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The availability of empirical data on humans and animal mobility has had a crucial impact
on many dynamical processes found in both nature and society. Here we take a closer look at
the influences of both mobility and non-trivial network architecture on how interactions among
individuals progress. Conventional models that involve spatial games are limited to representing
players as nodes in the network with interactions steered by the linkages to other nodes, apart from
the game rules. In this work, instead of using nodes to represent individual agents, we use the nodes
to represent communities where players are situated. Two general processes are involved in this
study namely, the inter-node and intra-node dynamics, where each is described by its own spatio-
temporal scale. Inside the nodes, individual players evolve under the context of the Ultimatum
Game. This paradigm provides a measure, which is the average fitness of individuals inside a node,
that can be interpreted as a mechanistic drive behind the mobility of agents on a network.

Results show blah, blah, blah. Say something here about why it is interesting. Maybe a last
sentence to stress the novelty of our work, something which the both of you know as you have read
a fairly ample amount of papers in evolutionary graph theory.

I. INTRODUCTION

Understanding the dynamics behind migration and/or
mobility has recently sparked the interests of researchers
in various fields such as evolutionary biology, anthropol-
ogy, epidemiology, geography, and genetics, to name a
few [1–9]. Migration in broad terms has been defined as
“an adaptive response to changes in resource availabil-
ity, to escape from competition, and/or to reach newer
habitats” [3]. In population-genetics for example, geo-
graphical patterns of humans have been found to sup-
port and, to a limited extent, explain heterozygosity [1].
From a geographical point of view, on the other hand,
the nature of mobility (and stability) of individuals are
of great interests as it sheds light on certain sociological
issues such as community attachment and participation,
socio-economic contributions and investments [4]. In ad-
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dition, the availability of empirical data on how humans
move has proven that mobility plays a crucial role in the
study of many dynamical processes including, but not
limited to, examples such as epidemics spreading [5–10]
or social interactions [11, 12]. Similar evidence has been
observed in the study of animals [13, 14], insects or even
colonies of bacteria [15, 16]: mobility and distance cannot
be neglected in the analysis of interactions and collective
behavior.

Meanwhile, attention has been increasingly focused on
how topology of networks affect dynamical processes [17–
19]. In fact, patterns of interactions in our world are far
from being mean-field or random, thus leading sometimes
to unexpected and dramatic outcomes in dynamical pro-
cesses. As a consequence, evolutionary graph theory has
been keen on implementing game theoretic models on
networks with varying topological properties [20, 21].

With the underlying assumption that individuals make
decisions that are geared towards maximizing their utility
function, we deem it appropriate to tackle the problem
in an evolutionary game theoretic framework. Here we
study the role of both mobility and non-trivial network
topology by looking at how interactions among individu-
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als evolve. Traditionally, studies involving spatial games
are limited to representing players as nodes in the net-
work and where their interactions are guided by their
connectivity to other nodes, apart from the game rules
[20–22].

Wright [23] was the first to postulate a model in which
evolution was considered on multiple islands. In Wright’s
island model is big population is subdivided into smaller
“islands”. The individuals migrate between these islands
with a uniform migration rate and the number of indi-
viduals on an island remains constant over time. In this
manuscript we couple the two ideas together. The island
model is represented by a specific network type. Each
node harbours a population which evolves according an
evolutionary game. Migration disturbs this evolution.
We assess the impact of the network structure on the
evolution of the strategies and discuss the importance of
the structure and mobility dynamics on the maintenance
or extinction of strategies in a population.

In this work, we take it a step further where instead
of using nodes to represent individual agents, we use the
nodes to represent communities that contain the individ-
ual players that interact with each other in the context
of the Ultimatum Game. This paradigm also provides
a measure, namely fitness, that can be interpreted as a
force driving the movement of agents on a network.

II. MODEL

In this model, we consider a network of N nodes. M
agents are then distributed among the network nodes,
where M � N . Agents can interact with each other
only when they are on the same node.

Two scales are taken into consideration: spatial and
temporal, which are further broken down into two, the
inter-node and intra-node dynamics. For the intra-node
dynamics, the population in each node is allowed to
evolve for an average population generation time given
by M/N time-steps. Within that period, the residents of
the node play the Ultimatum game from which individ-
ual payoffs are calculated. For each complete generation,
the average fitness of the population is determined; this
is interpreted as the fitness of the node. After one gen-
eration, individuals can decide either to migrate with a
probability p to a neighbouring node or remain in their
current location with a probability 1 − p. The way in-
dividuals choose the target node to migrate to is biased
by the fitness of the target node. Also a small probabil-
ity q to choose neighbours at random is included, taking
into account the propensity of individuals to make errors
when actually executing the decision or exploration of
strategies [24].

Summing up, our model is made up of two kinds of
dynamics, taking place at two different timescales: (i)
an intra-node dynamics, which lasts for M/N timesteps,
during which agents accumulate fitness and evolve ac-
cording to a Moran process, and (ii) an inter-node dy-

namics, taking place at the end of an intra-node genera-
tion where agents can migrate.

A. Intra-Node Dynamics

Here we consider the dynamics of the players within a
node. The players on a node are in a well mixed state,
meaning that they can interact with all the others, and
play the so-called Ultimatum game. In an Ultimatum
game, two players are chosen at random from the pop-
ulation. One of them acts as proposer while the other
acts as responder and these roles are assigned randomly.
The goal is to split a given reward amongst themselves.
The proposer proposes a way to split the amount and the
responder can decide whether to accept the offer or not.
If the responder is amenable to the proposition, a deal is
sealed; otherwise, none gets anything.

Intuitively, a proposer should offer to split the reward
such as that the responder gets the minimum amount; at
the same time, a responder would be better off accept-
ing whatever offer than getting nothing. However, ex-
perimental studies have shown quite a different scenario,
where proposers actually offer 40 to 50 percent of the
amount to be split and the responders also decline offers
which are less than 30 percent [25–27]. The experiments
were performed worldwide indiscriminate of societies and
with widely varying valuables at stake.

Inherently, the Ultimatum game has a number of dif-
ferent strategies which could be adopted; however for this
particularly study, we take inspiration from the work by
Nowak et. al. [28] using the mini-ultimatum game. Since
each individual can assume either the role of a proposer
and of a responder, we consider a set of two actions per
strategy. An individual can offer an amount α when act-
ing as a proposer and can aspire to get at least β when
a responder. Hence (α, β) make up the strategy space.
If one assumes the amount to be split to be 1, α and β
lie between 0 and 1. Since the proposer expects a payoff
of 1 − α, this value should be larger than the aspiration
level β, i.e. α+β ≤ 1 [28]. Without loss of generality, we
limit our study to two outlooks taken from an individ-
ual’s point of view. Each individual has two roles, being
a proposer and an acceptor. Being a proposer the agreed
amount to split can be high h or low l. Similarly when
an acceptor the response could be to accept a high offer
h or a ow offer l. By the earlier argument we are bound
to 0 < l < h < 1/2 [28, 29]. Thus there are four possible
strategies, LL, LH, HL or HH, where the first letter
is for proposing level and the second for the acceptance
level.

We summarize the payoffs for the different possible
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strategies in the Ultimatum game.


LL HL HH LH

LL 1 1− l + h h l

HL 1− h+ l 1 1 1− h+ l

HH 1− h 1 1 1− h
LH 1− l 1− l + h h 0

. (1)

In a finite population size of mi(t) individuals on a
node i. The population size changes over time due to the
inter-node dynamics imposed on the system. For the time
being however, we will focus on describing the intra-node
dynamics and therefore dropping the time component t
in the population count mi.

Now we consider the number of individuals playing dif-
ferent strategies to be a, b, c and d for the four strate-
gies LL, HL, HH, LH, respectively where of course
a + b + c + d = mi, the total population of the node
i. The fitnesses are then given by

fLL =
1

mi
[a+ (1− l + h)b+ (h)c+ (l)d]

fHL =
1

mi
[(1− h+ l)a+ b+ c+ (1− h+ l)d]

fHH =
1

mi
[(1− h)a+ b+ c+ (1− h)d] (2)

fLH =
1

mi
[(1− l)a+ (1− l + h)b+ (h)c+ (0)d]

and the average fitness of the population is,

f̄i =
1

mi
[a fLL + b fHL + c fHH + d fLH ] . (3)

which is fitness of node i.
For a large finite population we can safely ignore self

interactions. The process by which the dynamics pro-
ceeds in the finite population is by virtue of the Moran
process. In a Moran process, an individual is chosen for
reproduction according to its fitness; simultaneously a
random individual is randomly chosen to die. Thus, for
each of the strategy s ∈ {LL,HL,HH,LH}, we have
transition probabilities of either increasing the number of
players by one, T+

s or decreasing it by the same amount,
T−s ; else, the system remains unchanged with probability,
1− T+

s − T−s , where,

T+
s =

xsfs
f̄

(∑
r 6=s xr

mi

)
T−s =

xs
mi

(∑
r 6=s xrfr

f̄

)
, (4)

xr is the number of players playing strategy r and fr is
the fitness of that particular strategy. Thus, in all, there
are 12 transition probabilities, three for each strategy.

i

j

FIG. 1. Schematic diagram of the model. In each node, indi-
viduals with different strategies, for simplicity blue and red,
are present. Each individual can move to a neighboring node
with a probability that is biased by the fitness of that node.
The node size in this figure corresponds to the fitness of that
particular node, i.e. a bigger node has a greater fitness value
than a smaller one. Also a small probability that an individ-
ual makes a random jump to a node is considered.

B. Inter-Node Dynamics

Inter-node dynamics commences after one complete
generation, which is set to be M

N timesteps. This is the
part where the movement of agents on the network hap-
pens. In the inter-node phase, each individual in a node
decides with a probability p ∈ [0, 1] (mobility parameter)
to move to a neighboring node and with (1−p), otherwise.
If an individual residing in node i chooses to migrate, it
does so by either randomly choosing a node j to migrate
to which has a small probability q (random jump param-
eter) of realizing or by choosing a node j proportional
to its average fitness. The fitness of a node is calculated
using Eq. 3. Figure II A shows a schematic diagram of
the dynamics where individuals inside node i would have
a higher probability of moving to node j since it has the
highest fitness value compared to all other neighbors of
i. Mathematically, the probability that agents in node i
migrate to node j is,

Πi→j = p

[
Θ(f̄j − f̄i)

(
q

1∑
l ail

+ (1− q) aij(f̄j − f̄i)∑
l ail(f̄l − f̄i)

)]
,

(5)
where aij is the element in row i and column j of the

adjacency matrix (represents the graph under considera-
tion) and takes either one of two values: 1 if an edge i, j
exists or 0, otherwise. Θ(x) is the Heaviside step function
which satisfies Θ(x > 0) = 1 and Θ(x ≤ 0) = 0. This
makes sure that the individual will move to node j only
if the fitness of node j is greater than the fitness of the
individual’s current node i. Thus the movement of the
individuals is governed by a fitness-biased random walk
on a graph, with a small probability of agents making
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random jumps.

III. RESULTS AND DISCUSSION

The model was implemented on two kinds of graphs:
(i) a lattice and (ii) uncorrelated scale-free (SF) graphs.
Both graphs have the same number of nodes (N = 1000)
and the same average degree 〈k〉 = 8. The SF graphs
were generated using the configuration model [30, 31]
with a degree distribution P (k) = k−γ , γ = 2.5. Simula-
tions were averaged over 100 different initial conditions
and, in the case of SF graphs, over 100 different network
realizations.

A. Role of mobility parameter p

Results of the simulation run on a lattice resemble the
case of a well-mixed population. This situation is exactly
achieved when both p and q are set to zero. This is ex-
pected since there is no mobility on the graph and only
individuals on the same node, i.e. in a well-mixed state,
interact. In Fig. II B, we show the behavior of the aver-
age fraction of each strategy on the nodes of the network
as a function of time. Each panel corresponds to differ-
ent values of p. In all cases, the strategy LH is promptly
dominated by the other strategies, which is consistent

with the analytical predictions of the well-mixed case.
However, it can be noticed that the presence of a certain
degree of mobility changes the distribution of the differ-
ent strategies in the node. In particular, for higher values
of p, mobility weakens the dominance of the LL strategy
over the others.

In the case of the SF networks, non-trivial results were
found. We attribute this to the heterogeneity in the de-
gree distribution. In contrast to a lattice, nodes in a SF
graph can play different roles depending on their degree
of connectivity. In each panel found in Fig. II B, we show
the fraction of strategy for two different degree classes:
〈k〉 = 5 and 〈k〉 = 150.

Results show interesting dynamics inside high degree
nodes, where the dominant strategy becomes less and less
ruling as the value of p is increased. The dominance of
the LL strategy becomes weaker, which we surmise is only
strongly supported in the intra-node dynamics. Since a
high value of p means greater mobility for agents, the ef-
fect of intra-node generations counters that of the fitness-
biased mobility. The results found here may shed light
on the possible effects of mobility in instigating segrega-
tion of strategies by weakening the effects of intra-node
dynamics. Moreover, these results for high-degree nodes
would eventually approach that of a well-mixed popu-
lation given an infinite amount of time; but, the more
interesting insight from the model is that the evolution
is found to have varying time scales.
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FIG. 2. Time evolution of the four strategies LL, HL, HH, LH for a lattice of degree 〈k〉 = 8. The three subplots refer to
different values of the mobility parameter p. The random jump parameter q has been set to zero.
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FIG. 3. Time evolution of the four strategies LL (blue), HL (red), HH (green), LH (black) for uncorrelated scale-free graphs
with 〈k〉 = 8. Results for nodes with 〈k〉 = 5 (empty symbols) and 〈k〉 = 150 (full symbols) are shown. The three subplots
refer to different values of the mobility parameter p. The random jump parameter q has been set to zero.
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