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Motivation

® Power grids have grown organically over the
past century (naturally random)
o More balancing options: economic benefits + safety

® OQur initial quest > a systematic approach to
design the cyber support for the power grid

® Design and analysis of power grids has been
based on reference samples and case studies
® Does not help establishing macroscopic trends

® Can we capture in a model key features of the
ensemble?



Background



What should we model?

® System of systems Generators,Loads

[Transmission Lines]

Power systems gear:
Switches,
Relays, Transformers...

Computers and Sensors
(Substations, PLC,
Supervisory control)

Market players (supply and
demand)




The grid transmission lines

® 3 sections:

o High, Medium and

Low voltage sections |

® High and medium voltage
networks wide areas
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What we model

® Topological and electrical
characteristics of the

transmission grid

® As captured by the statistical
properties of the grid admittance

matrix
® Also one data point for

Electricity Generators

Medium Voltage
Distribution

® Leave out the distribution
network




Admittance matrix and the

graph topology

® Line-Node Incidence Matrix (M x N):
Line ¢ connected to node 57 — A4; ;, =1, A;; = —1
else Ai,j — Aj,i =0

® Admittance matrix
Y = Al diag(ys, ..., ym)A

® Observation: Y is a weighted graph Laplacian
o complex weights given by the admittances of the lines



The laws for the grid

® Voltage, Currents, Powers - narrow spectrum
AC~60-50Hz [\ /\/ /N

® Electrical transient dynamics = unimportant

o Circuit laws replaced with algebraic equations (frequency)
relating “phasors” (complex numbers whose phase and
amplitude match the AC signal V and |)

® Kirchhoff’'s Voltage/Current laws (KVL-KCL)

IR R R
icCircuit icNode

® Ohm’s law Vi = Z;1;



Relationship with power:
The balance equations

[)k ’Qk T
Power Injection = Losses  Admittance matrix B
P+ jQi = Vili = V[ZJGE Yy ]V i

AC ‘
';IC;‘;VVGF P, = Z |%Vk|le COS(@ik) + B Sin(eik) et
I Model [ k=1
Qi = Z |ViVi |Gk sin(0;x ) — Bk cos(0;1)

k=1



Precursors of our study

® Most of the literature has used real grids or
reference models for testing
o IEEE 30 57, 118 and 300 bus systems
o Power systems test case archive
= http://www.ee.washington.edu/research/pstca/

® Scalable models to grasp macroscopic trends
o [Parashar and Thorp '04] ring topology + “continuum model”
o [Rosas-Casals, Valverde, Solé '07] tree topology



Random topology models
® ‘08 Watts and Strogatz, Nature

o Conjecture: Power Grids are small world networks
Erdos Reny Small World Power network
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o Topological studies: [Newman '03], [Whitney & Alderson’06]
[Wang, Rong,’09]
o Degree distribution: [Albert et al. ‘04],[Rosas-Casals et al. ‘07]



Small world - high

clustering coefficient

® high average clustering coefficient of the

sample power grid network examined
Definition of clustering coefficient Erdos

Renyi
V; .

o 2Hed #A Grid c@ | owr
" ki(k;—1) vy, IEEE-30 0.2348 | 0.094253
V (v;,00) € Ny, e;n € B IEEEST 0.1222 | 0.048872
(N, = neighbors of v;)  [EEE118 0.1651 | 0.025931
b IEEE-300 0.0856 | 0.009119
(= edges) NYISO-2035 | 0.2134 | 0.001525
(ki = degree of 7) WSCC-4941 | 0.0801 | 0.000540




Our analysis



Degree distribution

® [Albert et al. '04,Rosas-Casals’07] Geometric PDF

® Way to highlight:
Probability Generating Function (PGF)

o For a mixture model

Gk(z) — le (Z) c .. ka (Z)

-

g

Our analysis result
1.The degree distribution is a mixture of a truncated
exponential and finite support random variable
2.The average degree vs. N is O(1)
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Why the PGF?

® A finite support Probability Mass Function
(PMF) is a finite order polynomial
o We should see ‘zeros’ in the PGF

Gp(z) =po+piz+ ...+ pg, 2"

® A purely geometric random variable is the
reciprocal of a first order polynomial - ‘pole
o Impossible to observe, in practice a ‘clipped’ version

1 — [z(1 — p)]Fmaxt!
1—(1—p)z

]

Gg (Z) X




(a) All buses
(b) Gen buses

(c) Load buses.
(d) Connection buses.

(e) Gen+Load buses.
The zeros are red '+’
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WSCC versus NYSO

degree distribution

Gr(z) = Gp(2)Gg(#)

ESTIMATE COEFFICIENTS OF THE TRUNCATED GEOMETRIC AND THE IRREGULAR
DISCRETE FOR THE NODE DEGREES IN THE NYISO AND WSCC SYSTEM

node groups | max(k) P | kmaz | kt | {P1,D2, " , Dk, }

All 37 | 0.2269 34 3 | 0.4875, 0.2700, 0.2425
Gen 37 | 0.1863 36 1 | 1.000

Load 29 | 0.2423 26 3 | 0.0455, 0.4675, 0.4870
Conn 21 | 0.4006 18 3 | 0.0393, 0.4442, 0.5165
Gen+Load 37 | 0.2227 34 3 | 0.4645, 0.3385, 0.1970
All-WSCC 19 | 0.4084 16 3 | 0.3545, 0.4499, 0.1956




Vulnerability studies

® Fraction of nodes removal before breakdown
o [Rosas-Casals et. al’07] © = 1 [Wang et al. ‘09]
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Small World conjecture

® Some evidence contradicting it

o For a SW network with N nodes, to guarantee with high
probability a connected network (no isolated component) the
scaling laws for the average degree <k>>> log N

o The average degree in power grids is ~ constant (3-4)

NE NI e af foe es TOPOLOGICAL CHARACTERISTICS OF REAL-WORLD POWER NETWORKS
m: number of lines (N, m) ) [} (k) p | r{k >k}
: IEEE-30 (30,41) 3.31 |1 2.73 §| -0.0868 0.2333

<k> Average Degree
<I> Average shortest IEEE-57 (57,78) 495 |12.74 | 0.2432 0.2105
path length IEEE-118 (118,179) 6.31 (}3.03 §| -0.1526 0.3051
P Eelfrséor;_ CO?ffiCéent IEEE-300 (300, 409) | 9.94 [12.73 || -0.2206 0.2367

>
K>k} Ratio of Nodes  Euesrrs (2935,6567) | 16.43 || 4.47 | 0.4593 0.1428
with largest nodal

degree WSCC (4941, 6594) | 18.70 |[2.67 }| 0.0035 0.2022




Average shortest path

® Observation: < | >= 3log;y(V)

NE N5 6 e e TOPOLOGICAL CHARACTERISTICS OF REAL-WORLD POWER NETWORKS

m: number of lines (N, m) (k) p | r{k >k}
- IEEE-30 (30,41) 2.73 | -0.0868 0.2333

<k> Average Degree
A Avaraes Sheres IEEE-57 (57,78) 2.74 | 0.2432 0.2105
path length IEEE-118 (118,179) 3.03 | -0.1526 0.3051
P Eesrséor;_ COfeffiC(ijent IEEE-300 (300, 409) 2.73 | -0.2206 0.2367

>
K>k} Ratio of nodes vy (2935,6567) 447 | 0.4593 0.1428
with largest nodal

® Not bad to overlay communications with the
lines — relatively short distance



Algebraic connectivity

® Graph Laplacian

second smallest
eigenvalue

® Values shown in %

A2 (L)
IEEE-30 0.21213
IEEE-57 0.088223
IEEE-118 0.027132
IEEE-300 0.0093838
NYISO-2935 | 0.0014215
WSCC-4941 0.00075921
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Plausible topology

® The model that matches this trend is
what we call Nested-Small-world graph

o IEEE = SW subnet 30; NYSO & WSCC
- SW sub-net 300

_,..__-‘_,_‘.“{sub-netx,_;,_

{sub-hetﬁ j [sup-r;et 3\

"--4...{sub-net 2. el

IEEE 300: Correlated rewiring




Impedance distribution

® Absolute values of the 1o

Impedances iof |

Lpr = R+ 37X ~ X

® Prevailingly heavy tailed L

distributions

® NYSO best fit > clipped
Double Pareto Log-normag

o Did not pass KS test but was the ]
closest to pass it 0

1

NYISO: Empirical PDF of Zpr and DPLN-clip Fitting PDF

o NYISOZpr
DPLN ciip |
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Distributions comparison

DISTRIBUTION FITTING FOR LINE IMPEDANCES

System Fitting Distribution
(alph=0.05)

ML Parameter Estimates

a = 2.14687

IEEE-30 I'(z|a, b) b = 0.10191

a = 1.88734

IEEE-118 U'(zla, b) b= 0.05856

k = 0.33941
o = 0.16963
0 = 0.16963,

IEEE-57 gp(z|k,o,0)

k = 0.45019
o = 0.07486
6 = 0.00046,

TEEE-300 gp(z|k,o,0)

= —2.37419
o = 2.08285
Zmaz —_ 1.9977

lo.qnclip(wlua a, Zmax)

o = 44.25000
3 = 44.30000
p = —2.37420
o= 2.082600
Zmas = 1.9977

NYISO-2935
dPINip (x|, B, t, 0, Zmax)

Gamma:

1 a—1
['(z]|a,b) = mw Lea/®,

Generalized Pareto (GP):

gp(z | k,o,0) = (é) (1 +k

Lognormal:

ag

(fE _ 0) ) —1—(1/}:)

logn(x | p, o) = ;c_ =
5 o roV2m '
DPLN:

DPLN(zr|a, 5, 1, )

_af a1 0gT — 1 — o2
ot D |:A(a, [y O )T ‘I>(] ; )
A s oL (loga: -+ /303}

g

where A(#, 1, o) = e@ntt?0%/2),




Impedance attribution

® Impedance grows with distance
® Conjecture: local = short; rewires 2 medium;

lattice connections - long lines

4 impedances {p.u.)

| sub-netx .
sub;nef 1 sub-net 3
"o sub-net2 ...




396-node Medium Voltage

distribution network
® US distribution utility

o The power supply from the
115 kV-34.5 kV step-down
substation.

o Most nodes or buses in the
network are 12.47 kV (>95%),
and only a small number of
them are 34.5 kV or 4.8 kV.

(N, m) (k) | (D) p A2(L) | €(G)
IEEE-300 (300, 409) | 2.73 | 9.94 | -0.2206 | 0.0094 | 0.0856
WSCC (4941, 6594) | 2.67 | 18.70 | 0.0035 | 0.00076 | 0.0801
396-node MV-Distr | (396, 420) | 2.12 | 21.10 | -0.2257 | 0.00030 0




Interesting facts relating to CPS



Sparse principal eigenvectors

« We have found that the Y = UAUHhas sparse
eigenvalues with sparse principal components

U=[u, - ,uk,uk41, - ,un|
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Sensor placement for
robust state estimation

Phasor Measurement Units
— directly measure the state
V,0

R X0 o Their placement on the K
. /s’ Rrincipal Cliques best
«s#stabilizes the Gauss-Newton
~.Wipdate for State Estimation

VB /
N
o




Geometrical insights from

AC to DC Power flow

® Admittance matrix Y = G + iB’

conductance susceptance

® Susceptance >> Conductance
® Small angle difference |0; — 0;|,V; ~ 1
® DC Power Flow Model approximaion

P =B6O6. B = —B’ with shunt removed

\
Power injection Phase angle




?

Impact on Power Injections

K
® Low rank approximationB = » " Aupui + O(Ax 1)
BO =P, — P,

Z PrALUL N@ P,

k=1

The balance constraint in
pr = ui 0. | the Optimal Power Flow

Dispatched Economic dispatch will
to have Q tend to line up the injection
minimum . . .
cost with the principal subspace

Subspace

Load Q OPF generation
fluctuation adjustment

The sensitivity analysis suggests that
greatest variations are in the least significant
subspace component




Low Dimensional

Representation

Relative MSE of 6 against S and t

MSE of phase
vs # of dimensions

Approximation Error

IEEE-300 bus system
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Conclusions

® The admittance matrix of power grids has
peculiar features that follow clear statistical
trends

® The analysis can help grasping macroscopic
phenomena

® It is critical to understand how to design it
better

® It is critical incorporate flexibility and
adaptability via monitoring and control
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