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ABSTRACT 

The dynamics of MEMS 3D fluidic self-assembly 

(FSA) was modeled using interactive software agents, 

i.e. by agent-based modeling (ABM). ABM enables 

realistic simulations of 3D FSA dynamics taking into 

account spatial parameters - hard to include in analytic 

models. Our ABM model was tested by reproducing the 

experimental data of Zheng and Jacobs’s 3D FSA 

process, and it was used to investigate the influence of 

design parameters and assembly strategies on FSA yield. 

The ABM model is a significant advance in the 

modeling of FSA and may represent the natural 

framework to explore open issues in this promising field. 

 

1. INTRODUCTION 

Microscale self-assembly, featuring massive 

parallelism and contactless handling of devices, may 

complement, enhance and eventually replace established 

MEMS assembly techniques [1]. Particularly, fluidic 

self-assembly (FSA) exploits fluids for the mass 

transport and stochastic motion of devices in bounded 

assembly spaces, geometric shape-matching for selective 

device assembly and capillary forces for the electro-

mechanical binding of devices. FSA was already adopted 

to assemble and to package microdevices onto several 

types of substrates [2-3] and into 3D functional units [4].  

In general, SA comprises many different phenomena 

(e.g. physico-chemical, collective) that simultaneously 

influence its performance and thus should be considered 

in its modeling. A few analytic models of (F)SA 

processes were proposed in the literature [1, 5, 6]. Such 

models, though, are based on master equation 

formulations inspired by chemical kinetics, i.e. they 

lump all design and control parameters into reaction 

rates. By abstracting from the details, they may capture 

the average process dynamics, but they lack specificity. 

Importantly, they are based on rather simplifying 

assumptions such as, e.g., reaction-limited processes, 

unbounded assembly spaces and point-like components 

[1]. Simulation is therefore the only option. However, on 

the one hand almost all attempts so far focused on quasi-

static FEM modeling of single-component FSA physics 

[7]. FEM cannot properly capture SA dynamics because: 

1) it typically acts at single-component level, excluding 

component interactions and related collective and 

stochastic phenomena; 2) it cannot easily handle systems 

with changing topologies (e.g. components that make 

and break contact). On the other hand, fully-stochastic 

(e.g. Monte Carlo) simulations [8] provide for a level of 

abstraction where spatial constraints and microscopic, 

physical and geometrical details of the processes cannot 

be easily embedded [9].  

Interestingly, agent-based modeling (ABM) – a 

well-understood methodology used for a wide range of 

applications [10] – can handle spatial constraints and 

describe the physics of multi-body interactions at the 

system level. 

 

 
Figure 1. The 3D FSA process developed by Zheng and Jacobs 

[4]. LEDs stochastically assembled into shape-matching glass 

carriers, and were thereby retained by the capillary forces of 

molten solder. The same authors proposed a closed-form 

model of the process, which we recently generalized to include 

dis-assembly events [1]. (Illustration courtesy of H. O. Jacobs). 

 

We hereby propose the modeling of MEMS FSA 

using software agents with pre-defined features, spatially 

moving and interacting according to programmable rules 

that encode physical laws and constraints. Finite 

component dimensions, bounded assembly spaces, 

diffusion-limited and stochastic collision dynamics 

among multiple components can straightforwardly be 

encoded in ABM models, which furthermore allow large 

freedom to implement realistic physical interactions. We 

illustrate our ABM 3D FSA model by reproducing the 

experimental data of Zheng and Jacobs’ FSA process 

(Fig. 1) [4]. We then use the model to investigate the 

influence of several design parameters and assembly 

strategies on FSA yield, and finally to predict a possible 

history of a yet-unperformed FSA process involving 3 

co-existing sets of components. Incidentally, our model 

may represent a 3D extension of the 2D microscopic 

model proposed by Mermoud [9]. 
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Figure 2. The customized NetLogo graphical interface of our 3D FSA agent-based model. a) Control parameters and real-time 

statistics, b) snapshot from a simulation of Zheng and Jacobs’ 3D FSA process (compare with Fig. 1) between two sets of agents 

(magenta = LEDs, cyan = glass carriers) self-assembling into packaged (red) units by the MCCS criterion (illustrated in Fig. 3). 

2. ABM OF 3D FSA PROCESSES 

We developed our agent-based model of 3D FSA 

using NetLogo1 (NL) [11]. Our customized interface is 

shown in Fig. 2. NL concurrently simulates the 

behavior of many interacting agents, as specified by 

programmable boundary conditions and interaction 

rules. NL allows controlling all roto-translational 

degrees of freedom and the instantaneous direction of 

movement of each agent. We could therefore define 

interaction rules that reproduced the geometry and 

physics of actual (F)SA processes. In our code the 

agents (i.e. the devices to be assembled) were defined 

in terms of number of sets and of agents of each set; 

and by the shape, volume, density and initial speed 

magnitude of each agent. Each agent’s initial position 

and direction of motion was chosen randomly from 

uniform distributions; the initial speed magnitude was 

set equal for all agents. We defined the dimensions of 

the assembly space; and we implemented gravity, the 

fluidic drag (using the Stokes approximation for low 

Reynolds numbers) induced by the hosting fluid on the 

floating agents, and external energy injections to 

simulate agent stirring. We encoded elastic, hard-

sphere 2-body collisions; and we defined 2 alternative 

criteria - either based on probability or on geometric 

conditions (described in Fig. 3) - for sterically-effective 

(i.e. leading to assembly) inter-agent collision. All 

spatial and dynamic parameters were consistently 

scaled with reference to the intrinsic NL volumetric 

unit. We monitored online relevant parameters and 

statistics, such as e.g. detailed assembly history and 

agent velocity distribution. In absence of gravity and 

fluidic drag, the agent velocity distribution assumed (at 

least qualitatively) a Maxwellian profile after 

sufficiently-long simulation times (independently of 

the initial speed magnitude), as expected from the 

perfect gas-like collision mechanics encoded. 

                                                 
1 NetLogo is available at: http://ccl.northwestern.edu/netlogo/ 

Figure 3. Matching capture cross-section (MCCS) criterion 

for effective (i.e. leading to self-assembly) inter-agent 

collisions. Each of the two colliding agents (a1 and a2) has a 

predefined CCS with respect to the direction of mutual 

approach. If, at the time of collision, the instantaneous 

movement direction of either agent is outside its own CCS (as 

for a2, in this case), the collision does not lead to assembly. 

 

We used our agent-based model to investigate the 

effects of several parameters and assembly strategies 

on FSA yield. We adopted the data from the 3D FSA 

process experimentally demonstrated by Zheng and 

Jacobs [4] to test and tune our model, and as a 

reference to which to compare our predictions (see 

Section 3).  

Our model can encode all boundary conditions 

known for a given process to be simulated. Therefore, 

when all these conditions are accordingly set our model 

can fit actual experimental data using in principle a 

single parameter, i.e. either the probability of effective 

collision or each agent’s capture cross-section (CCS). 

This single parameter may be related to the “single-

component-single-carrier” capture time defined by 

Zheng and Jacobs in their original model [4]. 
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3. RESULTS 
 

Full-scale Zheng and Jacobs’ 3D FSA process 

Figure 4 compare simulated and experimental data, 

respectively, for the actual 3D FSA process of Zheng 

and Jacobs for the case with equal numbers of LEDs 

and carriers (= 100). All agent and assembly space 

parameters reflected as much as possible the known 

experimental conditions; we assumed an initial agent 

velocity (not measured by the experimenters) of 100 

mm/s. Fig. 4a shows assembly histories for 3 values of 

the parameter θ, that in the MCCS criterion describes 

each agent’s CCS as a solid angle of ))2/cos(1(2 θπ − . 

As expected, larger CCSs lead to faster assembly; θ = 

80
o
 closely fits experimental data. 

 

Investigations: agent redundancy and density 
In a 10x consistently-downscaled version of the full-

scale system (to reduce computation time), we 

simulated the effects of redundancy (i.e. of LEDs-to- 

carriers ratio; Fig. 5a) and of assembly space-to-

component volume ratio (Fig. 5b) on assembly rates. 

Both higher redundancy and smaller space-to-

component volume ratio increase assembly rates. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. ABM of Zheng and Jacobs’ 3D FSA process. a) 

Full-scale simulations (assembly space volume: 4394 mm3, 

100 LEDs + 100 carriers, initial agent speed: 100 mm/s) 

using the capture cross-section as the only fitting parameter 

(averages and standard deviations of 5 histories shown for 

each CCS value). A CCS defined by θ = 80o can match the 

experimental data, reproduced in b) (LEDs (l) = carriers (c) 

= 100; from [4], courtesy of H. O. Jacobs).  

 

Investigations: assembly strategies 

So far, in all simulated FSA processes, given the 

initial conditions, populations of agents evolved 

according to actual assembly events only. This does 

Figure 5. ABM investigations on a 3D FSA downscaled 

system (reference model: 10 + 10 agents; 10x smaller 

assembly space; 100 mm/s initial speed; assembly criterion: 

MCCS with θ = 80o). Larger redundancy (i.e. LEDs-to-

carriers ratio, here ranging from 1:1 to 5:1) increases the 

assembly rate (a), as well as a smaller space-to-agent volume 

ratio (here ranging from 4 to 11 and 22)(b). Averages and 

standard deviations of 5 histories shown for each parameter.  
 

not necessarily need to be so: agent populations may be 

externally supplied with more of their own agents 

during the assembly process, e.g. according to pre-

defined strategies. We investigated the effects on 

assembly rates of feeding strategies on the downscaled 

FSA system. We devised 3 basic strategies subjected to 

the constraint of constant total number of agents in the 

(fixed) assembly space. Specifically, at the very time of 

every assembly event, a new component was added 

which was: for the “red-up” strategy, an LED; for 

“alter”, alternatively a carrier and a LED; for “red-

down”, a carrier. Furthermore, we set out to investigate 

the role of assembled (thus inert) parts: do they work as 

catalysts or barriers for unassembled agents? For this, 

we devised a strategy (“As-out”) where assemblies 

were removed from the assembly space as soon as they 

formed (i.e. assembly led to agent annihilation). 

Fig. 6 shows the results for the simulated 

strategies. All feeding strategies increased the assembly 

rate as compared to the standard (“none”) case. 

Moreover, feeding LEDs (i.e. increasing redundancy at 

run time and as compared to initial agent populations) 

has larger positive effects on the assembly rates, as 

compared to feeding carriers. Also, our preliminary 

results hint at a barrier (catalyst) role for assemblies 

during the initial (final) stages of the processes, as 

evidenced in comparison with the ordinary case. This is 

however not yet clear, and object of current studies. 

a) 

b) 
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Figure 6. ABM investigations on assembly strategies. 

External feeding of agents during assembly significantly 

affects assembly rates. Assembled agents may work as 

catalysts and barriers in the first and last stages of the 

process, respectively (initial and boundary conditions: 

assembly space: 5 x 5 x 5 mm3; 60 LEDs + 30 carriers; 

initial agent velocity: 100 mm/s; assembly criterion: MCCS 

with θ = 80o). Averages and standard deviations of 5 

histories shown for each strategy. 

 
ABM of a sequential 3D FSA process 

Finally, we used our model to predict the behavior 

of a hypothetical, sequential 3D FSA process involving 

3 sets of agents co-existing in the assembly space. The 

corresponding, constrained assembly sequence was: 

(a1+a2) + a3 → as1 + a3 → as2, as sketched in Fig. 7a. 

Simulations of the proposed process (Fig. 7b) indicated 

that as2’s should increase exponentially, as for a 

single-step assembly process, while as1’s should 

progress in a non-monotonic way, whose details 

sensibly depend on agents’ relative abundance and 

probability of effective collision. Yield of reaction- and 

diffusion-limited processes may thus be compared. 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 7. Hypothetical sequential 3D FSA process. a) All 

agents (a1 to a3) present in the assembly space at starting 

time (illustration elaborated from [4], courtesy of H. O. 

Jacobs). b) Simulated assembly history (initial populations: 

50 a1, 100 a2, 100 a3; initial agent velocity: 100 mm/s; 

assembly space: 15 x 15 x 15 mm3; assembly criterion: 

probabilistic with effective collision probability of 25%). 

4. CONCLUSIONS 
We present ABM as a natural framework to 

numerically explore MEMS FSA’s vast parameter 

space and to elucidate its standing issues – including 

e.g. scaling, collective phenomena and assembly 

strategies. These represent some of the critically 

important tasks for a deeper understanding and wider 

appreciation of FSA processes. 

Our ABM implementation is computationally 

expensive: for each simulation run, NL stores each 

agent’s degrees of freedom, velocity components and 

set of neighboring agents. Also, it constitutes only a 

geometrical approximation of actual (F)SA processes. 

As a long-term perspective, we envision implementing 

the assembly physics and dynamics with physical 

engines embedded in object-oriented codes. This might 

radically increase realism and match with experimental 

details while possibly reducing the simulation time. 
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