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On the Inference of Pattern and Process in Nature: 
 

What Information Theory Can Teach Us 
 



       Outline of CSSS Lectures  on MaxEnt and Macroecology 
 
PART I 
 
1.  Introduction: Ecological Complexity 
 
2.  The metrics of macroecology:  definitions, prevailing patterns 

3:    MaxEnt: history, rationale, current applications, techniques.  
  
PART II 
 
4:   MaxEnt Theory of macroecology: structure of the theory, predictions.  
 
5:   MaxEnt theory of macroecology: tests of theory  
         
6.    At the frontier. 
 



             PHYSICS                   ECOLOGY 

The more you look, the simpler  
it gets 

The more you look, the more complex                  
it gets 

Primacy of initial conditions Primacy of contingency and history 

Universal patterns;  
Search for mathematical laws 

Weak trends;  
Reluctance to seek quantitative laws 

Mostly predictive Mostly explanatory 

Central role for idealized  
systems Reluctance to caricature nature 



•  Feedback, nonlinear synergies, thresholds, and irreversibilities; 
 a wealth of fascinating detail  

  

•  Conducting large-scale experiments is impossible 
 

•  History and Contingency; initial conditions are not enough   

•  Drawing space-time boundaries is difficult 
 

•  Local to Planetary scale disruption; degradation and extinction 
 of the objects of study 

Why Does Ecology     
Appear Resistant to Theory? 



The Dilemma faced by Ecosystem Modelers: 

•  Many mechanisms and processes:  

    predation, mutualism, competition, dispersal,       
 speciation,birth, death, pollination, cannibalism, 
 migration, … 

•  Many traits and behaviors:  

   body size, speed, phenology, food preferences, 
 rooting depth, mating strategies, coloration, 
 temperature tolerance, nutrient acquisition 
 strategies, … 

•  Stochastic environments, historical contingency 

            

all influence Patterns in Macroecology.  
  
 



The necessity of somewhat arbitrary choices 

 

Adjustable parameters 

 

Models that are not readily falsifiable. 

Hence basing models on explicit 
mechanisms, traits & behaviors  

generally results in 



The Goal of this Work 
                                  
To predict patterns in “macroecology”  
 
 
•   Across taxa:               plants, bugs, birds,… 
•   Across spatial scale:  small patches to large biomes                                                                                        
•   Across habitats:         forests, meadows, deserts, tundra,…      
                                                                                   
                                                            
•   without adjustable parameters 
•   without pre-judging what specific mechanisms drive the 

 system 
 
 
And thereby  
 
•   gain insight into the forces that shape ecosystems 
•   make reliable predictions that can aid in conservation  
           



“It is interesting to contemplate 
an entangled bank,  
clothed with many plants of 
many kinds,  
with birds singing on the bushes, 
with various insects flitting 
about,  
and with worms crawling 
through the damp earth,  
and to reflect that these 
elaborately constructed forms, 
so different in each other,  
and dependent on each other in 
so complex a manner,  
have all been produced by 
laws acting around us.”   
 
Charles Darwin  
concluding paragraph of Origin 
of the Species 

 
 



Part 2:  The Metrics of Macroecology: 

 
• Meaning and uses of Metrics 

• Mathematical representations 

• Prevailing patterns 



Macroecology:   
The study of  the distribution, abundance, energetics,                            

and interaction  network structure of individuals and species                                                                        
across multiple spatial and temporal scales 

Census 
Data 

The Metrics of 
Macroecology: 
Where theory and data meet 

Ecological 
Theory 

Applications to Global Change Science 
•  Improving climate envelopes for species 

•  Estimating species richness at large scales 

•  Loss of species and endemic species under habitat loss 

•  SAR and the problem of “over-stuffing the envelope”  

•  Network collapse under deletions 

•  Estimating rarity for conservation status 

•  Scaling up plot-scale results of manipulation experiments  



1.  # species increases with area censused.       Species-Area Relationship.  (SAR) 

2.  Most species are rare, some abundant.          Species-Abundance Distribution (SAD) 

 
3.   Some individuals are big, most small.           Individuals Size Distribution  

                                           

4.  Common species have small individuals.       Size-abundance distribution          

                          

5.  Individuals in species tend to aggregate.      Spatial-Abundance Distribution 

6.  More trophic specialists than generalists.      Foodweb node-linkage distribution 

                 Patterns & Metrics 



Scaling Metrics and Patterns 

aa 
bbb 

d 

aaa 
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dd 
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aaaa 
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Plot of 
area A0 

S0 (= 5) species, N0 (= 19) individuals 

Cell of area A.    

D = distance 
between two 
cells 



Metrics of Spatial Pattern in Ecology 

Species-Level Properties: defined for a species with n0   
      individuals in A0 

 

 Π(n| A,n0,A0)   spatial abundance dist.        probability that n individuals are in a 
      cell of area A  

 

 

 

                             

 C(A,D|n0,A0)  occupancy correlation             probability the species is found in two 
     cells of area A a distance D apart                                                                                       

       

 (with this notation we are anticipating that the only                                                                    

  species trait that will matter here is n0:   we can test that)                                                                                    

    

n 

A 

A0,n0
 



Metrics  of Community Patterns in Ecology 

Some Community-Level Metrics: 
 

  S(A|S0,N0, A0)     species-area reln.           Expected number of species found in cell of 
   (SAR)                    area A  

                                  

  E(A|S0,N0,A0)     endemics-area reln.        Expected number of species unique to cell 
   (EAR)                    of area A  

 Φ(n|S0,N0) spec. abund. distribution          Fraction of species with n individuals            
   (SAD)                                            

                

Ψ(ε|S0,N0,E0)  energy distribution                Ψdε = Fraction of individuals in community 
with                 with metabolic energy in (ε, ε + dε)  
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1.      Species-Area Relationship 

     S(A0)  = 5;  S(A0/4) = (4+4+2+2)/4 = 3 

2.      Endemics-Area Relationship 

     E(A0)  = 5; E(A0/4) = (0+1+ 0+ 0)/4 =1/4  

                                          

                                          sp. E                                                      
A0 cell divided         
into 4 Cells 

NESTED SARs and EARs: 



Over large scale ranges, power-law species-area relationships are the 
exception, not the rule.  

y = 0.2272x + 3.1691
R2 = 0.9881
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     Scaling need not be 
fractal/power-law    
to be interesting, 
however. 

Pervasive Patterns Continued 

R2 ~ 0.99 but clearly 
there is curvature! 



A note on SARs and Collector’s Curves 

a c  f  g  x  p  
e  t  t  a a a a 
k  b  c  e  a a 
k g x x a p t   
c  r p  g  c  b  
g  a  t w a  s  
x  g  k  a  c  b 

Grab individuals 
one at a time 
and note what 
species they are 

    # individuals picked 

    # S in 
cumulative 
sample 

mainland 

Collector’s 
Curve 

islands 

Preston/May: . The canonical lognormal and the 
power-law SAR. 
 
If the individuals on the islands are a 
random draw from the mainland,  
and the abundance distribution on the 
mainland is the canonical lognormal, 
then the collectors curve will be a power 
law with a slope of ~ 0.25. 
 
If island abundance is proportional to 
island area, then the species area curve 
across islands is S = c A0.25 

a c  f  g  x  p  
e  t  t  a a a a 
k  b  c  e  a a 
k g x x a p t   
c  r p  g  c  b  
g  a  t w a  s  
x  g  k  a  c  b 

A barrel of 
individuals 
from many 
species 

These “island SARs” are really collector’s curves, by the assumption that islands contain a 
random draw from the mainland. In contrast, our interest here is in mainland nested SARs 



Additional Macroecological Metrics 
 

•  Distribution of number of trophic links per species in a food web 

•  Distribution of flow rates across the links in a food web 

•  Distribution of home range sizes  

•  Species range-size versus abundance relationship 

•  Distribution of metabolic energy rates or body sizes across                                                    
 all the individuals in the community,                                             
 all the species, averaged over individuals in species,                                                                
 all individuals within each species  

•  Distribution of dispersal distances  

 

Can you think of others?                     



Three Related Scaling Patterns in Ecology: 

 

The energy-equivalence rule: The total metabolic 
energy requirement of all the individuals in a size cohort is  
independent of the abundance of that cohort 

 

The Damuth rule: abundance of species scales as m-3/4 

                        (m is average mass of individuals in species) 

 

 

The metabolic scaling rule: metabolism of individuals  
scales as mass3/4 

 

 



The Species-Abundance Distribution 
The distribution of abundances, {n0}, across the species in an ecosystem is generally 

consistent with Fisher’s log-series distribution Φ(n0) ~ exp(-kn0)/n0, and often k is 
sufficiently small so that Φ(n0) ~ 1/n0 (power law with exponent = -1)     
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(In some data sets, Φ(n)  
appears to be more 
lognormally distributed, 
however.) 
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By plotting rank 
vs.  abundance 
with different 
choices for axes, 
the pattern of the 
SAD can often be 
discerned. 



Relationships among Metrics 

Probability a species with n0 
individuals in A0 is present in A 

Probability a species has n0 
individuals in A0 

E(A)=S0Σn0 Π(n0|n0,A,A0) ϕ(n0)

Probability a species with n0 individuals 
in A0 has all its n0 individuals in A 

S(A)=S0Σn0  [1-Π(0|n0,A,A0)] ϕ(n0)



1.  Converting probability densities to new independent variables.  We are given 
a probability density function f(x) and another variable, y, which can  be expressed 
as a function of x: y = y(x).  Inverting y = y(x), we can also write x = x(y).   For 
example, if y(x) = x2, then x(y) = √y.  The probability distribution for y, g(y), is given 
by   

 

Useful mathematical relationships 

2. Deriving a Dependency Relation from a conditional probability distribution 

                                                

                                                                   

.x)|p(zz(x)z
z
∑ ⋅=

                                                                   

3.  Going back and forth between a probability distribution, Φ(n), and a           
rank-abundance relationship, n(r). 

dr
dn
SnΦ 0/1)( −

=

The term dx/dy is needed to ensure that if we integrate each distribution over equivalent                          
ranges of their independent variable we get the same result: ∫dx f(x) = ∫dy g(y). 

dydxyxfyg ))(()( =



Why do we care about                                             
patterns and metrics in ecology?                                                                   

 

 

1.  Extinction rates under habitat loss.                                                    
      25% of Amazon rain forest has been cut.                                                          

How many species lost? 

 

2.  Scaling up biodiversity.  
      How many species of arboreal beetles                                                                 

in all of the Amazonian rain forest?                                                                              

 

3. Inferring process from pattern                                                                 
(analogy: Brahe -> Kepler -> Newton) 

Data        Pattern        Force Law 



3. The MaxEnt Method 
 

• Thermodynamic and Information Entropies 

•  Outcomes of MaxEnt 

•  Past applications 

•  What if it doesn’t work? 

•  MaxEnt and the logic of inference 

•  History of the concept: the Laplace urn problem. 

 



# = ? 

# = ? 

Initially in urn: An urn 
with red 
and blue 
balls in 
it. 

A Little History: The Laplace Problem 

Suppose initially, you have pulled out (with replacement) 
 
R red balls and B blue balls. 
 
The probability the next one will be red is:  
 
P(R+1|R,B) = (R+1)/(R+B+2) 
 
 
This is called the Laplace Rule of Succession 



 Here “entropy” refers to                                         
   information entropy,                               
               not                                                          
   thermodynamic entropy.        

Information entropy is a measure of the lack of structure or 
detail in the probability distribution describing your 
knowledge of a system.  

P(x) P(x) 

x x 

Lower Entropy Higher Entropy 

 Maximum Entropy?                                     
Just what is being maximized? 



The Maximum Entropy (MaxEnt) 

Inference Procedure 

 

1940’s – 1960’s:  Claude Shannon, Edwin Jaynes 

(The basic ideas go back to Laplace) 

  

Suppose you wish to know the form of a probability distribution P(n). 

 

All you know is some prior information about P(n) in the form of 
constraints. 

         For example:  you might know the mean value, or the variance, or some         
 combination of moments of the distribution.  

 

What can you infer is the least biased form              
of the probability distribution?  



The Maximum Entropy (MaxEnt) Inference Procedure 

You seek the form of a probability distribution P(n). 

All you know is some prior information about P(n):  i.e., constraints. 

        

What is your least-biased inference of the shape of P(n)?   

 
 
 
 
 
 
 
 
“Least biased”:  smoothest  possible distribution that satisfies the 
constraints   Any other P(n) would implicitly  incorporate additional 
information that you do not possess. 

Jaynes, E. T., 1982, On the Rationale of Maximum Entropy Methods,  Proc. IEEE., 70, 939; 

Fundamental proven theorem: The P(n) that maximizes                          
 
I =  -∑n P(n) log(P(n))         (I is “Information Entropy”) 
 
         with P(n) subject to prior constraints, is the                                       
           least biased estimate of the shape of P(n). 
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      Some examples of outcomes of the MaxEnt procedure: 

Constraint function f (n)     Form of P (n) 
 

n  e-λn 

n, n2 Gaussian (normal) distribution 

log(n), log2(n) Lognormal distribution 

log(n) n-λ    (i.e., power law) 

Discrete constraints, P(ni) = a,    
can be handled as well 

Let the constraints be of the form:  Fk = <fk(n)> = ∑nP(n)fk(n) 



1.   Improving image resolution in medicine, forensics 
(Skilling, …)    

                       

2.  Inferring least-biased numerical values for gaps in 
economic data such as in input-output tables 
(George Judge, Amos Golan) 

3.   Deriving the laws of stat. mech./thermodynamics 
(Jaynes) 

4.  Improving estimation of climate envelopes for 
species (Elith, Phillips) 

Some past applications of MaxEnt: 



1.  You made a mathematical error in working out the solutions 
to the equations.  

 
 
2.   Your prior knowledge  (in the form of constraints) is not 

factually correct.  If one of your constraints is the mean 
value over the sought distribution, and you mis-measured it 
or the values of your state variables were mis-estimated, 
your predictions will suffer as a consequence. 

 
 
3.  Your constraints may not provide enough adequate 

information to determine a good answer.  If you neglect 
information, MaxEnt will do its best for you. But it may not be 
good enough.  YOUR ANSWER WILL BE THE BEST POSSIBLE, 
GIVEN THE CONSTRAINTS THAT YOU USE.   

   What if MaxEnt gives a poor prediction? 



  A General Rationale  
   for the Use of the concept of                                  
information entropy in science: 

1.  In science we generally begin with prior knowledge and seek to 
expand that knowledge. 

2.   Knowledge is not absolute, but rather probabilistic in nature, and 
thus the expanded knowledge we seek can often be expressed 
mathematically in the form of presently unknown probability 
distributions. 

3.  Our prior knowledge can often be expressed in the form of 
constraints on those unknown distributions. 

4.  We seek expanded knowledge that is “least biased”, in the sense 
that the expanded knowledge does not assume anything about the 
distributions other than the information contained in our prior 
knowledge. 



Jaynes: 
 
Information entropy of a 
probability distribution;  
MaxEnt as logic of inference 
 

Boltzmann, Gibbs: 
 

Thermodynamics         
and state likelihood 

Clausius 
 
The entropy concept 

Shannon 
 

Information entropy               
of an “alphabet”  

Laplace 
Probability as description 
of state of knowledge;                   
Principle of indifference; 
Rule of succession 
 
 

 
Thermodynamics  

   re-derived                                       
from MaxEnt! 

 



4: The Maximum Entropy Theory of Ecology 

•  The State variable Concept  

•  Definition of the Core Distributions  

•  Predictions of the Theory 



The Goal: Predicting the Form of 
the Metrics of Macroecology 

•  Species-area relationship (SAR) 

•  Species-abundance distribution (SAD)                      

 

•  Spatial distribution of individuals 

                            

•  Linkage distribution across Nodes in Food Web                   
    

•  Metabolic rate and body-size distributions over 
 individuals and species 
   

•  … and many others 



MaxEnt and the State Variable Concept 
In Thermodynamics, these state variables characterize the system: 
  P: pressure 

  V: volume 

  T: temperature 

  n: number of moles 

PV=nRT, Boltzmann distribution of energy levels, entropy law, equipartition, binomial 
distribution of molecules in space … can all be derived from MaxEnt, with constraints 
provided by these state variables.  (Jaynes 1957a, b) 

 

In Ecology we start with:   

 A0 : area of ecosystem or census plot 

 S0 : total number of species in A0 

 N0 : total number of individuals amongst all those species 

 E0 : total metabolic rate of all those individuals  

And show that from the constraints their ratios impose we can use 
MaxEnt to predict the metrics of macroecology                                              

         (without any adjustable parameters…no data fitting)  

 Harte et al. (2008) Ecology 89:2700-2711;                        

                     (2009) Ecology Letters 12: 789-797                               

 Harte:  Oxford U. Press: June 2011                               

 “Maximum Entropy and  Ecology” 



               The Maximum Entropy Theory of Ecology (METE)   
         
Two probability distributions comprise the theory: 

 
1.                                  R(n, ε|A0,S0,N0,E0)     

                                             
   
 
 
R is defined over the species and individuals in an area A0.   
 
R·dε = probability that if a species is picked from the species pool, 
then it has abundance n, and if an individual is picked at random 
from that species then its metabolic energy requirement is in the 
interval (ε, ε+dε) 
 
. 

abundance metabolic 
energy rate State 

variables 



2.   … and a species-level spatial distribution,                           
 
     Π(n|A,n0,A0)                                                                        
 
describing aggregation of individuals within species: 
 
        Π =  
       probability                                           A, n 
       that n individuals         
       in A if n0 in A0                                      A0, n0 
                                                                    
 

 From R and Π, most of the metrics  
of macroecology can be derived.   
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There are no adjustable 
parameters: the state variables 
uniquely determine the metrics 



5. Tests of Predictions 
At ~ 20 distinct habitats: ~ 2x104 Species, 5x107 individuals 

36 serpentine meadow plots in CA                       
11 Smithsonian tropical  forest plots  
A 9.8 ha dry forest plot at San Emilio, Costa Rica 
Plant census in Anza Borrego desert  
Breeding bird censuses in southern Africa 
Forest floor vegetation from 15 m2 plots subalpine temperate montane forests 
Tree census data from the Western Ghats in S. India 
Early successional data from a massive earthflow event in the Rockies  
Hawaiian arthropods   
Panamanian arthropods    
 ... 
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 Examples of validated predictions 

Harte et al., Ecology, 2009 

Harte, Oxford U. Press, 2011 
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Serpentine  
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 An Example of a Validated Prediction: The SAR 
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MaxEnt Prediction 

Data from over 50 sites 

z = 1/4 

Harte et al., Ecology Letters, 2010;                   
Harte, Oxford U. Press, 2011 
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The traditional way 
SARs are plotted: 

Re-plot to exhibit 
universality 

MaxEnt predicts:  

all species-area 
curves collapse onto 

a universal curve  

Ln(N(A)/S(A)) 

The mess                  
that results: 



We are 
extrapolating 
here over a scale 
range of 

60,000 km2 / ¼ ha       

= 224        !! 

Presently, 
approximately 990 
tree species are 
listed for the 
region, but that is 
certainly a low 
estimate of the 
true number.   

Upscale from  

“anchor value” 

Downscale from  

“anchor value” 

MaxEnt predicts the number of tree species in 
the Western Ghats
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Up-scaling Tropical Diversity Data 

Taxa	   Plots	  	  	  	  	  	  
(0.04	  ha)	  
Measured	  

SLPA	  	  	  	  	  	  	  
(6000	  ha)	  
Predicted	  

All	  Panama	  	  	  	  	  	  
(~8	  x106	  ha)	  
Predicted	  

All	  Panama	  
Power	  law	  predicBon	  
(z	  =	  ¼)	  

Amazonia	  	  	  	  	  	  	  	  
(6	  x	  108	  ha)	  
Naïve	  
predicBon	  

Amazonia	  	  
(by	  subregion)	  
RealisBc	  
predicBon	  

Arthropods	   1530	   22,500	   43,550	   182,000	   80,000	   320,000	  

Trees	   47	   1180	   2280	   5600	   3000	   16,000	  	  

	  
NOTES	  

	  
2	  x	  Basset	  
et	  al.;	  ½	  of	  
Terry	  Erwin	  
esFmate	  

	  
Condit	  (2010)	  
esFmates	  
2300	  obs.	  tree	  
species;.	  

	  
Way	  too	  high	  

	  
Way	  too	  low	  

	  
subregions	  of	  
non-‐
overlapping	  
species	  

Let M = # distinct subregions in Amazonia, and assume 
for simplicity they are of comparable area and species 
richness:   
   
Then S(AAmazonia) =  M*S(AAmazonia /M)   
 
16,000 trees species are known and this results in M ~ 6. 
That in turn results in ~320,000 arthropod species. 
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 S,    N,     E 
Resource constraints:                 

Evolutionary constraints:             
 taxonomy/ phylogeny   

Water, Phosphorus,.. 

Order, Family, Genus 

6.  At the Frontier of METE 

Core theory 

 
 

Linkages  

Trophic interaction 
constraints: 
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Add state variable L            
(total number of linkages 
in web),  

And MaxEnt predicts the 
distribution of: 

# linkages per 
species  

MaxEnt and Food Web Structure  

See also Williams, 2010 



FLOWS IN NETWORKS: The MaxEnt Solution 

I1                           I2                            I3          ….                                              In 

 

 

 

 

 

 

 

 

 

 

… 

 
 

 

 

producers 

consumers 

O1 O2 Om 

t11 t21 tnm 

       T = Σijtij   ;         tij =  Ii*Oj/T 

 

… 

… 

… 

E. G.: 

The I’s are NPP’s of plants 

The O’s are metabolic rates 
of herbivores 



Genera Species Individuals Energy 2nd Resource

Original Theory 

Alters size-abundance 
distribution 

Alters predicted 
rarity 

Genera Species Individuals Energy 2nd Resource

 Extending and       
    Generalizing METE 



Φ(n) ~ e
−λn

nr

r - 1 = # additional resources 

Including additional resource constraints                
(in addition to energy, E) 

 

The log-series 
SAD becomes: 

The inclusion of  additional resource constraints  
predicts increased rarity 
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        Extension of METE to higher taxonomic levels                 
        Example: inclusion of genus as a category 

 
State Variables: 
    
   G0 = # genera  
   S0 = # species 
   N0 = # individuals 
   E0 = total metabolic rate 
 
The probability function Q replaces R 
 
Q(m,n,ε|G0, S0, N0, E0), defined as follows: 
  
Pick a genus;  
Q is the probability it has m species  
and if you pick one of those species from that genus,  
that it has  n individuals,  
and that if you pick one of those individuals from that species,                  
that it has metabolic rate ε. 
 
The constraints:                         



Now we can predict the “old” metrics 
that the S,N,E theory predicts: 
 

Species abundance distribution 

Species-area relationship 

Endemics-area relationship 

Energy distribution over individuals and species 

 

And also some new metrics: 

 
The distribution of species over genera 

The genus-area relationship 

Distribution of abundances and metabolic rates 
over species within a genus with m species. 

Genus abundance distribution 
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 (γ(ε) = λ2 + λ3ε) 

Master Distribution 

Distribution of 
Species  over Genera 

Distribution of             
Individuals over Species 

Distribution of Metabolic 
Rates over individuals 

(Empirical tests now underway) 
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Energy Equivalence: 

<metabolic rate> ~ 1/abundance 
 

The SNE theory predicts when it should hold: 

è Species obey energy equivalence if:                    
 
    n << 1/λ2  = (E0 - N0)/S0

 .   
 

è Total energy requirement of a species with abundance n: 
 

∫ nε θ(ε|n)dε = n <ε> = n + 1/λ2 
 

The within-species distribution of metabolic rates:  

)1(
2

2)|( −−== ελλε nne
Φ
RnΘ n = abundance     

       of species 



              

               If (S,N,E)                     (F,S,N,E)      

  

 

then the predicted size-abundance relationship                     
is modified: 

Including higher taxonomic levels as constraints 

Log(size) 

Log(n) log(n) 

Log(size) 

Families of 
different species 
richness 

(F =  family or other 
 higher order category) 

Nature looks more like this 



Kempton and Taylor (1974) 

Abundance distribution 
of Rothampsted Moths 

Relatively undisturbed fields:                        
Fisher log series distribution                  
(predicted by METE) 

Fields recently fallowed                           
and in transition:                                         
Lognormal distribution 
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150 y 

Test of abundance distribution 
Abundance distributions 
of Hawaiian Arthropods  

sites of different ages and stages 
of diversification 

4 My 

Data from Dan Gruner 

 The theory fails to predict patterns in                                                      
ecosystems undergoing relatively rapid change 

Similar pattern of success and 
failure for body size distributions! 

Abundance distribution of trees 
in Smithsonian tropical forest 
plots 
 

The most disturbed plot (Barro 
Colorado Island in Panama) shows 
the most deviation from METE 

1. 2. 

3. 



Deviation from 
METE 

                   x 

                x 

            x 

      x 

Deviation from Steady State 

   Hypothesis: 



          Heat                Kinetic Energy                                  

   Electricity                Magnetism 

     Mass                     Energy 

    Space                    Time    

Information               Energy                                 

Information               Thermodynamics                                                      
theory                        & Stat. Mech.                                              

Weak force                 Elect. & Magnetism.                  

                          ?  

   Unification of all fundamental forces 

Information               Gen. Relativity &       
Theory                       Quantum Mech.         

 (Verlinde, e.g., arXiv:1001.0785v1) 

Information 
Theory 

? 

It’s inconceivable to me that this is              
where this remarkable story ends 

time 

today 

 Unification 

“Its from Bits”:  The laws of nature 
can be cast in terms of 
information….only information is 
truly fundamental. 
 
John Archibald Wheeler, 1990. 
"Information, physics, quantum: The 
search for links" in W. Zurek (ed.) 
Complexity, Entropy, and the Physics 
of Information. Addison-Wesley. 



                         Summary (I) 
    The MaxEnt principle and specification of a few state variables  

 predicts, with no adjustable parameters,                           
realistic expressions for:  

 

v    species-level spatial abundance distributions 

v    relative abundance distribution (Fisher log-series), collector’s 
 curve 

v    species-area and endemics-area relationships 

v    intra-specific and inter-specific metabolic rate distributions 

v    distribution of linkages across nodes in plant-pollinator & other 
 food webs  

 

 



And the theory predicts    
 
   ● the scale collapse of all species-area relationships onto  

  a universal curve 

   ● species richness at biome scale from small plot data                                                                                     
  •  the conditions under which energy equivalence should hold 
 
But it appears to poorly predict ecological patterns during 

 periods of rapid change, such as following 
 disturbance.  Why?         

 
Can we use this to infer mechanisms that dominate            

 the dynamics? 
 
 

Summary (II) 
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& Thank you  

for listening! 

 

Questions? 

 





1.  The state variables embody the mechanisms.             

     Success does not imply mechanism does not matter, but rather 
suggests that the mechanisms incorporated into the values of the 
state variables suffice; no further mechanistic assumptions  are 
needed.  

                   

3.  Analogy.  What’s the mechanism behind:                              

              statistical mechanics?  or 

              quantum mechanics?  

  

Three responses: 

What about mechanism?  (Where are the gears?) 

2.  Mechanism only needed when MaxEnt fails.                                     
 Analogy with PV = nRT and van der Walls force. 



Guiding Philosophy: 

 
 
•  MaxEnt is a “null theory”. Just as we learn a lot when 
a null hypothesis is shown to fail, we can learn a lot 
when a null theory fails.   

•  Success does not imply mechanism does not matter!  
Mechanisms incorporated into the values of the state 
variables suffice; no further mechanistic assumptions 
are needed.  
 
•  Failure of the theory tells us that more mechanistic 
information than is captured by the state variables is 
needed to predict patterns in ecology. 



A note on alternative measures of entropy 

Tsallis entropy: ITsallis   =  (q-1)-1 (1 - Σn [p(n)]q)  

à  Ishannon  as q à 1 

The Π distribution describing spatial 
aggregation only matches data for q ~ 1  

Only empirical information can select the correct q:  



MaxEnt  

 MEP 

Organismal Ecology 
 
Adaptation/Selection 
 
Physiology,                           
Growth dynamics  
                                           
Mate choice,                               
Optimal  foraging, & 
other behavior  
 

Dynamics        
of State 
Variables 

Metabolic 
Theory 

Evolution 

Macroecology across Spatial Scales 
●  metabolic rate and body size distributions                                                   
●  spatial aggregation patterns 
●  species-abundance distributions 
●  species-area and endemics-area relationships 
●  distribution of linkages and flows in trophic webs  
 

 Unification: why let physicists have all the fun? 



MILESTONES IN THE DEVELOPMENT OF INFORMATION THEORY 

 

 

Laplace:  Rule of Succession 

 

Shannon:   Information entropy of a message 

 

Landauer:  1 bit = kT 

 

Jaynes:     Objective Bayes, MaxEnt 

 

Wheeler:  “Its from Bits”:  The suggestion that the laws of physics can be cast in 
   terms of information….only information is truly  
   fundamental. 

 

          



Dice problem 
      Suppose all you know is that a die that has been flipped 10,000 times had a         

 mean score of 3.5.   

      What should you assume for P(n): n = 1, …,6?    

      We know MaxEnt insures that P will be of the form P(n) = e-λn/Z = xn/Z 

                                                                     (x = e-λ)  

      The Lagrange multiplier gives two equations to solve:  

< ! >!= ! !!!!!
!!!!

= 3.5!!!!!! !!/!!
! = 1!

The solution is:     x = 1 (or λ=0), Z = 6.  
 
P(n) = 1/6 for all n 
 
We have just cut butter with a chainsaw…. 



A harder problem: an unfair die 
      Suppose you have a 3-faced die: n = 1, 2, 3 

      and that when flipped 10,000 times the mean is had a mean score of 1.5, not 2.   

      What should you infer for P(n): n = 1, 2, 3 

      Again P must be of the form P(n) = e-λn/Z = xn/Z. 

 

      The Lagrange multiplier calculation now gives:  

< ! >!= ! !!!!!
!!!!

= 1.5!!!!!! !!/!!
! = 1!

The solution is x = (-1 ±√13)/6; Z = 0.705 
 
Only + gives real-valued P(n) 
 
P(1) = 0.616;  P(2) = 0.268;  P(3) = 0.116 

Homework: do the calculations and derive the results above. 



Suppose all you know is that P(n’) = a. 

 

Let f(n) =  δn,n’.  This is the Kronecker delta:  = 1 if n = n’; = 0 if n ≠ n’. 
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Homework: work out the answer for 
two point constraints or for                      
1 point constraint + knowledge of <n> 



Environment
al variable, T 

Species status 
  

1 0 

2 1 

3 - 

6 1 

4 - 

5 0 

3 - 

5 0 

2 - 

1 1 

MaxEnt and Environmental Envelopes  

We want to infer 
the values of the 
missing (1,0) 
entries 

Step 1: P(T|1) = ? 
Step 2: Use Bayes to  
            derive P(1|T) 

Like a 6-sided die problem: <T> given a 1 = (2+6+1)/3= 3 

Lagrange multiplier:  x+2x2+3x3+4x4+5x5+6x6 = 3(x+x2+x3+x4+x5+x6) 

                                   implies  x = exp(-λ) = 0.8398; Z = 3.4033 

                P(T|1) = (0.8398)T/3.4033 

P(1|T)= P(T|1)P(1)/P(T).     P(1) =1/2, P(T): either take each to be equally likely, 
so P(T) = 1/6 for all T,   Then, e.g., P(1|3) = [(0.8398)3/3.4033][(1/2)/(1/6)]=0.52  

Or use the environmental data to get P(T). 



Suppose we want to know the number of 
species of beetles or spiders or orchids or trees 

in Amazonia. 

Available data might consist of presence-absence information 
in a large number (perhaps 100) of small plots or fumigated 
trees scattered randomly throughout Amazonia. 

 

If we knew the form of the species area relationship across the 
entire scale range from plot to Amazonia we’d be done.  For, 
example, suppose S(A) = cAz.  Then 

                            S(A0) = S(A) (A0/A)z  

So letting A be the small plot area, we can scale up. 

We need to know the form of the SAR across that huge scale 
range.  



Some Prevalent Scaling Patterns in Macroecology 

 
The distribution of abundances across species      

(“Fisher log-series, Lognormal, ???) 

 

 

Species-area relationship 
(dependence of # species on area sampled is sometimes 

taken to be a power law, but often curvature on log-log plot) 

The distribution of individuals (within species)  

in cells of arbitrary scale:  i.e., Π(n in A|n0,A0) 

    (often exponential decrease observed at many scales; 
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Why do we care about                                             
patterns and metrics in ecology?                                                                   

 

 

1.  Extinction rates under habitat loss.                                                    
      25% of Amazon rain forest has been cut.                                                          

How many species lost? 

 

2.  Scaling up biodiversity.  
      How many species of arboreal beetles                                                                 

in all of the Amazonian rain forest?                                                                              

 

3. Inferring process from pattern                                                                 
(analogy: Brahe -> Kepler -> Newton) 

Data        Pattern        Force Law 



 Access to plant census data from a serpentine grassland. 

The following web site contains a spatially-explicit vegetation data set: 

http://conium.org/~hartelab/MaxEnt.html 
 

The census was carried out over the spring and summer of 1998 by Jessica Green on a 64 m2 plot at the 
University of California’s McLaughlin Reserve in xx county, CA.  The plot was gridded to a smallest cell 
size of ¼ m2 and in each cell the abundance of every plant species found there was recorded.  

The columns are plant species, with each species given a code name explained below the table of data.   
There are 256 rows of data, with each row corresponding to one of the ¼ m2 cells.  If the plot is viewed as 
a matrix, then the first row of data in the spread sheet corresponds to the upper left cell (matrix element 
a11).  The second row of data is the matrix element a12, or in other words the cell just to the right of a11.  
The 17th row of data then corresponds to the plot matrix element a21, and the very last row of data is the 
lower right cell, a16,16.  The actual data entries are the abundances of the species in each cell.   

The data may be used by readers for any purpose, but any publication that includes use of the data should 
reference the data set to: 

Green,&J.,&Harte,&J.,&and&Ostling,&A.,&(2003).&&&Species&richness,&endemism,&and&abundance&
patterns:&tests&of&two&fractal&models&in&a&serpentine&grassland.&Ecology'Letters'6,&919F&
928.&&Moreover, the Acknowledgments should include a thanks to Jessica Green for use of the data.  
 
Howmwork:   
1.  Plot the SAR on a log(S) vs. log(area) and as a slope versus ln(N/S) graph  
2. Plot the SAD as a rank abundance graph. 



macroeco 

ecopattern 

Python package for ecological  
data analysis and theory comparison 

Graphical user interface and data 
management system for using macroeco 

Streamlining	  data	  analysis	  and	  theory	  tesBng 

Justin Kitzes 
Chloe Lewis 
Mark Wilber 

http://jkitzes.github.io/macroeco/ 



Example of “push button” output for Gilbert forest census, Santa Cruz 



          Heat                Kinetic Energy                                  

   Electricity                Magnetism 

     Mass                     Energy 

    Space                    Time    

Information               Energy                                 

Information               Thermodynamics                                                      
theory                        & Stat. Mech.                                              

Weak force                 Elect. & Magnetism.                  

                          ?  

   Unification of all fundamental forces 

Information               Gen. Relativity &       
Theory                       Quantum Mech.         

 (Verlinde, e.g., arXiv:1001.0785v1) 

Information 
Theory 

? It’s inconceivable to me that this is              
where this remarkable story ends 

time 

today 

 Unification 


