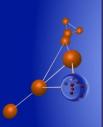


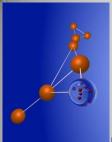
Foundations and Frontiers of Complex Systems SFI Complex Systems Summer School, Bariloche 2008

Introduction to Complex Networks

Marcelo Kuperman
Statistical Physics Group
Centro Atómico Bariloche

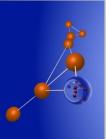


Introduction to Complex Networks



Introduction to Complex Networks: Overview

- Concepts
- Elements of Graph Theory
- Random Networks
- Scale Free and Small World Networks
- Characterization of Networks

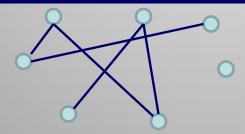


Introduction to Complex Networks: Graphs

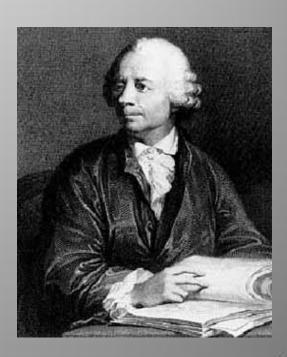
Mathematical Concept: Graph

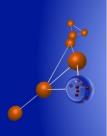
The elements are:

nodes or vertices links or edges

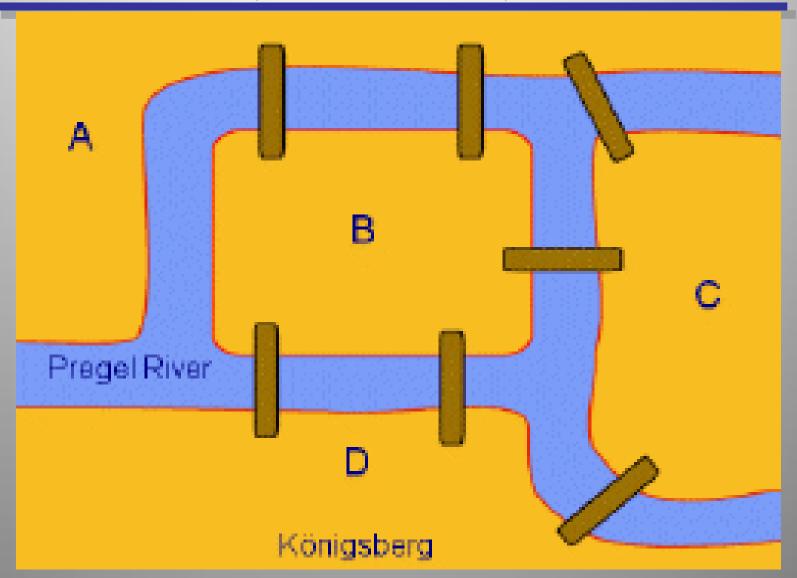


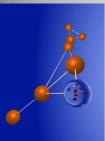
First work on Graph Theory
Leonhard Euler, XVIII century
The problem of Königsberg bridges



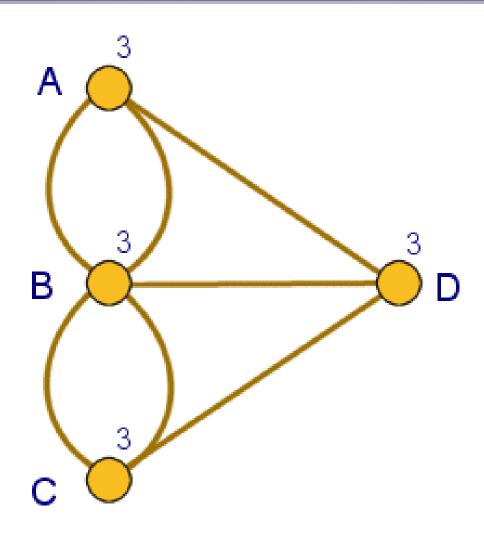


Introduction to Complex Networks: Graphs





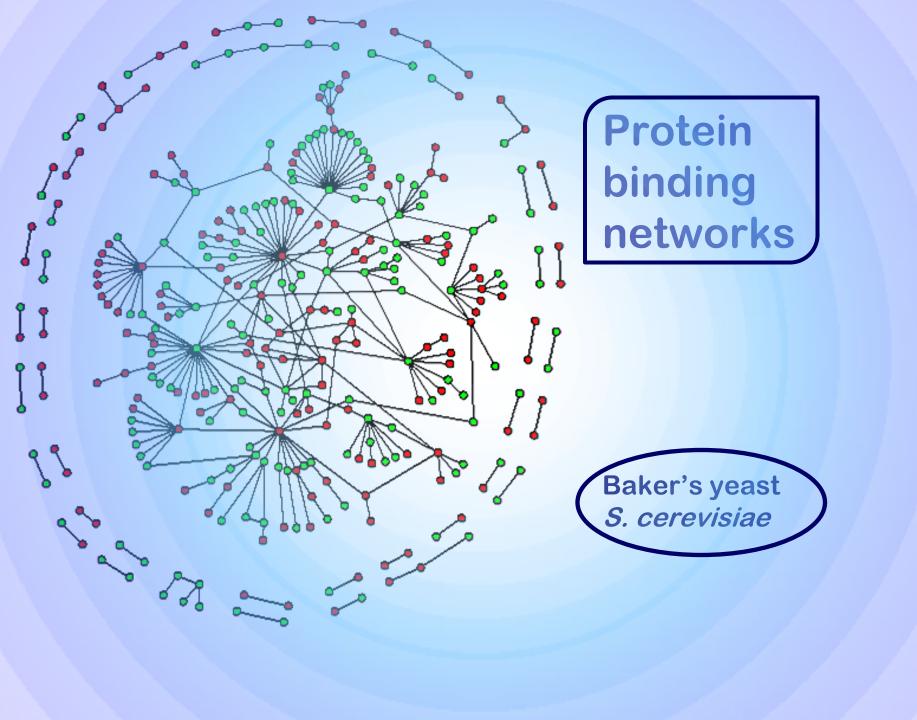
Introduction to Complex Networks: Graphs



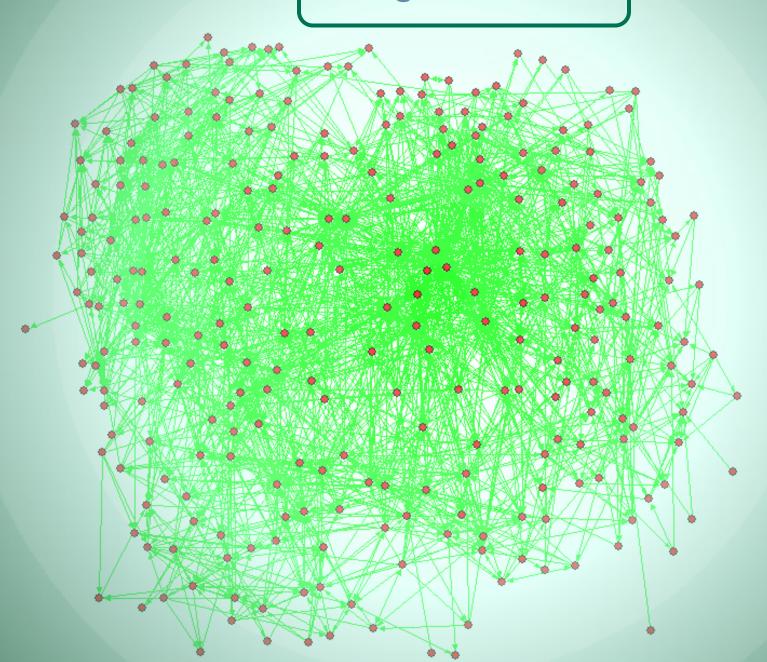
Introduction to Complex Networks: Definition

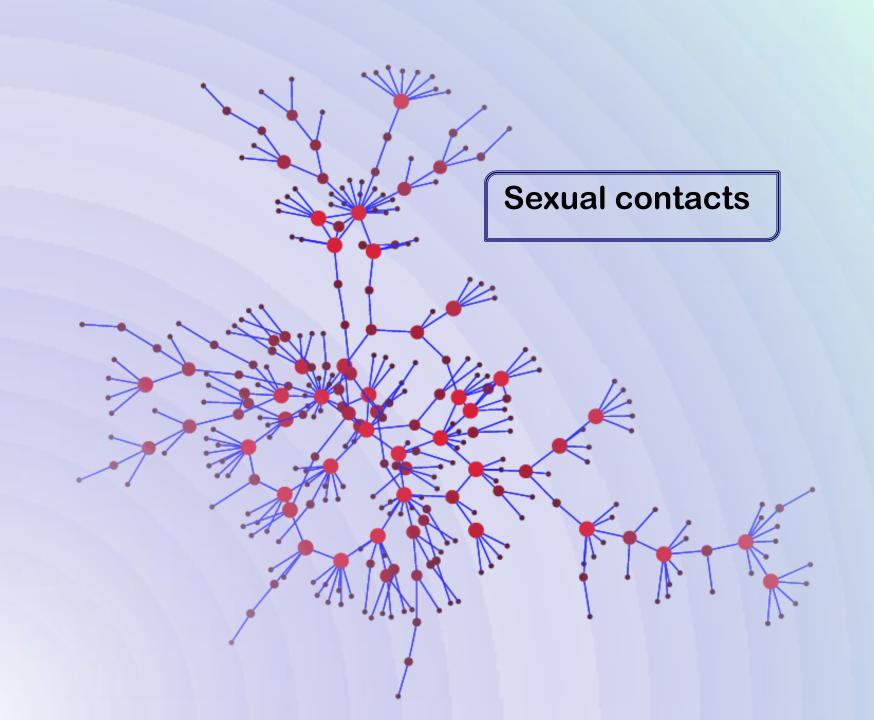
Network:

A population of *unities* connected and interacting through links.

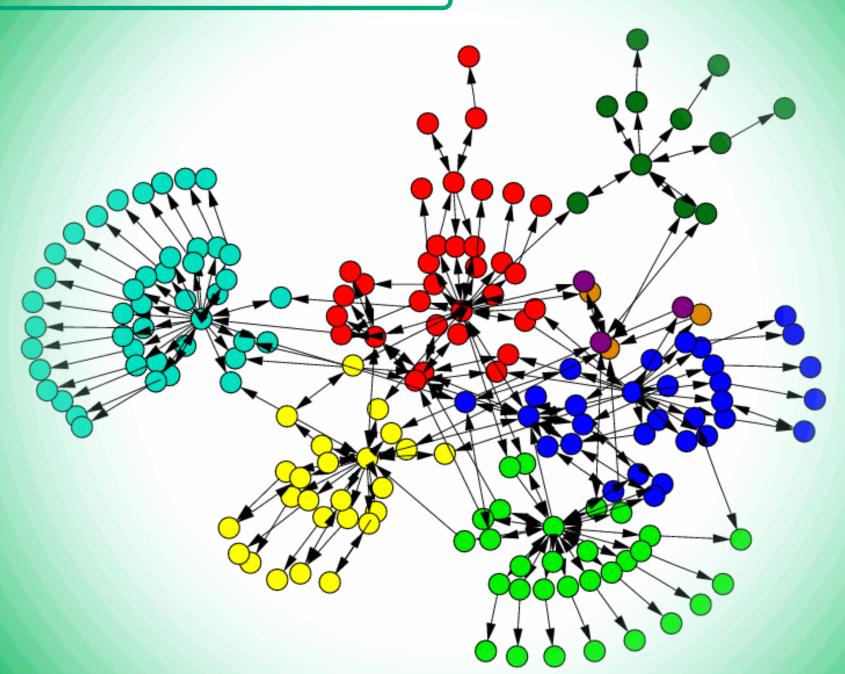


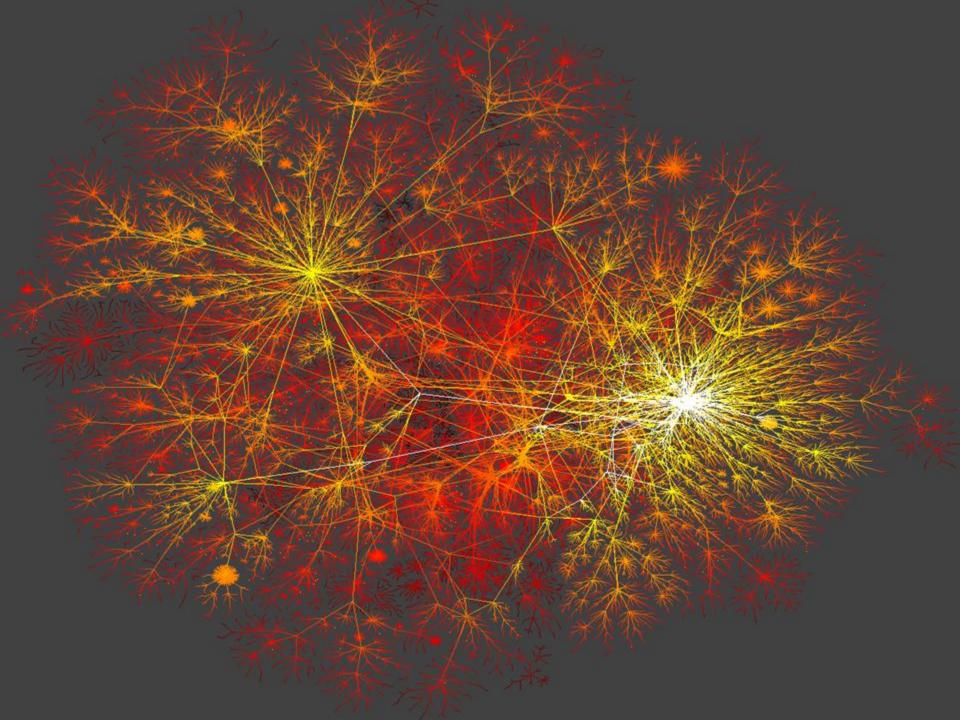
C. elegans neurons





Webpages connected by hyperlinks

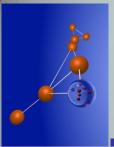






Introduction to Complex Networks: Mathematical Tools

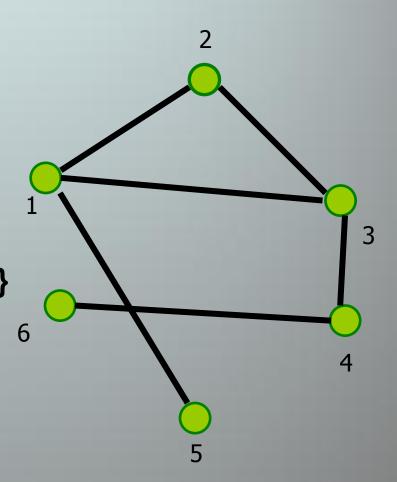
- Graph theory concepts
- Matrices
- Probability theory

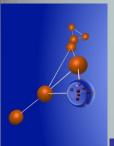


- Graph G=(V,E)
 - V = set of vertices
 - E = set of edges

Undirected graph

$$E=\{(1,2),(1,3),(1,5),(2,3),(3,4),(4,6)\}$$



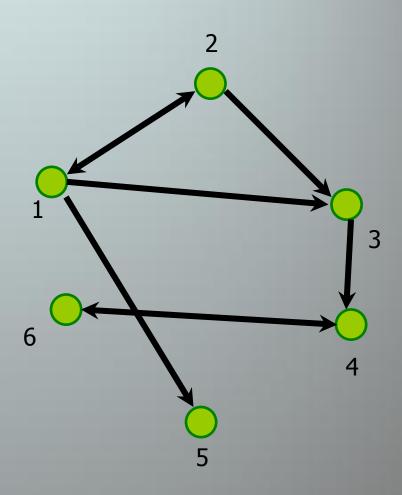


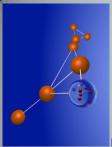
- Graph G=(V,E)
 - V = set of vertices
 - E = set of edges

Directed graph

V=
$$\{1,2,3,4,5,6\}$$

E= $\{1,2\}$, $\langle 2,1\}$, $\langle 1,3\}$, $\langle 1,5\}$, $\langle 2,3\}$, $\langle 3,4\}$, $\langle 4,6\}$, $\langle 6,4\}$



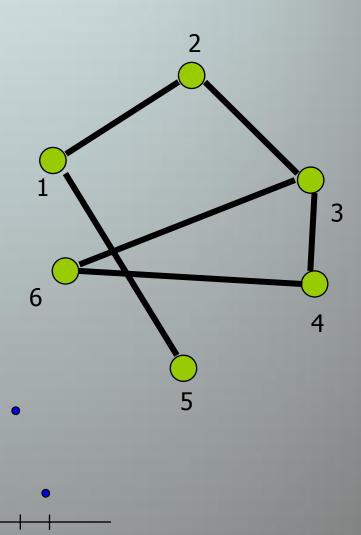


Degree d(i) of node I

Number of edges incident on node i

Degree distribution

f_k = fraction of nodes with degree k

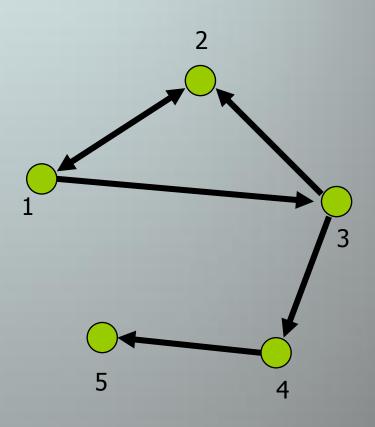


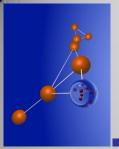


In-degree d_{in}(i) of node
Number of edges pointing to node i
In-degree sequence
[1,2,1,1,1]

Out-degree d_{out}(i) of node i Number of edges leaving node i

Out-degree sequence [2,1,2,1,0]



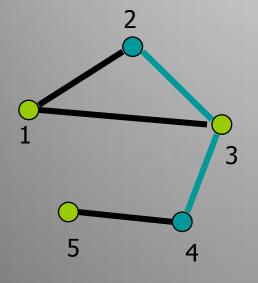


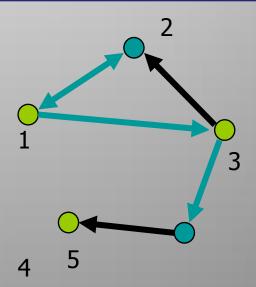
Introduction to Complex Networks: Mathematical Tools I. Graph Theory – Paths length

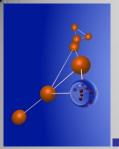
Path (from node i to node j): any sequence of links from node i to node j

Path length: number of links on the path

Connected nodes: If there is a path nodes i and j are connected





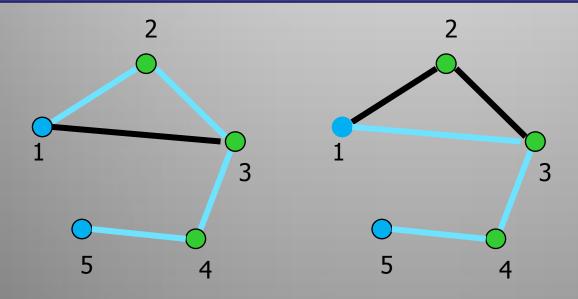


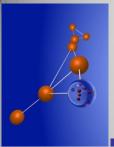
Introduction to Complex Networks: Mathematical Tools I. Graph Theory – Paths length

Shortest Path (from node i to node j):

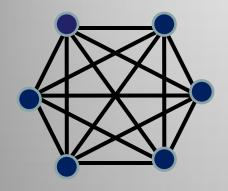
the path with the lowest path length

Diameter: The longest among the shortest path in the graph

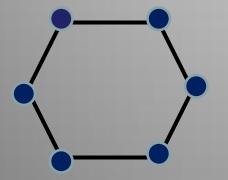


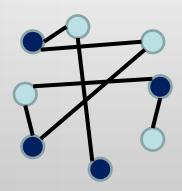


Introduction to Complex Networks: Mathematical Tools Graph Theory – Particular cases



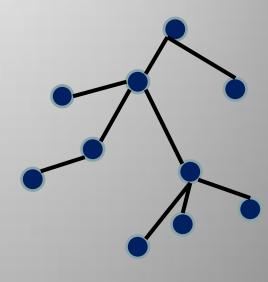
Fully Connected Clique





Bipartite

Cycle



Tree

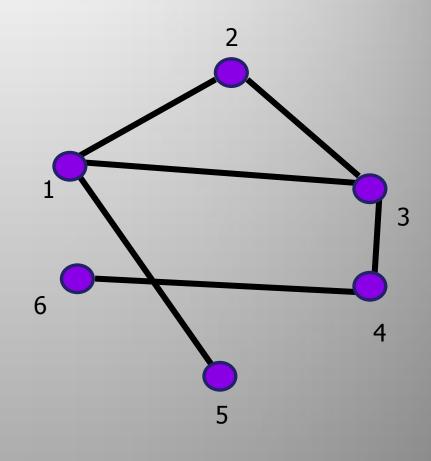
Introduction to Complex Networks: Mathematical Tools II. Matrices – Matrix representation

Adjacency Matrix

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

Laplacian Matrix

$$L = \begin{pmatrix} -3 & 1 & 1 & 0 & 1 & 0 \\ 1 & -2 & 1 & 0 & 0 & 0 \\ 1 & 1 & -3 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 & 0 & 1 \\ 1 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 & -1 \end{pmatrix}$$



Introduction to Complex Networks: Random networks

Also called Poisson networks - P. Erdös and A. Rényi in 60s

Take Nvertices

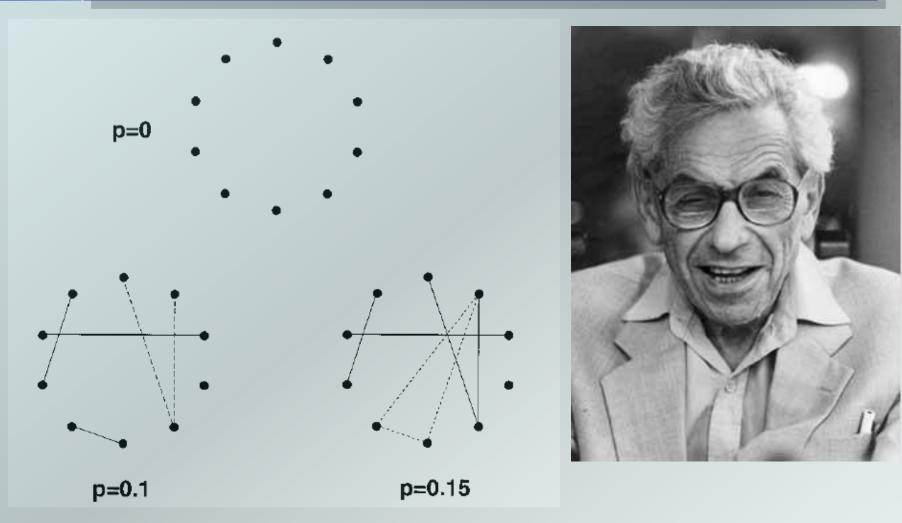
Connect each pair of vertices with an edge with some probability p

There are *N (N-1)/2* possible edges

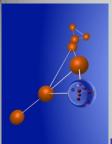
The obtained graph has p N (N-1)/2 edges

The probability that a vertex has degree *k* follows a binomial (Poisson) distribution

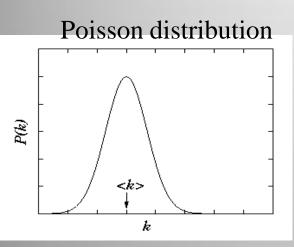
Introduction to Complex Networks: Random networks Erdös - Rényi Model



N nodes, every pair of nodes being connected with probability *p*

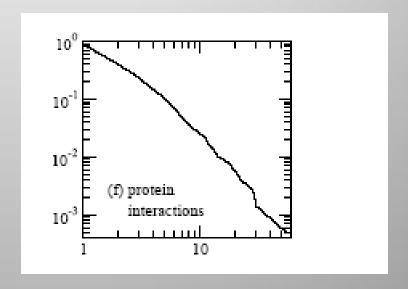


Introduction to Complex Networks: Random networks Degree distribution



$$N(K) = N \frac{\lambda^{K}}{K!} \exp(-\lambda)$$
$$\lambda = \langle K \rangle = 2E/N$$

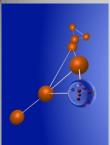
BUT Most real networks do NOT follow Poisson law



Introduction to Complex Networks: *Real* networks

Real life networks are not "strictly random"

Is it possible to define a model that generates graphs with statistical properties similar to those in real life?



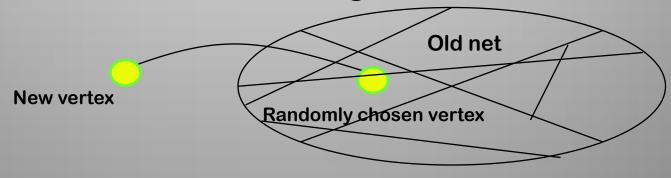
Introduction to Complex Networks: Exponential networks

Initial network

At each time step t

A new vertex is attached to a randomly chosen vertex

There are t vertices and t edges



Introduction to Complex Networks: Exponential networks

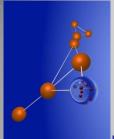
P(k,t): probability that a randomly chosen vertex has degree k at time t

$$P(k,t) = \frac{1}{t} \sum_{s=1}^{t} p(k,s,t)$$

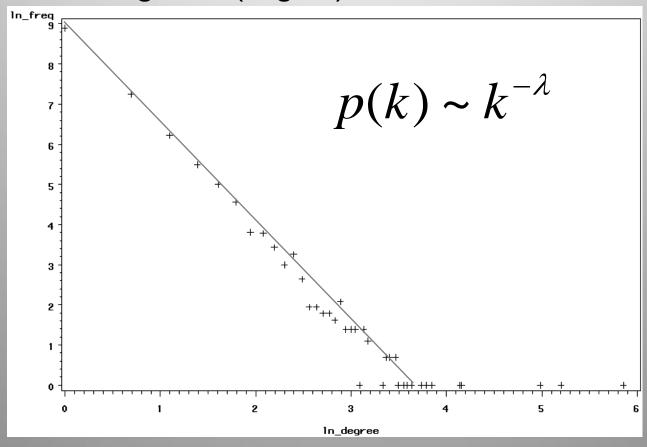
Initial condition: $P(k,t=2) = \delta_{k,2}$

- $P(k) = P(k, t \rightarrow \infty)$: stationary degree distribution
- Stationary equation:

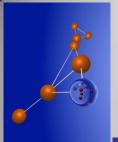
$$2P(k) - P(k-1) = \delta_{k,1} \longrightarrow P(k) = 2^{-k}$$



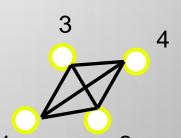
Many large networks are characterized by a highly skewed distribution of the number of neighbors (degree)



NETWORK	exponent γ
film actors	2.3
telephone call graph	2.1
email networks	1.5/2.0
sexual contacts	3.2
www	2.3/2.7
internet	2.5
peer-to-peer	2.1
metabolic network	2.2
protein interactions	2.4



1. Start with an initial set of m_0 fully connected nodes: $m_0 = 4$

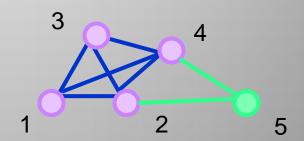


- 2. Next, add new vertices, contributing with exactly medges, one by one.
- 3. Each new edge connects to an existing vertex with a probability proportional to the number of edges that vertex already has

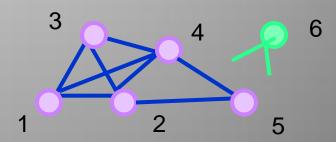
Preferential attachment: The rich gets richer

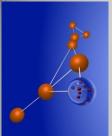
- 1. At the beginning each vertex has an equal number of edges (links). The probability of choosing any vertex (node) is 1/4
- 1 2

- 2. We add a new vertex with m=2
 Choose 2 elements at random, e.g. 2 and 4
- 3. Now the probabilities of selecting nodes 1,2,3,4 or 5 are 3/16, 1/4, 3/16, 1/4, 1/8 respectively



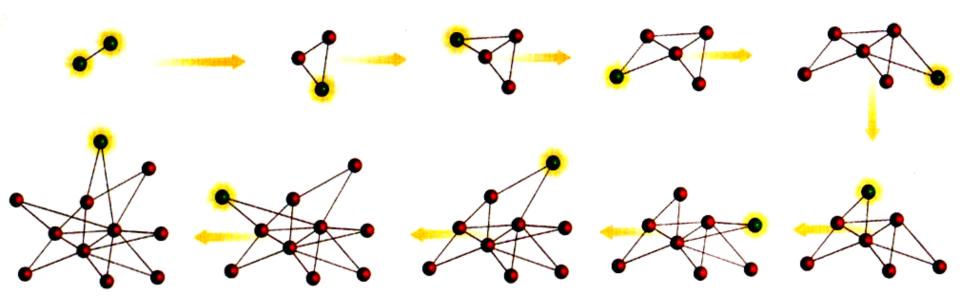
4. Add a new vertex with m=2, and connect each edge to a different node chosen according to its probability of being selected.

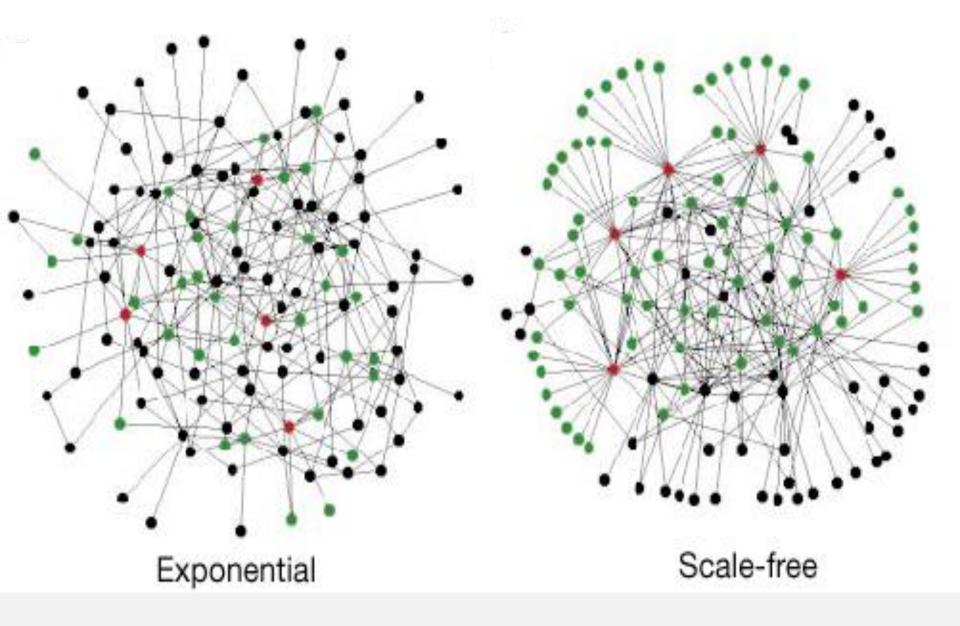




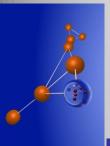
Two main features

- 1. Growth: networks expand continuously by the addition of new vertices
- 2. Preferential-attachment (rich gets richer): new vertices attach preferentially to sites that are already well connected.



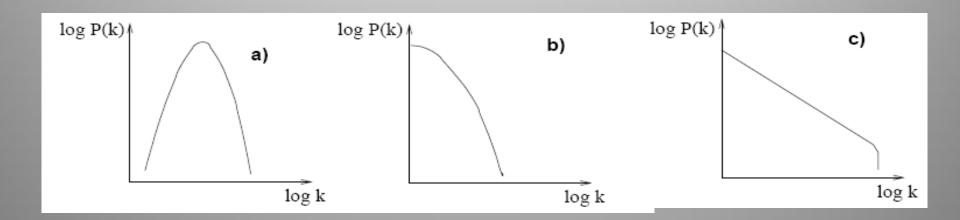


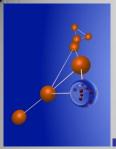
130 nodes and 215 links



Introduction to Complex Networks: Degree distribution comparison

- a) Poisson: $P(k) = e^{-\bar{k}} \bar{k}^k / k!$, e.g. a classical random equilibrium graph of Erdos and Renyi when the total number of vertices is infinite
- b) Exponential: $P(k) \approx e^{-k}$ e.g. a citation graph with attachment of new vertices to randomly chosen old ones
- c) Power-law: $P(k) \approx k^{-\gamma}$, e.g. a citation graph with attachment of new vertices to <u>preferentially</u> chosen old ones





Introduction to Complex Networks: Small World Networks

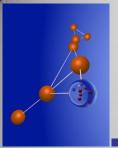
But...

the power-law degree distribution is not the only interesting property

Short paths: real-life networks are "Small Worlds"

Clustering coefficient: real-life networks tend to have high clustering coefficient

Are my friends also friends among them?



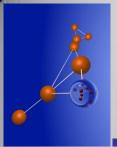
Introduction to Complex Networks: Small World Networks Average length

Distance between two vertices = length of the shortest path between them

Distances I are distributed with some distribution function P(I) P(I): the probability that the length of the shortest path between two randomly chosen vertices is I

Average length of the shortest path

$$\bar{l} = \sum_{l} lP(l)$$



Introduction to Complex Networks: Small World Networks - Clustering

The <u>clustering coefficient</u> characterizes the "connectedness" of the environment close to a vertex.

$$C_i = \frac{n_i}{\frac{k_i(k_i - 1)}{2}}$$

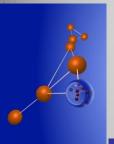
Where

n_i: number of connections among the neighbors

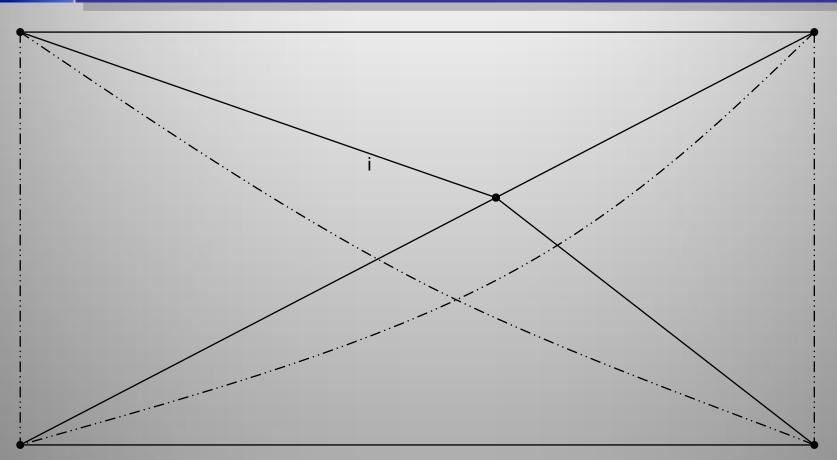
 $k_i(k_i-1)/2$: number of possible connections among the neighbors.

Or.. Measures the density of triangles (local clusters) in the graph

$$C = \frac{1}{n} \sum_{i} \frac{\text{present triangles centered at node i}}{\text{possible triangles centered at node i}}$$



Introduction to Complex Networks: Small World Networks - Clustering



Present triangles =2

Possible triangles $\binom{4}{2}$ =6

Clustering=1/3

Millgram's small world experiment

Letters were handed out to people in Nebraska to be sent to a target in Boston

People were instructed to pass on the letters to someone they knew on first-name basis

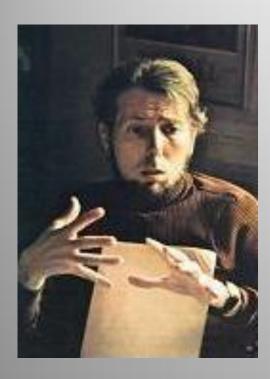
The letters that reached the destination followed paths of mean length 6

Six degrees of separation

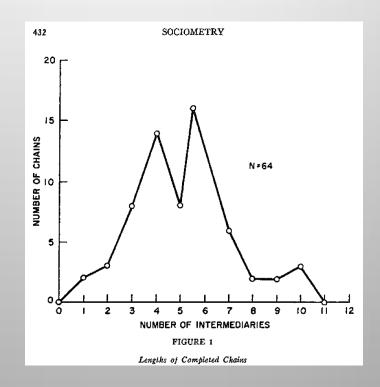
See

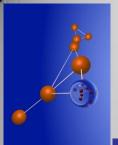
The Kevin Bacon game The Erdös number Babel - Crash





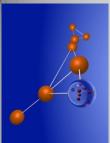
Stanley Milgram

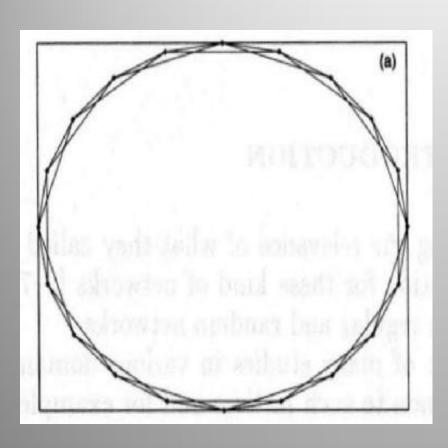




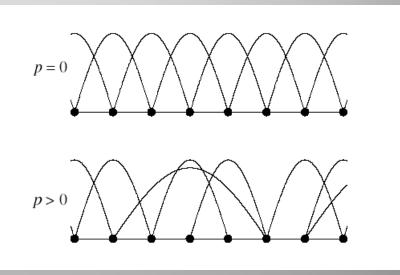
Features High clustering of regular lattices

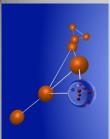
Small-world effect" (small average shortest-path length) of random networks



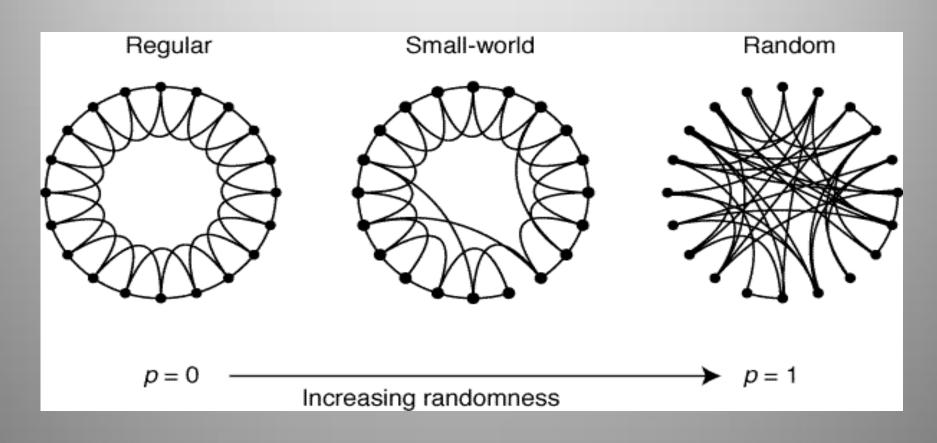


Construction





Interpolating between regular and random networks



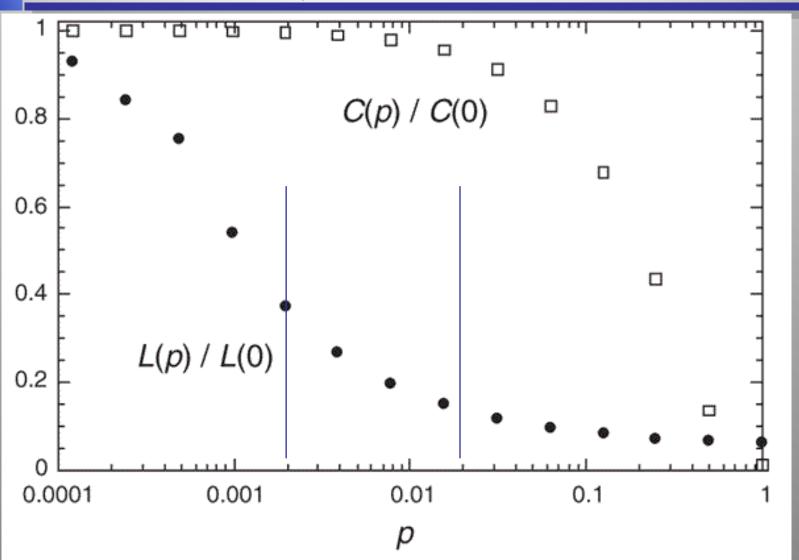
Large networks (n >> 1)

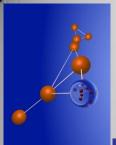
Sparse connectivity (avg degree z << n)

No central node (k_{max} << n)

Large clustering coefficient (larger than in random graphs of same size)

Short average paths (~log n, close to those of random graphs of the same size)





Introduction to Complex Networks: Other Networks

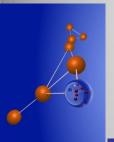
Cooper Frieze model

Multiple parameters that allow for adding vertices, edges, preferential attachment, uniform linking

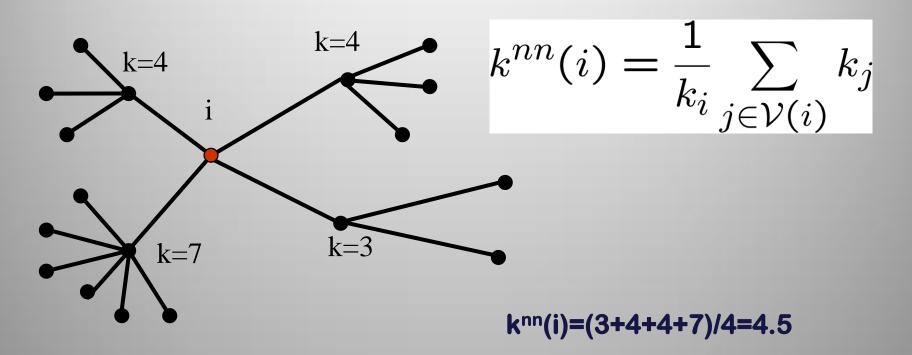
Directed graphs [Bollobas et al]

Allow for preferential selection of both the source and the destination

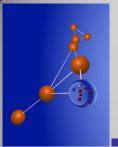
Allow for edges from both new and old vertices



Introduction to Complex Networks: Topological characterization - Assortativity



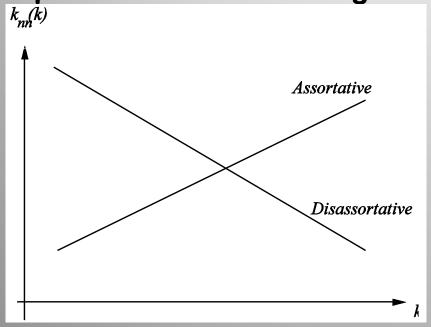
Assortativity: how similar I am with my friends



Introduction to Complex Networks: Topological characterization - Assortativity

Assortative behaviour: growing $k_{nn}(k)$

Example: social networks: Large sites are connected with large sites



$$k^{nn}(i) = \frac{1}{k_i} \sum_{j \in \mathcal{V}(i)} k_j$$

Disassortative behaviour: decreasing $k_{nn}(k)$

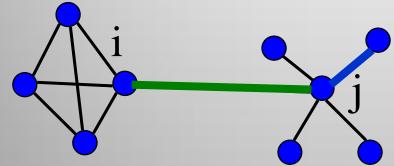
Example: internet

Large sites connected with small sites, hierarchical structure



Introduction to Complex Networks: Topological characterization – Betweeness centrality

ij: large centrality

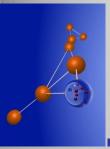


k

jk: small centrality

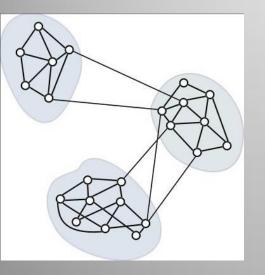
$$g(ij) = \sum_{s,t} \frac{\sigma_{st}(ij)}{\sigma_{st}}$$

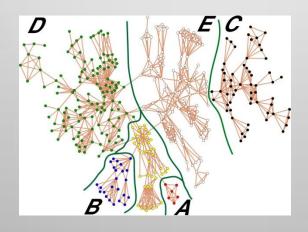
 σ_{st} = # of shortest paths from s to t σ_{st} (ij) = # of shortest paths from s to t via (ij)

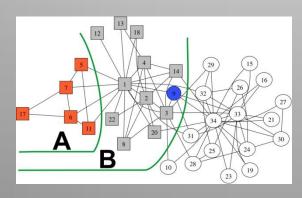


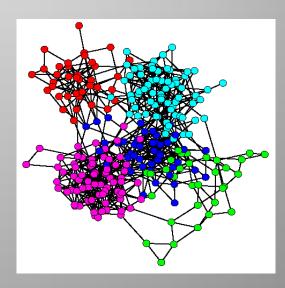
Introduction to Complex Networks: Topological characterization – Modularity

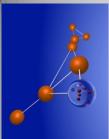
Real networks are fragmented into communities or modules











Coming soon...

Foundations and Frontiers of Complex Systems, SFI Complex Systems Summer School, Bariloche 2008

Collective behavior in complex networks

Guillermo Abramson

Statistical Physics Group Centro Atómico Bariloche

