeed at reaching an opinion agreement. The final population
structure consists, typically, of a set of separate communities,
each of them containing agents with the same opinion. The re-
sulting structures can be divided into three main classes: (i) two
internally well connected communities with similar sizes and
opposite opinions; (ii) a single community containing all the
population; and (iii) a well connected community with, typi-
cally, more than half the population, accompanied by a set of
poorly connected smaller communities. In this latter class, the
two largest communities always have opposite opinions.

While a clear boundary between the three classes cannot be
unambiguously drawn, class (i) on the one hand, and (ii) and
(iii) on the other, are observed within different ranges of the
control parameter g € [0, 1]. The cross-over region between
these two ranges moves towards ¢ = 0 when the population
size N grows, so that the small-g regime would disappear for
N — oo. This effect can be avoided if, when two agents fail to
reach an opinion agreement, not only their mutual connection
but a given fraction of their links to other agents is also broken.
In this way, deletion of links and opinion change would have the
same dependence on the system size. Preliminary numerical re-
sults of this extension of the model have already been obtained,
and will be published in a forthcoming paper. Another exten-
sion, in the direction of making the model more realistic, would
allow for the creation of links between disconnected agents.
This process would drive the population to a dynamic asymp-
totic state, independent of the initial structure, where communi-
ties could form, aggregate, exchange agents, and disappear, as
known to happen in real social systems.
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