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1 THE PHYSICS OF INFORMATION

Why cannot we write the entire 24 volumes of the Encyclopedia Brittanica

on the head of a pin?

R. P. Feynman

Information is carried, stored, retrieved and processed by machines, whether
they be electronic computers or living organisms. All information, which in an
abstract sense one may think of as a string of zeros and ones, has to be carried by
a physical substrate, be it paper, silicon chips or holograms, and the handling of
this information is physical, so information is ultimately constrained by the funda-
mental laws of physics. It is therefore not surprising that physics and information
share a rich interface.

The notion of information as used by Shannon is a generalization of the notion
of entropy, which first appeared in thermodynamics. In thermodynamics entropy
is an abstract quantity depending on heat and temperature whose interpretation is
not obvious. This changed with the theory of statistical mechanics, which explains
and generalizes thermodynamics. Statistical mechanics exploits a decomposition
of a system into microscopic units such as atoms to explain macroscopic phenom-
ena such as temperature and pressure in terms of the statistical properties of the
microscopic units. Statistical mechanics makes it clear that entropy can be re-
garded as a measure of microscopic disorder. The entropy S can be written as
S = −

∑
pi log pi, where pi is the probability of a particular microscopic state, for

example the likelihood that a given atom will have its velocity and position within
a given range.

Shannon realized that entropy is useful to describe disorder in much more gen-
eral settings, which might have nothing to do with atoms or physics. The entropy
of a probability distribution {pi} is well defined as long as pi is well defined. In
this more general context he argued that measuring order and measuring disor-
der are essentially the same – in a situation that is highly disordered, making
a measurement gives a great deal of information, and conversely, in a situation
that is highly ordered, making a measurement gives little information. Thus for a
system that can randomly be in one of several different states the entropy of its
distribution is the same as the information gained by knowing which state i it is
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in. It turns out that the concept of entropy or equivalently information is useful
in many applications that have nothing to do with physics.

It also turns out that thinking in these more general terms is useful for physics.
For example, Shannon’s work makes it clear that entropy is in some sense more
fundamental than the quantities from which it was originally derived. This led
Jaynes to formulate all of statistical mechanics as a problem of maximizing entropy.
In fact, all of science can be viewed as an application of the principle of maximum
entropy, which provides a means of quantifying the tradeoff between simplicity and
accuracy of description. If we want to understand how physical systems can be
used to perform computations, or construct computer memories, it can be useful
to define entropies that may not correspond to thermodynamic entropy. But if
we want to understand the limits to computation it is very useful to think in
thermodynamic or statistical terms. This has become particularly important in
efforts to understand how to take advantage of quantum mechanics to improve
computation. These considerations have given rise to a subfield of physics that is
often called the physics of information.

In this chapter we attempt to explain to a non-physicist where the idea of infor-
mation came from. We begin in Section 2 by describing the origin of the concept
of entropy in thermodynamics, where entropy is just a macroscopic state variable
related to heat flow and temperature, a rather mathematical device without a con-
crete physical interpretation. In Section 3 We then discuss how the microscopic
theory of atoms led to statistical mechanics, which makes it possible to derive
and extend thermodynamics. This led to the definition of entropy in terms of
probabilities on the set of accessible microscopic states of a system and provided
the inspiration for modern information theory starting with the seminal work of
Shannon [Shannon, 1948]. A close examination of the foundations of statistical
mechanics and the need to reconcile the probabilistic and deterministic views of
the world leads us to a discussion of chaotic dynamics in Section 4, where infor-
mation plays a crucial role in quantifying predictability. In Section 5 we discuss
a variety of fundamental issues that emerge in defining information and how one
must exercise care in discussing concepts such as order, disorder, and incomplete
knowledge. We also discuss an alternative form of entropy and its possible rele-
vance for nonequilibrium thermodynamics.

Toward the end of the chapter in Section 6 we give a brief axpose of how
quantum mechanics gives rise to the concept of quantum information. Entirely
new possibilities for information storage and transfer and computation are possible
due to the massive parallel processing inherent in quantum mechanics. We also
point out how entropy can be extended to apply to quantum mechanics to provide
a useful measurement for quantum entanglement. Finally, in Section 7 we make a
small excursion to the interface betweeen quantum theory and general relativity,
where one is confronted with the “ultimate information paradox” posed by the
physics of Black Holes. In this review we have limited ourselves; not all relevant
topics that touch on physics and information have been covered.

In our quest for more and more volume and speed in storing and processing in-
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formation we are naturally led to the smallest scales we can physically manipulate.
We began the introduction by quoting Feynman’s visionary 1959 lecture “Plenty
of room at the bottom” [Feynman, February, 1959)
(and http://www.zyvex.com/feynman.html] where he discusses storing and ma-
nipulating information on the atomic level. Currently commercially available pro-
cessors work at scales of 60 nm (1 nm = 1 nanometer = 10−9 meter). In 2006, IBM
announced circuitry on a 30 nm scale, which indeed makes it possible to write the
Encyclopedia Britannica on the head of a pin, so Feynmann’s speculative remark
in 1959 is now just a marker of the current scale of computation. To make it clear
how close this is to the atomic scale, a square with sides of length 30 nm con-
tains about 1000 atoms. Under the historical pattern of Moore’s law, integrated
circuitry halves in size every 2 years. If we continue on the same trajectory of
improvement, within about 20 years the components will be the size of individual
atoms, and it is difficult to imagine that computers will be able to get any smaller.
Once this occurs information at the atomic scale will be directly connected to our
use of information on a macroscopic scale. There is a certain poetry to this: Once
a computer has components on a quantum scale, the motion of its atoms will no
longer be random, and in a certain sense will not be described by classical statis-
tical mechanics, at the same time that it will be used to process information on a
macroscopic scale.

2 THERMODYNAMICS

The truth of the second law is, therefore, a statistical and not a mathematical

truth, for it depends on the fact that the bodies we deal with consist of

millions of molecules and that we never can get a hold of single molecules

J.C. Maxwell

Thermodynamics is the study of macroscopic physical systems.1 These systems
contain a large number of degrees of freedom, typically of the order of Avogadro’s
number, i.e. NA ≈ 1023. The three laws of thermodynamics describe processes in
which systems exchange energy with each other or with their environment. For
example, the system may do work, or exchange heat or mass through a diffusive
process. A key idea is that of equilibrium, which in thermodynamics is the as-
sumption that the exchange of energy or mass between two systems is the same
in both directions; this is typically only achieved when two systems are left alone
for a long period of time. A process is quasistatic if it always remains close to
equilibrium, which also implies that it is reversible, i.e that the process can be
undone and the system can return to its original state without any external en-
ergy inputs. We distinguish various types of processes, for example an isothermal
process in which the system is in thermal contact with a reservoir that keeps it at

1Many details of this brief expose of selected items from thermodynamics and statistical
mechanics can be found in standard textbooks on these subjects [Reif, 1965; Kittel, 1966; Huang,
1987; Lifschitz and Landau, 1980].
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a fixed temperature. Another example is an adiabatic process in which the system
is kept thermally isolated and the temperature is allowed to change. A system
may also go from one equilibrium state to another via a nonequilibrium process,
such as the free expansion of a gas or the mixing of two fluids, in which case it is
not reversible. No real system is fully reversible, but it is nonetheless a very useful
concept.

The remarkable property of systems in equilibrium is that the macro states can
be characterized by only very few variables, such as the volume V , pressure P ,
temperature T , entropy S, chemical potential µ and particle number N . These
state variables are in general not independent, but rather are linked by an equation
of state, which describes the constraints imposed by physics. A familiar example
is the ideal gas law PV = NAkT , where k is the Boltzmann constant relating
temperature to energy (k = 1.4 × 10−23 joule/Kelvin). In general the state
variables come in pairs, one of which is intensive while the other conjugate variable
is extensive. Intensive variables like pressure or temperature are independent of
system size, while extenstive variables like volume and entropy are proportional
to system size.

In this lightning review we will only highlight the essential features of thermo-
dynamics that are most relevant in connection with information theory.

2.1 The laws

The first law of thermodynamics reads2

(1) dU = d̄Q − d̄W

and amounts to the statement that heat is a form of energy and that energy is
conserved. More precisely, the change in internal energy dU equals the amount of
heat d̄Q absorbed by the system minus the work done by the system, d̄W .

The second law introduces the concept of entropy S, which is defined as the
ratio of heat flow to temperature. The law states that the entropy for a closed
system (with constant energy, volume and number of particles) can never decrease.
In mathematical terms

(2) dS =
d̄Q

T
,

dS

dt
≥ 0.

By using a gas as the canonical example, we can rewrite the first law in proper
differentials as

(3) dU = TdS − PdV,

where PdV is the work done by changing the volume of the container, for example
by compressing the gas with a piston. It follows from the relation between entropy,
heat and temperature that entropy differences can be measured by measuring the

2The bars through the differentials indicate that the quantities following them are not state
variables: the d-bars therefore refer to small quantities rather then proper differentials.
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temperature with a thermometer and the change in heat with a calorimeter. This
illustrates that from the point of view of thermodynamics entropy is a purely
macroscopic quantity.

Engine
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Work

Cold reservoir

Hot reservoir

Q

Q
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Cold reservoir

Hot reservoir

Work Refrigerator

Figure 1. The relation between heat and work illustrating the two formulations of
the second law of thermodynamics. On the left we have the Kelvin formulation.
The ideal engine corresponds to the diagram with the black arrows only. The
second law tells us that the third, grey arrow is necessarily there. The right
picture with only the black arrows corresponds to the ideal refrigerator, and the
third, grey arrow is again required by the second law.

There are two different formulations of the second law. The Kelvin formulation
states that it is impossible to have a machine whose sole effect is to convert heat
into work. We can use heat to do work, but to do so we must inevitably make other
alterations, e.g. letting heat flow from hot to cold and thereby bringing the system
closer to equilibrium. Clausius’ formulation says that it is impossible to have a
machine that only extracts heat from a reservoir at low temperature and delivers
that same amount of heat to a reservoir at higher temperature. Rephrasing these
formulations, Kelvin says that ideal engines cannot exist and Clausius says that
ideal refrigerators can’t exist. See figure 1.

The action of a heat engine or refrigerator machines can be pictured in a diagram
in which the reversible sequence of states the system goes through are a closed
curve, called a Carnot cycle. We give an example for the Kelvin formulation
in figure 2. Imagine a piston in a chamber; our goal is to use the temperature
differential between two reservoirs to do work. The cycle consists of four steps: In
step a → b, isothermal expansion, the system absorbs an amount Q1 of heat from
the reservoir at high temperature T1, which causes the gas to expand and push
on the piston, doing work; In step b → c, adiabatic expansion, the gas continues
to expand and do work, but the chamber is detached from the reservoir, so that
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it no longer absorbs any heat. Now as the gas expands it cools until it reaches
temperature T2. In step c → d, isothermal compression, the surroundings do work
on the gas, as heat flows into the cooler reservoir, giving off an amount Q2 of heat;
and in step d → a, adiabatic compression, the surroundings continue to do work,
as the gas is further compressed (without any heat transfer) and brought back up
to the original temperature. The net work done by the machine is given by the
line integral:

(4) W =
∮

cycle
PdV = enclosed area

which by the first law should also be equal to W = Q1 − Q2 because the internal
energy is the same at the beginning and end of the cycle. We also can calculate
the total net change in entropy of the two reservoirs as

(5) ∆S =
−Q1

T1
+

Q2

T2
≥ 0 ,

where the last inequality has to hold because of the second law. Note that the two
latter equations can have solutions with positive W . The efficiency of the engine
η is by definition the ratio of the work done to the heat entering the system, or

(6) η =
W

Q1
= 1 − Q2

Q1
≤ 1 − T1

T2
.

This equals one for an ideal heat engine, but is less then one for a real engine.
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Figure 2. The Carnot cycle corresponding to the Kelvin formulation of the second
law. The work done by the engine equals the line integral along the closed contour
and is therefore equal to the enclosed area.

A modern formulation of the second law, which in the setting of statistical me-
chanics is equivalent to the statements of Kelvin and Clausius, is the Landauer
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principle, which says that there is no machine whose sole effect is the erasure of
information. There is a price to forgetting: The principle states that the erasure of
information (which is irreversible) is inevitably accompanied by the generation of
heat. In other words, logical irreversibility necessarily involves thermodynamical
irreversibility. One has to generate at least kT ln 2 to get rid of one bit of infor-
mation [Landauer, 1961; Landauer, 1991]. We return to the Landauer principle in
the section on Statistical mechanics.

We just showed that the second law sets fundamental limits on the possible effi-
ciency of real machines like steam engines, refrigerators and information processing
devices. As everybody knows, real engines give off heat and real refrigerators and
real computers need power to do their job. The second law tells us to what extent
heat can be used to perform work. The increase of entropy as we go from one
equilibrium situation to another is related to dissipation and the production of
heat, which is intimately linked to the important notion of irreversibility. A given
action in a closed system is irreversible if it makes it impossible for the system to
return to the state it was in before the action took place without external inputs.
Irreversibility is always associated with production of heat, because heat cannot
be freely converted to other forms of energy (whereas any other form of energy
can always be converted to heat). One can decrease the entropy of a system by
doing work on it, but in doing the work one has to increase the entropy of another
system (or of the system’s environment) by an equal or greater amount.

The theory of thermodynamics taken by itself does not connect entropy with
information. This only comes about when the results are interpreted in terms
of a microscopic theory, in which case temperature can be interpreted as being
related to uncertainty and incoherence in the position of particles. This requires
a discussion of statistical mechanics, as done in the next section.

There is another fundamental aspect to the second law which is important from
an operational as well as philosophical point of view. A profound implication of
the second law is that it defines an “arrow of time”, i.e., it allows us to distinguish
the past from the future. This is in contrast to the fundamental microscopic laws
of physics which are time reversal invariant (except for a few exotic interactions,
that are only very rarely seen under normal conditions as we find them on earth).
If one watches a movie of fundamental processes on the microscopic level it is
impossible to tell whether it is running forwards or backwards. In contrast, if we
watch a movie of macroscopic events, it is not hard to identify irreversible actions
such as the curling of smoke, the spilling of a glass of water, or the mixing of bread
dough, which easily allow us to determine whether we are running in forward or
reverse. More formally, even if we didn’t know which way time were running,
we could pick out some systems at random and measure their entropy at times
t1, t2, . . . The direction in which entropy increases is the one that is going forward
in time. Note that we didn’t define an a priori direction of time in formulating
the second law – it establishes a time direction on its own, without any reference
to atomic theory or any other laws of physics.
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The second law of thermodynamics talks only about the difference between the
entropy of different macrostates. The absolute scale for entropy is provided by the
third law of thermodynamics. This law states that when a system approaches the
absolute zero of temperature the entropy will go to zero, i.e.

(7) T → 0 ⇒ S → 0.

When T = 0 the heat is zero, corresponding classically to no atomic motion, and
the energy takes on its lowest possible value. In quantum theory we know that such
a lowest energy “ground” state also exists, though, if the ground state of the system
turns out to be degenerate the entropy will approach a nonzero constant at zero
temperature. We conclude by emphasizing that the laws of thermodynamics have
a wide applicability and a rich phenomenology that supports them unequivocally.

2.2 Free energy

Physicists are particularly concerned with what is called the (Helmholtz) free en-
ergy, denoted F . It is a very important quantity because it defines the amount
of energy available to do work. As we discuss in the next section, the free en-
ergy plays a central role in establishing the relation between thermodynamics and
statistical mechanics, and in particular for deriving the microscopic definition of
entropy in terms of probabilities.

The free energy is defined as

(8) F ≡ U − TS.

This implies that in differential form we have

(9) dF = dU − TdS − SdT,

which using (3) can be written as

(10) dF = −PdV − SdT.

The natural independent variables to describe the free energy of a gas are volume
and temperature.

Let us briefly reflect on the meaning of the free energy. Consider a system A in
thermal contact with a heat bath A′ kept at a constant temperature T0. Suppose
the system A absorbs heat d̄ Q from the reservoir. We may think of the total
system consisting of system plus bath as a closed system: A0 = A + A′. For A0

the second law implies that its entropy can only increase: dS0 = dS +dS′ ≥ 0. As
the temperature of the heat bath A′ is constant and its absorbed heat is −d̄Q, we
may write T0dS′ = −d̄Q. From the first law applied to system A we obtain that
−d̄Q = −dU − d̄W , so that we can substitute the expression T0dS′ = −dU − d̄W
in T0dS + T0dS′ ≥ 0 to get −dU + T0dS ≥ d̄ W . As the system A is kept at a
constant temperature the left hand side is just equal to −dF , demonstrating that

(11) −dF ≥ d̄W.
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The maximum work that can be done by the system in contact with a heat reservoir
is (−dF ). If we keep the system parameters fixed, i.e. d̄ W = 0, we obtain that
dF ≤ 0, showing that for a system coupled to a heat bath the free energy can
only decrease, and consequently in a thermal equilibrium situation the free energy
reaches a minimum. This should be compared with the entropy, which reaches a
maximum at equilibrium.

We can think of the second law as telling us how different kinds of energy are
converted into one another: In an isolated system, work can be converted into
heat, but heat cannot be converted into work. From a microscopic point of view
forms of energy that are “more organized”, such as light, can be converted into
those that are “less organized”, such as the random motion of particles, but the
opposite is not possible.

From Equation (10) the pressure and entropy of a gas can be written as partial
derivatives of the free energy

(12) P =
(

∂F

∂V

)

T

, S =
(

∂F

∂T

)

V

.

So we see that for a system in thermal equilibrium the entropy is a state variable,
meaning that if we reversibly traverse a closed path we will return to the same value
(in contrast to other quantities, such as heat, which do not satisfy this property).
The variables P and S are dependent variables. This is evident from the Maxwell
relation, obtained by equating the two second derivatives

(13)
∂2F

∂T∂V
=

∂2F

∂V ∂T
,

yielding the relation

(14)
(

∂P

∂T

)

V

=
(

∂S

∂V

)

T

.

3 STATISTICAL MECHANICS

In dealing with masses of matter, while we do not perceive the individual

molecules, we are compelled to adopt what I have described as the statistical

method of calculation, and to abandon the strict dynamical method, in which

we follow every motion by the calculus.

J.C. Maxwell

We are forced to be contented with the more modest aim of deducing some of

the more obvious propositions relating to the statistical branch of mechanics.

Here there can be no mistake in regard to the agreement with the facts of

nature.

J.W. Gibbs
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Statistical mechanics is the explanation of the macroscopic behavior of physical
systems using the underlying microscopic laws of physics, even though the mi-
croscopic states, such as the position and velocity of individual particles, are un-
known. The key figures in the late 19th century development of statistical mechan-
ics were Maxwell, Boltzmann and Gibbs [Maxwell, 1872; Boltzmann, 1896-1898;
Gibbs, 1902]. One of the outstanding questions was to derive the laws of thermo-
dynamics, in particular to give a microscopic definition of the notion of entropy.
Another objective was the understanding of phenomena that cannot be computed
from thermodynamics alone, such as transport phenomena. For our purpose of
highlighting the links with information theory we will give a brief and somewhat
lopsided introduction. Our main goal is to show the origin of the famous expression
due to Gibbs for the entropy, S = −

∑
i pi ln pi, which was later used by Shannon

to define information.

3.1 Definitions and postulates

Considerable semantic confusion has resulted from failure to distinguish be-

tween prediction and interpretation problems, and attempting a single for-

malism to do both.

T.S. Jaynes

Statistical mechanics considers systems with many degrees of freedom, such as
atoms in a gas or spins on a lattice. We can think in terms of the microstates of the
system which are, for example, the positions and velocities of all the particles in a
vessel with gas. The space of possible microstates is called the phase space. For a
monatomic gas with N particles, the phase space is 6N -dimensional, corresponding
to the fact that under Newtonian mechanics there are three positions and three
velocities that must be measured for each particle in order to determine its future
evolution. A microstate of the whole system thus corresponds to a single point in
phase space.

Statistical mechanics involves the assumption that, even though we know that
the microstates exist, we are largely ignorant of their actual values. The only
information we have about them comes from macroscopic quantities, which are
bulk properties such as the total energy, the temperature, the volume, the pressure,
or the magnetization. Because of our ignorance we have to treat the microstates
in statistical terms. But the knowledge of the macroscopic quantities, along with
the laws of physics that the microstates follow, constrain the microstates and
allow us to compute relations between macroscopic variables that might otherwise
not be obvious. Once the values of the macroscopic variables are fixed there
is typically only a subset of microscopic states that are compatible with them,
which are called the accessible states. The number of accessible states is usually
huge, but differences in this number can be very important. In this chapter we
will for simplicity assume a discrete set of microstates, but the formalism can be
straightforwardly generalized to the continuous case.
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The first fundamental assumption of statistical mechanics is that in equilibrium
a closed system has an equal a priori probability to be in any of its accessible
states. For systems that are not closed, for example because they are in thermal
contact or their particle number is not constant, the set of accessible states will
be different and their probabilities have to be calculated. In either case we as-
sociate an ensemble of systems with a characteristic probability distribution over
the allowed microscopic states. Tolman [1938] clearly describes the notion of an
ensemble:

In using ensembles for statistical purposes, however, it is to be noted that

there is no need to maintain distinctions between individual systems since

we shall be interested merely in the number of systems at any time which

would be found in the different states that correspond to different regions

of phase space. Moreover, it is also to be noted for statistical purposes

that we shall wish to use ensembles containing a large enough population of

separate members so that the number of systems in such different states can

be regarded as changing continuously as we pass from the states lying in one

region of the phase space to those in another. Hence, for the purpose in view,

it is evident that the condition of an ensemble at any time can be regarded

as appropriately specified by the density r with which representative points

are distributed over phase space.

The second postulate of statistical mechanics, called ergodicity, says that time
averages correspond to ensemble averages. That is, on one hand we can take
the time average by following the deterministic motion of the all the microscopic
variables of all the particles making up a system. On the other hand, at a given
instant in time we can take an average over all possible accessible states, weighting
them by their probability of occurrence. The ergodic hypothesis says that these
two averages are the same. We return to the restricted validity of this hypothesis
in the section on nonlinear dynamics.

3.2 Counting microstates for a system of magnetic spins

In the following example we show how it is possible to derive the distribution of
microscopic states through the assumption of equipartition and simple counting
arguments. This also illustrates that the distribution over microstates becomes
extremely narrow in the thermodynamic (i.e. N → ∞ limit). Consider a system
of N magnetic spins that can only take two values sj = ±1, corresponding to
whether the spin is pointing up or down (often called Ising spins). The total
number of possible configurations equals 2N . For convenience assume N is even,
and that the spins do not interact. Now put these spins in an upward pointing
magnetic field H and ask how many configurations of spins are consistent with each
possible value of the energy. The energy of each spin is ej = ∓µH, and because
they do not interact, the total energy of the system is just the sum of the energies
of each spin. For a configuration with k spins pointing up and N−k spins pointing
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down the total energy can be written as εm = 2mµH with m ≡ (N − 2k)/2 and
−N/2 ≤ m ≤ N/2. The value of εm is bounded : −NµH ≤ εm ≤ NµH and
the difference between two adjacent energy levels, corresponding to the flipping of
one spin, is ∆ε = 2µH. The number of microscopic configurations with energy εm

equals

(15) g(N,m) = g(N,−m) =
N !

( 1
2N + m)!(1

2N − m)!
.

The total number of states is
∑

m g(N,m) = 2N . For a thermodynamic system N
is really large, so we can approximate the factorials by the Stirling formula

(16) N ! ∼=
√

2πNNNe−N+···

Some elementary math gives the Gaussian approximation for the binomial distri-
bution for large N ,

(17) g(N,m) ∼= 2N

(
2

πN

) 1
2

e−2m2/N .

We will return to this system later on, but at this point we merely want to show
that for large N the distribution is sharply peaked. Roughly speaking the width
of the distribution grows with

√
N while the peak height grows as 2N , so the

degeneracy of the states around m = 0 increases very rapidly. For example
g(50, 0) = 1.264 × 1014, but for N ≈ NA one has g(NA, 0) ∼= 101022

. We will
return to this example in the following section to calculate the magnetization of a
spin system in thermal equilibrium.

3.3 The Maxwell-Boltzmann-Gibbs distribution

Maxwell was the first to derive an expression for the probability distribution pi

for a system in thermal equilibrium, i.e. in thermal contact with a heat reservoir
kept at a fixed temperature T . This result was later generalized by Boltzmann
and Gibbs. An equilibrium distribution function of an ideal gas without external
force applied to it should not depend on either position or time, and thus can
only depend on the velocities of the individual particles. In general there are
interactions between the particles that need to be taken into account. A simplifying
assumption that is well justified by probabilistic calculations is that processes in
which two particles interact at once are much more common than those in which
three or more particles interact. If we assume that the velocities of two particles
are independent before they interact we can write their joint probability to have
velocities v1 and v2 as a product of the probability for each particle alone. This
implies p(v1, v2) = p(v1)p(v2). The same holds after they interact: p(v′

1, v
′
2) =

p(v′
1)p(v′

2). In equilibrium, where nothing can depend on time, the probability
has to be the same afterward, i.e. p(v1, v2) = p(v′

1, v
′
2). How do we connect

these conditions before and after the interaction? A crucial observation is that
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there are conserved quantities that are preserved during the interaction and the
equilibrium distribution function can therefore only depend on those. Homogeneity
and isotropy of the distribution function selects the total energy of the particles as
the only function on which the distribution depends. The conservation of energy
in this situation boils down to the simple statement that 1

2mv2
1 + 1

2mv2
2 = 1

2mv′
1
2+

1
2mv′

2
2. From these relations Maxwell derived the well known thermal equilibrium

velocity distribution,

(18) p0(v) = n
( m

2πT

)3/2
e−mv2/2kT .

The distribution is Gaussian. As we saw, to derive it Maxwell had to make a
number of assumptions which were plausible even though they couldn’t be derived
from the fundamental laws of physics. Boltzmann generalized the result to include
the effect of an external conservative force, leading to the replacement of the kinetic
energy in (18) by the total conserved energy, which includes potential as well as
kinetic energy.

Boltzmann’s generalization of Maxwell’s result makes it clear that the proba-
bility distribution pi for a general system in thermal equilibrium is given by

(19) pi =
e−εi/T

Z
.

Z is a normalization factor that ensures the conservation of probability, i.e.
∑

i pi =
1. This implies that

(20) Z ≡
∑

i

e−εi/T .

Z is called the partition function. The Boltzmann distribution describes the canon-
ical ensemble, that is it applies to any situation where a system is in thermal
equilibrium and exchanging energy with its environment. This is in contrast to
the microcanonical ensemble, which applies to isolated systems where the energy
is constant, or the grand canonical ensemble, which applies to systems that are
exchanging both energy and particles with their environment3. To illustrate the
power of the Boltzmann distribution let us briefly return to the example of the
thermal distribution of Ising spins on a lattice in an external magnetic field. As
we pointed out in section (3.2), the energy of a single spin is ±µH. According to
the Boltzmann distribution, the probabilities of spin up or spin down are

(21) p± =
e∓µH/T

Z
.

The spin antiparallel to the field has lowest energy and therefore is favored. This
leads to an average field dependent magnetization mH (per spin)

3Gibbs extended the Boltzmann result to situations where the number of particles is not
fixed, leading to the introduction of the chemical potential. Because of its complicated history,
the exponential distribution is referred to by a variety of names, including Gibbs, Boltzmann,
Boltzmann-Maxwell, and Boltzmann-Gibbs.
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(22) mH = 〈µ〉 =
µp+ + (−µ)p−

p+ + p−
= µ tanh

uH

T
.

This example shows how statistical mechanics can be used to establish relations
between macroscopic variables that cannot be obtained using thermodynamics
alone.

3.4 Free energy revisited

In our discussion of thermodynamics in section 2.2 we introduced the concept of
the free energy F defined by equation 8, and argued that it plays a central role
for systems in thermal contact with a heat bath, i.e. systems kept at a fixed
temperature T . In the previous section we introduced the concept of the partition
function Z defined by equation 20. Because all thermodynamic quantities can be
calculated from it, the importance of the partition function Z goes well beyond
its role as a normalization factor. The free energy is of particular importance,
because its functional form leads directly to the definition of entropy in terms of
probabilities. We can now directly link the thermodynamical quantities to the
ones defined in statistical mechanics. This is done by postulating4 the relation
between the free energy and the partition function as5

(23) F = −T lnZ,

or alternatively Z = e−F/T . From this definition it is possible to calculate all
thermodynamical quantities, for example using equations (12). We will now derive
the expression for the entropy in statistical mechanics in terms of probabilities.

3.5 Gibbs entropy

The definition of the free energy in equation (8) implies that

(24) S =
U − F

T
.

From (23) and (19) it follows that

(25) F = εi + T ln pi.

Note that even though both the terms on the right depend on i the free energy F
is independent of i. The equilibrium value for the internal energy is by definition

(26) U = 〈ε〉 ≡
∑

i

εi pi .

4Once we have identified a certain macroscopic quantity like the free energy with a microscopic
expression, then of course the rest follows. Which expression is taken as the starting point for
the identification is quite arbitrary. The justification is a posteriori in the sense that the well
known thermodynamical relations should be recovered.

5Boltzmann’s constant k relates energy to temperature. Its value in conventional units is
1.4×10−23joule/kelvin, but we have set it equal to unity, which amounts to choosing a convenient
unit for energy or temperature.



The Physics of Information 631

With these expressions for S, F and U , and making use of the fact that F is
independent of i and

∑
i pi = 1, we can rewrite the entropy in terms of the

probabilities pi and arrive at the famous expression for the entropy:

(27) S = −
∑

i

pi ln pi .

This expression is usually called the Gibbs entropy6.
In the special case where the total energy is fixed, the w different (accessible)

states all have equal a priori probability pi = p = 1/w. Substitution in the Gibbs
formula yields the expression in terms of the number of accessible states, originally
due to Boltzmann (and engraved on his tombstone):

(28) S = lnw.

We emphasize that the entropy grows logarithmically with the number of accessible
states7. Consider a system consisting of a single particle that can be in one of
two states. Assuming equipartition the entropy is S1 = ln 2. For a system with
Avogadro’s number of particles N ∼ 1023, there are 2N states and if we assume
independence the entropy is SN = ln 2N = NS1, a very large number. The
tendency of a system to maximize its entropy is a probabilistic statement: The
number of states with half of the particles in one state and half in the other is
enormously larger than the number in which all the particles are in the same state,
and when the system is left free it will relax to the most probable accessible state.
The state of a gas particle depends not only on its allowed position (i.e. the volume
of the vessel), but also on its allowed range of velocities: If the vessel is hot that
range is larger then when the vessel is cold. So for an ideal gas one finds that
the entropy increases with the logarithm of the temperature. The fact that the
law is a probabilistic implies that it is not completely impossible that the system
will return to a highly improbable initial state. Poincaré showed that it is bound
to happen and gave an estimate of the recurrence time (which for a macroscopic
system is much larger than the lifetime of the universe).

The Gibbs entropy transcends its origins in statistical mechanics. It can be
used to describe any system with states {ψi} and a given probability distribution
{pi}. Credit for realizing this is usually given to Shannon [Shannon, 1948], al-
though antecedents include Szilard, Nyquist and Hartley. Shannon proposed that
by analogy to the entropy S, information can be defined as

(29) H ≡ −
∑

i

pi log2 pi.

6In quantum theory this expression is replaced by S = −Tr ρ ln ρ where ρ is the density
matrix of the system.

7These numbers can be overwhelmingly large. Imagine two macrostates of a system which
differ by 1 millicalorie at room temperature. The difference in entropy is ∆S = −∆Q/T =
10−3/293 ≈ 10−5. Thus the ratio of the number of accessible states is w2/w1 = exp(∆S/k) ≈
exp(1018), a big number!
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In information theory it is common to take logarithms in base two and drop the
Boltzmann constant8. Base two is a natural choice of units when dealing with
binary numbers and the units of entropy in this case are called bits; in contrast,
when using the natural logarithm the units are called nats, with the conversion
that 1 nat =1.443 bits . For example a memory consisting of 5 bits (which is
the same as a system of 5 Ising spins), has N = 25 states. Without further
restrictions all of these states (messages) have equal probability i.e. pi = 1/N so
that the information content is H = −N 1

N log2
1
N = log2 25 = 5 bits. Similarly

consider a DNA-molecule with 10 billion base pairs, each of which can be in one
of four combinations (A-T,C-G,T-A,G-C). The molecule can a priori be in any of
41010

configurations so the naive information content (assuming independence) is
H = 2 × 1010 bits. The logarithmic nature of the definition is unavoidable if one
wants the additive property of information under the addition of bits. If in the
previous spin example we add another string of 3 bits then the total number of
states is N = N1N2 = 25×23 = 28 from which it also follows that H = H1 +H2 =
8. If we add extra ab initio correlations or extra constraints we reduce the number
of independent configurations and consequently H will be smaller.

As we will discuss in Section 5, this quantitative definition of information and its
applications transcend the limited origin and scope of conventional thermodynam-
ics and statistical mechanics, as well as Shannon’s original purpose of describing
properties of communication channels. See also [Brillouin, 1956].

4 NONLINEAR DYNAMICS

The present state of the system of nature is evidently a consequence of what

it was in the preceding moment, and if we conceive of an intelligence which at

a given instant comprehends all the relations of the entities of this universe,

it could state the respective position, motions, and general effects of all these

entities at any time in the past or future.

Pierre Simon de Laplace (1776)

A very small cause which escapes our notice determines a considerable effect

that we cannot fail to see, and then we say that the effect is due to chance.

Henri Poincaré (1903).

From a naive point of view statistical mechanics seems to contradict the deter-
minism of Newtonian mechanics. For any initial state x(0) (a vector of positions
and velocities) Newton’s laws define a dynamical system φt (a set of differential
equations) that maps x(0) into its future states x(t) = φt(x(0)). This is com-
pletely deterministic. As Laplace so famously asserted, if mechanical objects obey
Newton’s laws, why do we need to discuss perfect certainties in statistical terms?
Laplace partially answered his own question:

8In our convention k=1, so H = S/ ln 2.
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. . . But ignorance of the different causes involved in the production of events,

as well as their complexity, taken together with the imperfection of analysis,

prevent our reaching the same certainty [as in astronomy] about the vast

majority of phenomena. Thus there are things that are uncertain for us,

things more or less probable, and we seek to compensate for the impossibility

of knowing them by determining their different degrees of likelihood. So it

is that we owe to the weakness of the human mind one of the most delicate

and ingenious of mathematical theories, the science of chance or probability.

Laplace clearly understood the need for statistical descriptions, but at that point in
time was not fully aware of the consequences of nonlinear dynamics. As Poincaré
later showed, even without human uncertainty (or quantum mechanics), when
Newton’s laws give rise to differential equations with chaotic dynamics, we in-
evitably arrive at a probabilistic description of nature. Although Poincaré discov-
ered this in the course of studying the three body problem in celestial mechanics,
the answer he found turns out to have relevance for the reconciliation of the de-
terministic Laplacian universe with statistical mechanics.

4.1 The ergodic hypothesis

As we mentioned in the previous section, one of the key foundations in Boltzmann’s
formulation of statistical mechanics is the ergodic hypothesis. Roughly speaking,
it is the hypothesis that a given trajectory will eventually find its way through
all the accessible microstates of the system, e.g. all those that are compatible
with conservation of energy. At equilibrium the average length of time that a
trajectory spends in a given region of the state space is proportional to the number
of accessible states the region contains. If the ergodic hypothesis is true, then time
averages equal ensemble averages, and equipartition is a valid assumption.

The ergodic hypothesis proved to be highly controversial for good reason: It is
generally not true. The first numerical experiment ever performed on a computer
took place in 1947 at Los Alamos when Fermi, Pasta, and Ulam set out to test the
ergodic hypothesis. They simulated a system of masses connected by nonlinear
springs. They perturbed one of the masses, expecting that the disturbance would
rapidly spread to all the other masses and equilibrate, so that after a long time
they would find all the masses shaking more or less randomly. Instead they were
quite surprised to discover that the disturbance remained well defined – although
it propagated through the system, it kept its identity, and after a relatively short
period of time the system returned very close to its initial state. They had in fact
rediscovered a phenomenon that has come to be called a soliton, a localized but
very stable travelling disturbance. There are many examples of nonlinear systems
that support solitons. Such systems do not have equal probability to be in all their
accessible states, and so are not ergodic.

Despite these problems, there are many examples where we know that statis-
tical mechanics works extremely well. There are even a few cases, such as the
hard sphere gas, where the ergodic hypothesis can actually be proved. But more
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typically this is not the case. The evidence for statistical mechanics is largely
empirical: we know that it works, at least to a very high degree of approxima-
tion. Subsequent work has made it clear that the typical situation is much more
complicated than was originally imagined. While some trajectories may wander
in more or less random fashion around much of the accessible phase space, they
are blocked from entering certain regions by what are called KAM (Kolomogorov-
Arnold-Moser) tori. Other initial conditions yield trajectories that make regular
motions and lie on KAM tori trajectories. The KAM tori are separated from each
other, and have a lower dimension than the full accessible phase space. Such KAM
tori correspond to situations in which there are other conversation laws in addition
to the conservation of energy, which may depend on initial conditions as well as
other parameters9. Solitons are examples of this in which the solutions can be
interpreted as a geometrically isolated pulse.

There have now been an enormous number of studies of ergodicity in nonlinear
dynamics. While there are no formal theorems that definitively resolve this, the
accumulated lore from these studies suggests that for nonlinear systems that do
not have hidden symmetries, as the number of interacting components increases
and nonlinearities become stronger, the generic behavior is that chaotic behav-
ior becomes more and more likely – the KAM tori shrink, fewer and fewer initial
conditions are trapped on them, and the regions they exclude become smaller.
The ergodic hypothesis becomes an increasingly better approximation, a typical
single trajectory can reach almost all accessible states, and equipartition becomes
a good assumption. The problems occur in understanding when there are hidden
symmetries that can support phenomena like solitons. The necessary and suffi-
cient conditions for ergodicity to be a good assumption remains an active field of
research.

4.2 Chaos and limits to prediction

The discovery of chaos makes it clear that Boltzmann’s use of probability is even
more justified than he realized. When motion is chaotic, two infinitesimally
nearby trajectories separate at an exponential rate [Lorenz, 1963; Shaw, 1981;
Crutchfield et al., 1986; Strogatz, 1994]. This is a geometric property of the un-
derlying nonlinear dynamics. From a linear point of view the dynamics are locally
unstable. To make this precise, consider two N dimensional initial conditions x(0)
and x′(0) that are initially separated by an infinitesimal vector δx(0) = x(0)−x′(0).
Providing the dynamical system is differentiable, the separation will grow as

(30) δx(t) = Dφt(x(0))δx(0),

where Dφt(x(0)) is the derivative of the dynamical system φt evaluated at the
initial condition x(0). For any fixed time t and initial condition x(0), Dφt is just

9Dynamical systems that conserve energy and obey Newton’s laws have special properties
that cause the existence of KAM tori. Dissipative systems typically have attractors, subsets of
the state space that orbits converge onto. Energy conserving systems do not have attractors,
and often have chaotic orbits tightly interwoven with regular orbits.
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an N × N matrix, and this is just a linear equation. If the motion is chaotic
the length of the separation vector δx will grow exponentially with t in at least
one direction, as shown in Figure 3. The figure shows how the divergence of
nearby trajectories is the underlying reason chaos leads to unpredictability. A
perfect measurement would correspond to a point in the state space, but any
real measurement is inaccurate, generating a cloud of uncertainty. The true state
might be anywhere inside the cloud. As shown here for the Lorenz equations (a
simple system of three coupled nonlinear differential equations [Lorenz, 1963]), the
uncertainty of the initial measurement is represented by 10,000 dark dots, initially
so close together that they form a single dark spot (t = 0, top right); a single
trajectory is shown for reference in light dark. As each point moves under the
action of the equations, the cloud is stretched into a long, thin dark thread, which
then folds over onto itself many times, until the points are mixed more or less
randomly over the entire attractor. Prediction has now become impossible: the
final state can be anywhere on the attractor. For a regular motion, in contrast,
all the final states remain close together. We can think about this in information
theoretic terms; for a chaotic motion information is initially lost at a linear rate
which eventually results in all the information being lost – for a regular motion the
information loss is relatively small. The numbers above the illustration are in units
of 1/200 of the natural time units of the Lorenz equations. (From [Crutchfield et
al., 1986]).

Nonetheless, at the same time the motion can be globally stable, meaning that
it remains contained inside a finite volume in the phase space. This is achieved by
stretching and folding – the nonlinear dynamics knead the phase space through
local stretching and global folding, just like a baker making a loaf of bread. Two
trajectories that are initially nearby may later be quite far apart, and still later,
may be close together again. This property is called mixing. More formally, the
dynamics are mixing over a given set Σ and invariant measure10 µ with support
Σ such that for any subsets A and B

(31) lim
t→∞

µ(φtB ∩ A) = µ(A)µ(B).

Intuitively, this just means that B is smeared throughout Σ by the flow, so that
the probability of finding a point originating in B inside of A is just the original
probability of B, weighted by the probability of A. Geometrically, this happens
if and only if the future trajectory of B is finely “mixed” throughout Σ by the
stretching and folding action of φt.

Mixing implies ergodicity, so any dynamical system that is mixing over Σ will
also be ergodic on Σ. It only satisfies the ergodic hypothesis, however, if Σ is the
set of accessible states. This need not be the case. Thus, the fact that a system has
orbits with chaotic dynamics doesn’t mean that it necessarily satisfies the ergodic

10A measure is invariant over a set Σ with respect to the dynamics φt if it satisfies the condition
µ(A) = µ(φ−t(A)), where A is any subset of Σ. There can be many invariant measures, but the
one that we have in mind throughout is the one corresponding to time averages.
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Figure 3. The divergence of nearby trajectories for the Lorenz equations. See the
text for an explanation
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hypothesis – there may be still be subsets of finite volume in the phase space that
are stuck making regular motions, for example on KAM tori.

Nonetheless, chaotic dynamics has strong implications for statistical mechanics.
If a dynamical system is ergodic but not mixing11, by measuring the microstates
it is in principle possible to make detailed long range predictions by measuring the
position and velocity of all its microstates, as suggested by Laplace. In contrast, if
it is mixing then even if we know the initial values of the microstates at a high (but
finite) level of precision, all this information is asymptotically lost, and statistical
mechanics is unavoidable12.

4.3 Quantifying predictability

Information theory can be used to quantify predictability [Shaw, 1981]. To begin
the discussion, consider a measuring instrument with a uniform scale of resolution
ε. For a ruler, for example, ε is the distance between adjacent graduations. If such
a measuring instrument is assigned to each of the N real variables in a dynamical
system, the graduations of these instruments induce a partition Π of the phase
space, which is a set of non-overlapping N dimensional cubes, labeled Ci, which
we will call the outcomes of the measurement. A measurement determines that
the state of the system is in a given cube Ci. If we let transients die out, and
restrict our attention to asymptotic motions without external perturbations, let
us assume the motion is confined to a set Σ (which in general depends on the
initial condition). We can then compute the asymptotic probability of a given
measurement by measuring its frequency of occurrence pi, and if the motion is
ergodic on Σ, then we know that there exists an invariant measure µ such that
pi = µ(Ci). To someone who knows the invariant measure µ but knows nothing
else about the state of the system, the average information that will be gained in
making a measurement is just the entropy

(32) I(ε) = −
∑

i

pi log pi.

We are following Shannon in calling this “information” since it represents the
element of surprise in making the measurement. The information is written I(ε)
to emphasize its dependence on the scale of resolution of the measurements. This
can be used to define a dimension for µ. This is just the asymptotic rate of increase
of the information with increasing resolution, i.e.

(33) D = lim
ε→0

I(ε)
| log ε| .

11A simple example of a system that is ergodic but not mixing is a dynamical system whose
solution is the sum of two sinusoids with irrationally related frequencies.

12An exception is that some systems display phase invariance even while they are chaotic.
The orbits move around an attractor, being chaotically scrambled transverse to their direction
of motion but keeping their timing for completing a circuit of the attractor [Farmer et al., 1980].
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This is called the information dimension [Farmer, 1982]. Note that this reduces
to what is commonly called the fractal dimension when pi is sufficiently smooth,
i.e. when

∑
i pi log pi ≈ log n, where n is the number of measurement outcomes

with nonzero values of pi.
This notion of dimension can be generalized by using the Rényi entropy Rα

(34) Rα =
1

1 − α
log

∑

i

pα
i

where α ≥ 0 and α 0= 1. The value for α = 1 is defined by taking the limit as
α → 1, which reduces to the usual Shannon entropy. By replacing the Shannon
entropy by the Rényi entropy it is possible to define a generalized dimension dα.
This contains the information dimension in the special case α = 1. This has proved
to be very useful in the study of multifractal phenomena (fractals whose scalings
are irregular). We will say more about the use of such alternative entropies in the
next section.

The discussion so far has concerned the amount of information gained by an
observer in making a single, isolated measurement, i.e. the information gained in
taking a “snapshot” of a dynamical system. We can alternatively ask how much
new information is obtained per unit time by an observer who is watching a movie
of a dynamical system. In other words, what is the information acquisition rate of
an experimenter who makes a series of measurements to monitor the behavior of a
dynamical system? For a regular dynamical system (to be defined more precisely
in a moment) new measurements asymptotically provide no further information in
the limit t → ∞. But if the dynamical system is chaotic, new measurements are
constantly required to update the knowledge of the observer in order to keep the
observer’s knowledge of the state of the system at the same resolution.

This can be made more precise as follows. Consider a sequence of m measure-
ments (x1, x2, . . . , xm) = Xm, where each measurement corresponds to observing
the system in a particular N dimensional cube. Letting p(Xm) be the probability
of observing the sequence Xm, the entropy of this sequence of measurements is

(35) Hm = −
∑

i

p(Xm) log p(Xm)

We can then define the information acquisition rate as

(36) h = lim
m→∞

Hm

m∆t
.

∆t is the sampling rate for making the measurements. Providing ∆t is sufficiently
small and other conditions are met, h is equal to the metric entropy, also called
the Kolmogorov-Sinai (KS) entropy13. Note that this is not really an entropy,

13In our discussion of metric entropy we are sweeping many important mathematical formalities
under the rug. For example, to make this definition precise we need to take a supremum over
all partitions and sampling rates. Also, it is not necessary to make the measurements in N
dimensions – there typically exists a one dimensional projection that is sufficient, under an
optimal partition.
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but an entropy production rate, which (if logs are taken to base 2) has units of
bits/second. If h〉0 the motion is chaotic, and if h = 0 it is regular. Thus, when
the system is chaotic, the entropy Hm contained in a sequence of measurements
continues to increase even in the limit as the sequence becomes very long. In
contrast, for a regular motion this reaches a limiting value.

Although we have so far couched the discussion in terms of probabilities, the
metric entropy is determined by geometry. The average rates of expansion and
contraction in a trajectory of a dynamical system can be characterized by the
spectrum of Lyapunov exponents. These are defined in terms of the eigenvalues
of Dφt, the derivative of the dynamical system, as defined in equation 30. For a
dynamical system in N dimensions, let the N eigenvalues of the matrix Dφt(x(0))
be αi(t). Because Dφt is a positive definite matrix, the αi are all positive. The
Lyapunov exponents are defined as λi = limt→∞ log αi(t)/t. To think about this
more geometrically, imagine an infinitesimal ball that has radius ε(0) at time t = 0.
As this ball evolves under the action of the dynamical system it will distort. Since
the ball is infinitesimal, however, it will remain an ellipsoid as it evolves. Let
the principal axes of this ellipsoid have length εi(t). The spectrum of Lyapunov
exponents for a given trajectory passing through the initial ball is

(37) λi = lim
t→∞

lim
ε(0)→0

1
t

log
εi(t)
ε(0)

.

For an N dimensional dynamical system there are N Lyapunov exponents. The
positive Lyapunov exponents λ+ measure the rates of exponential divergence, and
the negative ones λ− the rates of convergence. They are related to the metric
entropy by Pesin’s theorem

(38) h =
∑

i

λ+
i .

In other words, the metric entropy is the sum of the positive Lyapunov exponents,
and it corresponds to the average exponential rate of expansion in the phase space.

Taken together the metric entropy and information dimension can be used to
estimate the length of time that predictions remain valid. The information di-
mension allows an estimate to be made of the information contained in an initial
measurement, and the metric entropy estimates the rate at which this information
decays.

As we have already seen, for a series of measurements the metric entropy tells
us the information gained with each measurement. But if each measurement is
made with the same precision, the information gained must equal the information
that would have been lost had the measurement not been made. Thus the metric
entropy also quantifies the initial rate at which knowledge of the state of the system
is lost after a measurement.

To make this more precise, let pij(t) be the probability that a measurement
at time t has outcome j if a measurement at time 0 has outcome i. In other
words, given the state was measured in partition element Ci at time 0, what is the
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probability it will be in partition element Cj at time t?. By definition pij(0) = 1
if i = j and pij(0) = 0 otherwise. With no initial information, the information
gained from the measurement is determined solely by the asymptotic measure µ,
and is − log µ(Cj). In contrast, if Ci is known the information gained on learning
outcome j is − log pij(t). The extra information using a prediction from the initial
data is the difference of the two or log(pij(t)/µ(Cj)). This must be averaged over
all possible measurements Cj at time t, and all possible initial measurements Ci.
The measurements Cj are weighted by their probability of occurrence pij(t), and
the initial measurements are weighted by µ(Ci). This gives

(39) I(t) =
∑

i,j

µ(Ci)pij(t) log(
pij(t)
µ(Cj)

).

It can easily be shown that in the limit where the initial measurements are made
arbitrarily precise, I(t) will initially decay at a linear rate, whose slope is equal to
the metric entropy. For measurements with signal to noise ratio s, i.e. with log s ≈
| log ε|, I(0) ≈ DI log s. Thus I(t) can be approximated as I(t) ≈ DI log s − ht,
and the initial data becomes useless after a characteristic time τ = (DI/h) log s.

To conclude, chaotic dynamics provides the link that connects deterministic
dynamics with probability. While we can discuss chaotic systems in completely
deterministic terms, as soon as we address problems of measurement and long-
term predictability we are forced to think in probabilistic terms. The language we
have developed above, of information dimension, Lyapunov exponents, and metric
entropy, provide the link between the geometric and probabilistic views. Chaotic
dynamics can happen even in a few dimensions, but as we move to high dimensional
systems, e.g. when we discuss the interactions between many particles, probability
is thrust on us for two reasons: The difficulty of keeping track of all the degrees of
freedom, and the “increased likelihood” that nonlinear interactions will give rise
to chaotic dynamics. “Increased likelihood” is in quotations because, despite more
than a century of effort, understanding the necessary and sufficient conditions for
the validity of statistical mechanics remains an open problem.

5 ABOUT ENTROPY

In this section we will discuss various aspects of entropy, its relation with informa-
tion theory and the sometimes confusing connotations of order, disorder, ignorance
and incomplete knowledge. This will be done by treating several well known puz-
zles and paradoxes related with the concept of entropy. A derivation of the second
law using the procedure called coarse graining is presented. The extensivity or ad-
ditivity of entropy is considered in some detail, also when we discuss nonstandard
extensions of the definition of entropy.
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5.1 Entropy and information

The important innovation Shannon made was to show that the relevance of the
concept of entropy considered as a measure of information was not restricted to
thermodynamics, but could be used in any context where probabilities can be
defined. He applied it to problems in communication theory and showed that it
can be used to compute a bound on the information transmission rate using an
optimal code.

One of the most basic results that Shannon obtained was to show that the choice
of the Gibbs form of entropy to describe uncertainty is not arbitrary, even when
it is used in a very general context. Both Shannon and Khinchin [Khinchin, 1949]
proved that if one wants certain conditions to be met by the entropy function
then the functional form originally proposed by Gibbs is the unique choice. The
fundamental conditions as specified by Khinchin are:

1. For a given n and
∑n

i=1 pi = 1, the required function H(p1, ...pn) is maximal
for all pi = 1/n.

2. The function should satisfy H(p1, ...pn, 0) = H(p1, ...pn). The inclusion of
an impossible event should not change the value of H.

3. If A and B are two finite sets of events, not necessarily independent, the
entropy H(A,B) for the occurrence of joint events A and B is the entropy
for the set A alone plus the weighted average of the conditional entropy
H(B|Ai) for B given the occurrence of the ith event Ai in A,

(40) H(A,B) = H(A) +
∑

i

piH(B|Ai)

where event Ai occurs with probability pi.

The important result is that given these conditions the function H given in equa-
tion (29) is the unique solution. Shannon’s key insight was that the results of
Boltzmann and Gibbs in explaining entropy in terms of statistical mechanics had
unintended and profound side-effects, with a broader and more fundamental mean-
ing that transcended their physical origin of entropy. The importance of the ab-
stract conditions formulated by Shannon and Khinchin show the very general con-
text in which the Gibbs-Shannon function is the unique answer. Later on we will
pose the question of whether there are situations where not all three conditions
are appropriate, leading to alternative expressions for the entropy.

5.2 The Landauer principle

Talking about the relation between information and entropy it may be illuminating
to return briefly to the Landauer principle[Landauer, 1961; Landauer, 1991], which
as we mentioned in the first section, is a particular formulation of the second law
of thermodynamics well suited for the context of information theory. The principle
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expresses the fact that erasure of data in a system necessarily involves producing
heat, and thereby increasing the entropy. We have illustrated the principle in
figure 4. Consider a “gas” consisting of a single atom in a symmetric container

|1>

|0>

|1>

Figure 4. An illustration of the Landauer principle using a very simple thermody-
namical system.

with volume 2V, in contact with a heat bath. We imagine that the position
of the particle acts as a memory with one bit of information, corresponding to
whether the atom is on the left or on the right. Erasing the information amounts
to resetting the device to the “reference” state 1 independent of the initial state.
Erasure corresponds therefore to reinitializing the system rather then making a
measurement. It can be done by first opening a diaphragm in the middle, then
reversibly moving the piston from the right in, and finally closing the diaphragm
and moving the piston back. In the first step the gas expands freely to the double
volume. The particle doesn’t do any work, the energy is conserved, and therefore
no heat will be absorbed from the reservoir. This is an irreversible adiabatic
process by which the entropy S of the gas increases by a factor k ln 2V/V = k ln 2.
(The number of states the particle can be in is just the volume; the average velocity
is conserved because of the contact with the thermal bath and will not contribute
to the change in entropy). In the second part of the erasure procedure we bring
the system back to a state which has the same entropy as the initial state. We do
this through a quasistatic (i.e. reversible) isothermal process at temperature T.
During the compression the entropy decreases by k ln 2. This change of entropy is
nothing but the amount of heat delivered by the gas to the reservoir divided by
the temperature, i.e. ∆S =

∫
dS =

∫
dQ/T = ∆Q/T . The heat produced ∆Q

equals the net amount of work W that has been done in the cycle by moving the
piston during the compression. The conclusion is that during the erasure of one
bit of information the device had to produce at least ∆Q = kT ln 2 of heat.

We may look at the same process somewhat more abstractly, purely from the
point of view of information. We map the erasure of information for the simple
memory device on the sequence of diagrams depicted in figure 5. We choose
this representation of the accessible (phase) space to clearly mark the differences
between the situation where the particle is in the left or the right (A), the left
and the right (B), and the left compartment only (C). In part A the memory
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A B C

Figure 5. A phase space picture of Landauer’s principle. See text for an explana-
tion.

corresponds to the particle being either in the left or in the right compartment. In
B the partition has been removed and through the free expansion the phase space
has doubled and consequently the entropy increased by ln 2. In C the system
is brought back to the reference state, i.e. the particle is brought in the left
compartment. This is done by moving a piston in from the right, inserting the
partition, and moving the piston out again. It is in the compressing step that the
phase space is reduced by a factor of two and hence entropy is reduced by ln 2.
This is possible because we did work, producing a corresponding amount of heat
(∆Q ≥ T ln 2). Note that in this representation one can in principle change the
sizes of the partitions along the horizontal directions and the a priori probabilities
along the vertical direction to model different types or aspects of memory devices.

5.3 The entropy as a relative concept

Irreversibility is a consequence of the explicit introduction of ignorance into

the fundamental laws.

M. Born

There is a surprising amount of confusion about the interpretation and meaning
of the concept of entropy [Guttman, 1999; Denbigh and Denbigh, 1985]. One
may wonder to what extent the “entropic principle” just is an “anthropocentric
principle”? That is, does entropy depend only on our perception, or is it something
more fundamental? Is it a subjective attribute in the domain of the observer or
is it an intrinsic property of the physical system we study? Let us consider the
common definition of entropy as a measure of disorder. This definition can be
confusing unless we are careful in spelling out what we mean by order or disorder.
We may for instance look at the crystallization of a supercooled liquid under
conditions where it is a closed system, i.e. when no energy is exchanged with
the environment. Initially the molecules of the liquid are free to randomly move
about, but then (often through the addition of a small perturbation that breaks
the symmetry) the liquid suddenly turns into a solid by forming a crystal in which
the molecules are pinned to the sites of a regular lattice. From one point of view
this a splendid example of the creation of order out of chaos. Yet from standard
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calculations in statistical mechanics we know that the entropy increases during
crystallization. This is because what meets the eye is only part of the story.
During crystallization entropy is generated in the form of latent heat, which is
stored in the vibrational modes of the molecules in the lattice. Thus, even though
in the crystal the individual molecules are constrained to be roughly in a particular
location, they vibrate around their lattice sites more energetically than when they
were free to wander. From a microscopic point of view there are more accessible
states in the crystal than there were in the liquid, and thus the entropy increases.
The thermodynamic entropy is indifferent to whether motions are microscopic or
macroscopic – it only counts the number of accessible states and their probabilities.

In contrast, to measure the sense in which the crystal is more orderly, we must
measure a different set of probabilities. To do this we need to define probabilities
that depend only on the positions of the particles and not on their velocities.
To make this even more clear-cut, we can also use a more macroscopic partition,
large enough so that the thermal motions of a molecule around its lattice site
tend to stay within the same partition element. The entropy associated with this
set of probabilities, which we might call the “spatial order entropy”, will behave
quite differently from the thermodynamic entropy. For the liquid, when every
particle is free to move anywhere in the container, the spatial order entropy will
be high, essentially at its largest possible value. After the crystallization occurs,
in contrast, the spatial order entropy will drop dramatically. Of course, this is
not the thermodynamic entropy, but rather an entropy that we have designed
to quantitatively capture the aspect of the crystalline order that we intuitively
perceive.

As we emphasized before, Shannon’s great insight was that it is possible to as-
sociate an entropy with any set of probabilities. However, the example just given
illustrates that when we use entropy in the broader sense of Shannon we must be
very careful to specify the context of the problem. Shannon entropy is just a func-
tion that reduces a set of probabilities to a number, reflecting how many nonzero
possibilities there are as well as the extent to which the set of nonzero probabilities
is uniform or concentrated. Within a fixed context, a set of probabilities that is
smaller and more concentrated can be interpreted as more “orderly”, in the sense
that fewer numbers are needed to specify the set of possibilities. Thermodynamics
dictates a particular context – we have to measure probabilities in the full state
space. Thermodynamic entropy is a special case of Shannon entropy. In the more
general context of Shannon, in contrast, we can define probabilities however we
want, depending on what we want to do. But to avoid confusion we must always
be careful to keep this context in mind, so that we know what our computation
means.

5.4 Maxwell’s demon

The “being” soon came to be called Maxwell’s demon, because of its far-

reaching subversive effects on the natural order of things. Chief among these
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effects would be to abolish the need for energy sources such as oil, uranium

and sunlight.

C.H. Bennett

The second law of thermodynamics is statistical, deriving from the fact that the
individual motions of the molecules are not observed or controlled in any way.
Would things be different if we could intervene on a molecular scale? This question
gives rise to an important paradox posed by Maxwell in 1872, which appeared
in his Theory of Heat [Maxwell, 1872]. This has subsequently been discussed by
generations of physicists, notably Szilard [Szilard, 1929], Brillouin[Brillouin, 1956],
Landauer [Landauer, 1961], Bennett [Bennett, 1982] and others.

Maxwell described his demonic setup as follows: “Let us suppose that a vessel
is divided in two portions, A and B, by a division in which there is a small hole,
and that a being who can see individual molecules opens and closes this hole, so
as to allow only the swifter particles to to pass from A to B, and only the slower
ones to pass from B to A. He will thus, without expenditure of work, raise the
temperature of B and lower that of A, in contradiction with the second law of
thermodynamics.” In attempts to save the second law from this demise, many
aspects of the problem have been proposed for its resolution, including Brownian
motion, quantum uncertainty and even Gödel’s Theorem. The resolution of the
paradox touches on some very fundamental issues that center on the question of
how the demon might actually realize his subversive interventions.

Szilard clarified the discussion by introducing an engine (or thermodynamic
cycle), which is depicted in the left half of figure 6. He and Brillouin focused on
the measurement the demon has to perform in order to find out in which half of
the vessel the particle is located after the partition has been put into place. For
the demon to “see” the actual molecules he has to use a measurement device, such
as a source of light (photons) and a photon detector. He will in principle be able
to measure whether a molecule is faster or slower then the thermal average by
scattering a photon off of it. Brillouin tried to argue that the entropy increase
to the whole system once the measurement is included would always be larger
or equal then the entropy gain achieved by the subsequent actions of the demon.
However, this argument didn’t hold; people were able to invent devices that got
around the measurement problem, so that it appeared the demon could beat the
second law.

Instead, the resolution of the paradox comes from a very different source. In
1982 Bennett gave a completely different argument to rescue the second law. The
fundamental problem is that under Landauer’s principle, production of heat is
necessary for erasure of information (see section 5.2). Bennett showed that a
reversible measurement could in principle be made, so that Brillouin’s original
argument was wrong – measurement does not necessarily produce any entropy.
However, to truly complete the thermodynamic cycle, the demon has to erase the
information he obtained about the location of the gas molecule. As we already
discussed in section 5.2, erasing that information produces entropy. It turns out
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Figure 6. The one-particle Maxwell demon apparatus as envisaged by Bennett
[Bennett, 1982; Bennett, 1987]. An explanation is given in the text.

that the work that has to be done to erase the demon’s memory is at least as much
as was originally gained.

Figure 6 illustrates the one-particle Maxwell demon apparatus as envisaged by
Bennett [Bennett, 1982; Bennett, 1987], which is a generalization of the engine
proposed by Szilard [Szilard, 1929]. On the left in row (A) is a gas container con-
taining one molecule with a partition and two pistons. On the right is a schematic
representation of the phase space of the system, including the demon. The state
of mind of the demon can be in three different states: He can know the molecule is
on the right (state 0), on the left (state 1), or he can be in the reference or blank
state r, where he lacks any information and knows that he doesn’t know where
the particle is. In the schematic diagram of the phase space, shown on the right,
the vertical direction indicates the state of memory of the demon and the hori-
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zontal direction indicates the position of the particle. In step (B) a thin partition
is placed in the container, trapping the particle in either the left or right half. In
step (C) the demon makes a (reversible) measurement to determine the location
of the particle. This alters his state of mind as indicated – if the particle is on the
right, it goes into state 0, if on the left, into state 1. In step (D), depending on
the outcome of the measurement, he moves either the right or left piston in and
removes the partition. In (E) the gas freely expands, moving the piston out and
thereby doing work. In state (E) it appears as if the system has returned to its
original state – it has the same volume, temperature and entropy – yet work has
been done. What’s missing? The problem is that in (E) the demon’s mind has
not returned to its original blank state. He needs to know that he doesn’t know
the position of the particle. Setting the demon’s memory back into its original
state requires erasing a bit of information. This is evident in the fact that to go
from (E) to (F) the occupied portion of the phase space is reduced by a factor of
two. This reduction in entropy has to be accompanied by production of heat as a
consequence of Landauer’s principle (see figure 4 and figure 5) – the work that is
done to erase a bit of information is greater than or equal to the work gained by
the demon. This ensures that the full cycle of the complete system respects the
second law after all.

This resolution of the paradox is remarkable, because it is not the acquisition of
information (the measurement) which is irreversible and thermodynamically costly,
but it is the process of erasure, which is both logically and thermodynamically
irreversible, that leads to the increase of entropy required by the second law. The
information comes for free, but it poses a waste disposal problem which is costly. It
is gratifying to see information theory come to rescue of one of the most cherished
physical laws.

5.5 The Gibbs paradox

The Gibbs paradox provides another interesting chapter in the debate on the
meaning of entropy. The basic question is to what extent entropy is a subjective
notion. In its simplest form the paradox concerns the mixing of two ideal gases
(kept at the same temperature and pressure) after removing a partition. If it has
been removed the gases will mix, and if the particles of the two gases are distin-
guishable the entropy will increase due to this mixing. However, if the gases are
identical, so that their particles are indistinguishable from those on the other side,
there is no increase in the entropy. Maxwell imagined the situation where the gases
were initially supposed to be identical, and only later recognized to be different.
This reasoning led to the painful conclusion that the notion of irreversibility and
entropy would depend on our knowledge of physics. He concluded that the entropy
would thus depend on the state of mind of the experimenter and therefore lacked
an objective ground. It was again Maxwell with a simple question who created
an uncomfortable situation which caused a long debate. After the development of
quantum mechanics, it became clear that particles of the same species are truly
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indistinguishable. There is no such thing as labeling N individual electrons, and
therefore interchanging electrons doesn’t change the state and this fact reduces
the number of states by a relative factor of N!. Therefore the conclusion is that
the entropy does not increase when the gases have the same constituent particles,
and it does increase when they are different.

However, the resolution of Gibbs paradox does not really depend on quantum
mechanics. Jaynes has emphasized that in the early works of Gibbs, the correct ar-
gument was already given (well before the advent of quantum mechanics) [Jaynes,
1996]. Gibbs made an operational definition, saying that if “identical” means any-
thing, it means that there is no way an “unmixing” apparatus could determine
whether a particular molecule came from a given side of the box, short of having
followed its entire trajectory. Thus if the particles of the gas are identical in this
sense, the entropy will not change. We conclude that the adequate definition of
entropy reflects the objective physical constraints we put on the system, i.e. what
measurements are possible or admissible. This has nothing to do with our lack of
knowledge but rather with our choices. The ‘incompleteness of our knowledge’ is
an exact and objective reflection of a particular set of macroscopic constraints im-
posed on the physical system we want to describe. The system’s behavior depends
on these constraints, and so does the entropy.

5.6 The maximal entropy principle of Jaynes

The statistical practice of physicists has tended to lag about 20 years behind

current developments in the field of basic probability and statistics.

E.T. Jaynes (1963)

There are two equivalent sets of postulates that can be used as a foundation to
derive an equilibrium distribution in statistical mechanics. One is to begin with
the hypothesis that equilibrium corresponds to a minimum of the free energy, and
the other is that it corresponds to a maimum of the entropy. The latter approach
is a relatively modern development. Inspired by Shannon, Jaynes turned the pro-
gram of statistical mechanics upside down [Jaynes, 1983]. Starting from a very
general set of axioms he showed that under the assumption of equilibrium the
Gibbs expression for the entropy is unique. Under Jaynes’ approach, any problem
in equilibrium statistical mechanics is reduced to finding the set of pi for which
the entropy is maximal, under a set of constraints that specify the macroscopic
conditions, which may come from theory or may come directly from observational
data [Jaynes, 1963]. This variational approach removes some of the arbitrariness
that was previously present in the foundations of statistical mechanics. The prin-
ciple of maximum entropy is very simple and has broad application. For example
if one maximizes S only under the normalization condition

∑
i pi = 1, then one

finds the unique solution that pi = 1/N with N the total number of states. This is
the uniform probability distribution underlying the equipartition principle. Sim-
ilarly, if we now add the constraint that energy is conserved, i.e.

∑
i εipi = U ,

then the unique solution is given by the Boltzmann distribution, equation (19).
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The maximum entropy principle as a starting point clearly separates the physical
input and purely probabilistic arguments that enter the theory. Let us derive the
Maxwell-Boltzmann distribution to illustrate the maximal entropy principle. We
start with the function L(pi,α,β) which depends on the probability distribution
and two Lagrange multipliers to impose the constraints:

(41) L(pi,α,β) = −
N∑

i=1

pi ln pi − α(
N∑

i=1

pi − 1) − β(
N∑

i=1

piεi − U)

The maximum is determined by setting the partial derivatives of L equal zero:

∂L

∂pi
= − ln pi − 1 − α − βεi = 0(42)

∂L

∂α
=

N∑

i=1

pi − 1 = 0(43)

∂L

∂β
=

N∑

i=1

piεi − U = 0(44)

From the first equation we immediately obtain that:

(45) pi = e−(1+α+βεi) ⇒ pi = γe−βεi

The parameters γ and β are determined by the constraint equations. If we first
substitute the above solution in the normalisation constraint, and then use the
defining equation for the partition sum (20), we find that γ = 1/Z. The solution
for β is most easily obtained using the following argument. First substitute (45)
in the definition (27) of S to obtain the relation:

(46) S = βU − const. .

Next we use the thermodynamic relation between energy and entropy (3), from
which we obtain hat ∂U/∂S = T . Combining these two relations we find that
β = 1/T , which yields the thermal equilibrium distribution (19).

The maximal entropy formalism has a much wider validity than just statisti-
cal mechanics. It is widely used for statistical inference in applications such as
optimizing data transfer and statistical image improvement. In these contexts it
provides a clean answer to the question, “given the constraints I know about in
the problem, what is the model that is as random as possible (i.e. minimally
biased) subject to these constraints?”. A common application is missing data:
Suppose one observes a series of points xi at regular time intervals, but some of
the observations are missing. One can make a good guess for the missing values by
solving for the distribution that maximizes the entropy, subject to the constraints
imposed by the know data points.

One must always bear in mind, however, that in physics the maximum entropy
principle only applies to equilibrium situations, which are only a small subset of
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the problems in physics. For systems that are not in equilibrium one must take a
different approach. Attempts to understand non-equilibrium statistical mechanics
have led some researchers to explore the use of alternative notions of entropy, as
discussed in Section 5.11.

5.7 Ockham’s razor

Entia non sunt multiplicanda praeter neccessitatem

(Entities should not be introduced except when strictly necessary)

William van Ockham (1285-1347)

An interesting and important application of information is to the process of
modeling itself. When developing a model it is always necessary to make a tradeoff
between models that are too simple and fail to explain the data properly, and
models that are too complicated and fit fluctuations in the data that are really
just noise. The desirability of simpler models is often called “Ockham’s razor”:
If two models fit the existing data equally well, the simplest model is preferable,
in the sense that the simpler model is more likely to make good predictions for
data that has not yet been seen. While the value of using simple models seems
like something we can all agree on, the tradeoff in real problems is typically not
so obvious. Suppose model A fits the data a little better than model B, but has
one more parameter. How does one trade off goodness of fit against number of
parameters?

Using ideas from information theory Akaike [Akaike, 1974] introduced a method
for making tradeoffs between goodness of fit and model complexity that can be
applied in the context of simple linear models. Rissenen subsequently introduced
a more general framework to think about this problem based on a principle that he
called minimum description length (MDL) [Rissanen, 1978; Grunwald et al., 2004;
Grunwald and Vitányi, ]. The basic idea is that the ability to make predictions
and the ability to compress information are essentially two sides of the same coin.
We can only compress data if it contains regularities, i.e. if the structure of the
data is at least partially predictable. We can therefore find a good prediction
model by seeking the model that gives the shortest description of the data we
already have. When we do this we have to take the description length of the
model into account, as well as the description length of the deviations between the
model’s predictions and the actual data. The deviations between the model and
the data can be treated as probabilistic events. A model that gives a better fit has
less deviation from the data, and hence implies a tighter probability distribution,
which translates into a lower entropy for the deviations from the data. This entropy
is then added to the information needed to specify the model and its parameters.
The best model is the one with the lowest sum, i.e. the smallest total description
length. By characterizing the goodness of fit in terms of bits, this approach puts
the complexity of the model and the goodness of fit on the same footing, and gives
the correct tradeoff between goodness of fit and model complexity, so that the
quality of any two models can be compared, at least in principle.
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This shows how at some level the concept of entropy underlies the whole sci-
entific method, and indeed, our ability to make sense out of the world. To
describe the patterns in the world, we need to make a trade-off between over-
fitting (fitting every bump even if it is a random variation, i.e. fitting noise)
and overgeneralization (identifying events that really are different). A similar
trade-off arises in assigning a causal mechanism to the occurrence of an event
or explaining it as random. This problem of how to exactly make such trade-
offs based on time series analysis has a rather long history but on the other
hand is still an active topic of research [Kan, 2006; Crutchfield and Young, 1989;
Still and Crutchfield, 2007]. Even if we do not do these trade-offs perfectly and
do not think about it quantitatively, when we discover and model regularities in
the world, we are implicitly relying on a model selection process of this type. Any
generalization makes a judgment that trades off the information needed to specify
the model and the entropy of the fit of the model to the world.

5.8 Coarse graining and irreversibility

Our aim is not to ‘explain irreversibility’ but to describe and predict the

observable facts. If one succeeds in doing this correctly, from first principles,

we will find that philosophical questions about the ’nature of irreversibility’

will either have been answered automatically or else will be seen as ill con-

sidered and irrelevant.

E.T. Jaynes

The second law of thermodynamics says that for a closed system the entropy
will increase until it reaches its equilibrium value. This corresponds to the irre-
versibility we all know from daily experience. If we put a drop of ink in a glass of
water the drop will diffuse through the water and dilute until the ink is uniformly
spread through the water. The increase of entropy is evident in the fact that the
ink is initially in a small region, with pi = 0 except for this region, leading to a
probability distribution concentrated on a small region of space and hence a low
entropy. The system will not return to its original configuration. Although this is
not impossible in principle, it is so improbable that it will never be observed14.

Irreversibility is hard to understand from the microscopic point of view because
the microscopic laws of nature that determine the time evolution of any physical

14“Never say never” is a saying of unchallenged wisdom. What we mean here by “never”, is
inconceivably stronger then “never in a lifetime”, or even “never in the lifetime of the universe”.
Let’s make a rough estimate: consider a dilute inert gas, say helium, that fills the left half
of a container of volume V . Then we release the gas into the full container and ask what
the recurrence time would be, i.e. how long it would take before all particles would be in
the left half again. A simple argument giving a reasonable estimate, would be as follows: At
any given instant the probability for a given particle to be in the left half is 1/2, but since
the particles are independent, the probability of N ∼ NA particles to be in the left half is

P = (1/2)10
23 ≈ 10(−1020). Assuming a typical time scale for completely rearranging all the

particles in the container of, say, τ0 = 10−3 seconds, the typical time that will pass before such

a fluctuation occurs is τ = τ0/P = 101020
10−3 ≈ 101020

sec.
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system on the fundamental level are all symmetric under time reversal. That is,
the microscopic equations of physics, such as F = ma, are unchanged under the
substitution t → −t. How can irreversibility arise on the macroscopic level if it
has no counterpart on the microscopic level?

In fact, if we compute the entropy at a completely microscopic level it is con-
served, which seems to violate the second law of thermodynamics. This follows
from the fact that momentum is conserved, which implies that volumes in phase
space are conserved. This is called Liouville’s theorem. It is easy to prove that
this implies that the entropy S is conserved. This doesn’t depend on the use
of continuous variables – it only depends on applying the laws of physics at the
microscopic level. It reflects the idea of Laplace, which can be interpreted as a
statement that statistical mechanics wouldn’t really be necessary if we could only
measure and track all the little details. The ingenious argument that Gibbs used
to clarify this, and thereby to reconcile statistical mechanics with the second law
of thermodynamics, was to introduce the notion of coarse graining. This proce-
dure corresponds to a systematic description of what we could call “zooming out”.
As we have already mentioned, this zooming out involves dividing phase space up
in finite regions δ according to a partition Π. Suppose, for example, that at a
microscopic level the system can be described by discrete probabilities pi for each
state. Let us start with a closed system in equilibrium, with a uniform distribution
over the accessible states. For the Ising system, for example, pi = 1/g(N, i) is the
probability of a particular configuration of spins. Now we replace in each little
region δ the values of pi by its average value p̄i over δ:

(47) p̄i ≡
1
δ

∑

i∈δ

pi,

and consider the associated coarse grained entropy

(48) S̄ ≡ −
∑

i

p̄i ln p̄i.

Because we start at time t = 0 with a uniform probability distribution, S(0) =
S̄(0). Next we change the situation by removing a constraint of the system so that
it is no longer in equilibrium. In other words, we enlarge the space of accessible
states but have as an initial condition that the probabilities are zero for the new
states. For the new situation we still have that S(0) = S̄(0), and now we can
compare the evolution of the fine-grained entropy S(t) and the coarse-grained
entropy S̄(t). The evolution of S(t) is governed by the reversible microscopic
dynamics and therefore it stays constant, so that S(t) = S(0). To study the
evolution of the coarse-grained entropy we can use a few simple mathematical
tricks. First, note that because p̄i is constant over each region with δ elements,

(49) S̄(t) = −
∑

i

p̄i ln p̄i = −
∑

i

pi ln p̄i.

Then we may write
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(50) S̄(t) − S̄(0) =
∑

i

pi(ln pi − ln p̄i) =
∑

i

pi ln
pi

p̄i
=

∑

i

p̄i(
pi

p̄i
ln

pi

p̄i
),

which in information theory is called he Kullback-Leibler divergence. The math-
ematical inequality x lnx ≥ (x − 1), with x = pi/p̄i, then implies the Gibbs
inequality:

(51) S̄(t) − S̄(0) ≥
∑

i

pi −
∑

i

p̄i = 1 − 1 = 0.

Equality only occurs if pi/p̄i = 1 throughout, so except for the special case where
this is true, this is a strict inequality and the entropy increases. We see how the
second law is obtained as a consequence of coarse graining.

The second law describes mathematically the irreversibility we witness when
somebody blows smoke in the air. Suppose we make a film of the developing
smoke cloud. If we film the movie at an enormous magnification, so that what we
see are individual particles whizzing back and forth, it will be impossible to tell
which way the movie is running – from a statistical point of view it will look the
same whether we run the movie forward or backward. But if we film it at a normal
macroscopic scale of resolution, the answer is immediately obvious – the direction
of increasing time is clear from the diffusion of the smoke from a well-defined thin
stream to a diffuse cloud.

From a philosophical point of view one should ask to what extent coarse graining
introduces an element of subjectivity into the theory. One could object that the
way we should coarse grain is not decided upon by the physics but rather by the
person who performs the calculation. The key point is that, as in so many other
situations in physics, we have to use some common sense, and distinguish between
observable and unobservable quantities. Entropy does not increase in the highly
idealized classical world that Laplace envisioned, as long as we can observe all
the microscopic degrees of freedom and there are no chaotic dynamics. However,
as soon as we violate these conditions and observe the world at a finite level of
resolution (no matter how accurate), chaotic dynamics ensures that we will lose in-
formation and entropy will increase. While the coarse graining may be subjective,
this is not surprising – measurements are inherently subjective operations. In most
systems one will have that the entropy may stabilize on plateaus corresponding to
certain ranges of the fineness of the coarseness. In many applications the increase
of entropy will therefore be constant (i.e. well defined) for a sensible choice for
the scale of coarse graining. The increase in (equilibrium) entropy between the
microscopic scale and the macroscopic scale can also be seen as the amount of in-
formation that is lost by increasing the graining scale from the microscopic to the
macroscopic. A relevant remark at this point is that a system is of course never
perfectly closed – there are always small perturbations from the environment that
act as a stochastic perturbation of the system, thereby continuously smearing out
the actual distribution in phase space and simulating the effect of coarse grain-
ing. Coarse graining correctly captures the fact that entropy is a measure of our
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uncertainty; the fact that this uncertainty does not exist for regular motions and
perfect measurements is not relevant to most physical problems.

5.9 Coarse graining and renormalization

In a written natural language not all finite combinations of letters are words, not all
finite combinations of words are sentences, and not all finite sequences of sentences
make sense. So by identifying what we call meaningful with accessible, what we
just said means that compared with arbitrary letter combinations, the entropy of
a language is extremely small.

Something similar is true for the structures studied in science. We are used to
thinking of the rich diversity of biological, chemical and physical structures as being
enormous, yet relative to what one might imagine, the set of possibilities is highly
constrained. The complete hierarchy starting from the most elementary building
blocks of matter such as leptons and quarks, all the way up to living organisms,
is surprisingly restricted. This has to do with the very specific nature of the
interactions between these building blocks. To our knowledge at the microscopic
level there are only four fundamental forces that control all interactions. At each
new structural level (quarks, protons and neutrons, nuclei, atoms, molecules, etc)
there is a more or less autonomous theory describing the physics at that level
involving only the relevant degrees of freedom at that scale. Thus moving up a level
corresponds to throwing out an enormous part of the phase space available to the
fundamental degrees of freedom in the absence of interactions. For example, at the
highest, most macroscopic levels of the hierarchy only the long range interactions
(electromagnetism and gravity) play an important role – the structure of quantum
mechanics and the details of the other two fundamental forces are more or less
irrelevant.

We may call the structural hierarchy we just described “coarse graining” at
large. Although this ability to leave the details of each level behind in moving up
to the next is essential to science, there is no cut and dried procedure that tells us
how to do this. The only exception is that in some situations it is possible to do
this coarse graining exactly by a procedure called renormalization [Zinn-Justin,
1989]. This is done by systematically studying how a set of microscopic degrees of
freedom at one level can be averaged together to describe the degrees of freedom
at the next level. There are some situations, such as phase transitions, where this
process can then be used repeatedly to demonstrate the existence of fixed points
of the mapping from one level to the next (an example of a phase transition is the
change from a liquid to a gas). This procedure has provided important insights in
the nature of phase transitions, and in many cases it has been shown that some of
their properties are universal, in the sense that they do not depend on the details
of the microscopic interactions.
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5.10 Adding the entropy of subsystems

Entropy is an extensive quantity. Generally speaking the extensivity of entropy
means that it has to satisfy the fundamental linear scaling property

(52) S(T, qV, qN) = qS(T, V,N), 0 < q < ∞.

Extensivity translates into additivity of entropies: If we combine two noninteract-
ing systems (labelled 1 and 2) with entropies S1 and S2, then the total number
of states will just be the product of those of the individual systems. Taking the
logarithm, the entropy of the total system S becomes:

(53) S = S1 + S2.

Applying this to two spin systems without an external field, the number of states
of the combined system is w = 2N1+N2 , i.e. w = w1 w2. Taking the logarithm
establishes the additivity of entropy.

However if we allow for a nonzero magnetic field, this result is no longer obvious.
In Section 3.2 we calculated the number of configurations with a given energy
εk = −kµH as g(N, k). If we now allow two systems to exchange energy but keep
the total energy fixed, then this generates a dependence between the two systems
that lowers the total entropy. We illustrate this with an example:

Let the number of spins pointing up in system 1 be k1 and the number of
particles be N1, and similarly let this be k2 and N2 for system 2. The total energy
k = k1 + k2 is conserved, but the energy in either subsystem (k1 and k2) is not
conserved. The total number of spins, N = N1 + N2 is fixed, and so are the spins
(N1 and N2) in either subsystem. Because the systems only interact when the
number of up spins in one of them (and hence also the other one) changes, we can
write the total number of states for the combined system as

(54) g(N, k) =
∑

k1

g1(N1, k1)g2(N2, k2),

where we are taking advantage of the fact that as long as k1 is fixed, systems
one and two are independent. Taking the log of the above formula clearly does
not lead to the additivity of entropies because we have to sum over k1. This
little calculation illustrates the remark made before: Since we have relaxed the
constraint that each system has a fixed energy to the condition that only the
sum of their energies is fixed, the number of accessible states for the total system
is increased. The subsystems themselves are no longer closed and therefore the
entropy will change.

The extensivity of entropy is recovered in the thermodynamic limit in the above
example, i.e. when N → ∞. Consider the contributions to the sum in (54) as a
function of k1, and let the value of k1 where g reaches a maximum be k1 = k̂1.
We can now write the contribution in the sum in terms δ = k1 − k̂1 as

(55) ∆g(N, k) = g1(N1, k̂1 + δ)g2(N2, k̂2 − δ) = f(δ)g1(N1, k̂1)g2(N2, k̂2) ,
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where the correction factor can be calculated by expanding the g functions around
their respective k̂ values. Not surprisingly, in the limit where N is large it turns
out that f is on the order of f ∼ exp(−2δ2) so that the contributions to g(N, k) of
the nonmaximal terms in the sum (54) are exponentially suppressed. Thus in the
limit that the number of particles goes to infinity the entropy becomes additive.
This exercise shows that when a system gets large we may replace the averages of
a quantity by its value in the most probable configuration, as our intuition would
have suggested. From a mathematical point of view this result follows from the
fact that the binomial distribution approaches a gaussian for large values of N,
which becomes ever sharper as N → ∞. This simple example shows that the
extensivity of entropy may or may not be true, depending on the context of the
physical situation and in particular on the range of the inter-particle forces.

When two subsystems interact, it is certainly possible that the entropy of one
decreases at the expense of the other. This can happen, for example, because sys-
tem one does work on system two, so the entropy of system one goes up while that
of system two goes down. This is very important for living systems, which collect
free energy from their environment and expel heat energy as waste. Nonetheless,
the total entropy S of an organism plus its environment still increases, and so does
the sum of the independent entropies of the non interacting subsystems. That is,
if at time zero

(56) S(0) = S1(0) + S2(0) ,

then at time t it may be true that

(57) S(t) ≤ S1(t) + S2(t) ,

This is due to the fact that only interactions with other parts of the system can
lower the entropy of a given subsystem. In such a situation we are of course free
to call the difference between the entropy of the individual systems and their joint
entropy a negative correlation entropy. However, despite this apparent decrease of
entropy, both the total entropy and the sum of the individual entropies can only
increase, i.e.

S(t) ≥ S(0)(58)
S1(t) + S2(t) ≥ S1(0) + S2(0).

The point here is thus that equations (57) and (58) are not in conflict.

5.11 Beyond the Boltzmann, Gibbs and Shannon entropy: the Tsallis
entropy

The equation S = k log W + const appears without an elementary theory - or

however one wants to say it - devoid of any meaning from a phenomenological

point of view.

A. Einstein (1910)
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As we have already stressed, the definition of entropy as −
∑

i pi log pi and the
associated exponential distribution of states apply only for systems in equilibrium.
Similarly, the requirements for an entropy function as laid out by Shannon and
Khinchin are not the only possibilities. By modifying these assumptions there are
other entropies that are useful. We have already mentioned the Rényi entropy,
which has proved to be valuable to describe multi-fractals.

Another context where considering an alternative definition of entropy appears
to be useful concerns power laws. Power laws are ubiquitous in both natural
and social systems. A power law15 is something that behaves for large x as
f(x) ∼ x−α, with α > 0. Power law probability distributions decay much more
slowly for large values of x than exponentials, and as a result have very differ-
ent statistical properties and are less well-behaved16. Power law distributions
are observed in phenomena as diverse as the energy of cosmic rays, fluid tur-
bulence, earthquakes, flood levels of rivers, the size of insurance claims, price
fluctuations, the distribution of individual wealth, city size, firm size, govern-
ment project cost overruns, film sales, and word usage frequencies [Newman, 2005;
Farmer and Geanakoplos, 2006]. Many different models can produce power laws,
but so far there is no unifying theory, and it is not yet clear whether any such uni-
fying theory is even possible. It is clear that power laws (in energy, for instance)
can’t be explained by equilibrium statistical mechanics, where the resulting dis-
tributions are always exponential. A common property of all the physical systems
that are known to have power laws and the models that purport to explain them
is that they are in some sense nonequilibrium systems. The ubiquity of power laws
suggests that there might be nonequilibrium generalizations of statistical mechan-
ics for which they are the standard probability distribution in the same way that
the exponential is the standard in equilibrium systems.

From simulations of model systems with long-range interactions (such as stars in
a galaxy) or systems that remain for long periods of time at the “edge of chaos”,
there is mounting evidence that such systems can get stuck in nonequilibrium
meta-stable states with power law probability distributions for very long periods
of time before they finally relax to equilibrium. Alternatively, power laws also
occur in many driven systems that are maintained in a steady state away from
equilibrium. Another possible area of applications is describing the behaviour of
small subsystems of finite systems.

From a purely statistical point of view it is interesting to ask what type of
entropy functions are allowed. The natural assumption to alter is the last of the
Khinchin postulates as discussed in Section 5.2. The question becomes which en-
tropy functions satisfy the remaining two conditions, and some sensible alternative
for the third? It turns out that there is at least one interesting class of solutions
called q-entropies introduced in 1988 by Tsallis [Tsallis, 1988; Gell-Mann and

15It is also possible to have a power law at zero or any other limit, and to have α < 0, but for
our purposes here most of the examples of interest involve the limit x → ∞ and positive α.

16The mth moment
∫

xmp(x)dx of a power law distribution p(x) ∼ x−α does not exist when
m > α.
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Tsallis, 2004]. The parameter q is usually referred to as the bias or correlation
parameter. For q 0= 1 the expression for the q-entropy Sq is

(59) Sq[p] ≡
1 −

∑
i pq

i

q − 1
.

For q = 1, Sq reduces to the standard Gibbs entropy by taking the limit as
q → 1. Following Jaynes’s approach to statistical mechanics, one can maximize this
entropy function under suitable constraints to obtain distribution functions that
exhibit power law behavior for q 0= 1. These functions are called q-exponentials
and are defined as

(60) eq(x) ≡
{

[1 + (1 − q)x]1/(1−q) (1 + (1 − q)x〉0)
0 (1 + (1 − q)x〈0).

An important property of the q-exponential function is that for q > 1 and x 1 −1
it has a power law decay. The inverse of the q-exponential is the lnq(x) function

(61) lnq ≡ x1−q − 1
1 − q

.

The q-exponential can also be obtained as the solution of the equation

(62)
dx

dt
= xq.

This is the typical behavior for a dynamical system at the edge of linear stability,
where the first term in its Taylor series vanishes. This gives some alternative
insight into one possible reason why such solutions may be prevalent. Other typical
situations involve long range interactions (such as the gravitational interactions
between stars in galaxy formation) or nonlinear generalizations of the central limit
theorem [Umarov et al., 2006] for variables with strong correlations.

At first sight a problem with q-entropies is that for q 0= 1 they are not additive.
In fact the following equality holds:

(63) Sq[p(1)p(2)] = Sq[p(1)] + Sq[p(2)] + (1 − q)Sq[p(1)]Sq[p(2)]

with the corresponding product rule for the q-exponentials:

(64) eq(x)eq(y) = eq(x + y + (1 − q)xy)

This is why the q-entropy is often referred to as a non-extensive entropy. However,
this is in fact a blessing in disguise. If the appropriate type of scale invariant corre-
lations between subsystems are typical, then the q-entropies for q 0= 1 are strictly
additive. When there are sufficiently long-range interactions Shannon entropy is
not extensive; Tsallis entropy provides a substitute that is additive (under the
right class of long-range interactions), thereby capturing an underlying regularity
with a simple description.

This alternative statistical mechanical theory involves another convenient defi-
nition which makes the whole formalism look like the “old” one. Motivated by the
fact that the Tsallis entropy weights all probabilities according to pq

i , it is possible
to define an “escort” distribution P (q)

i
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(65) P (q)
i ≡ (pi)q

∑
j(pj)q

,

as introduced by Beck [Beck, 2001]. One can then define the corresponding expec-
tation values of a variable A in terms of the escort distribution as

(66) 〈A〉q =
∑

i

P (q)
i Ai.

With these definitions the whole formalism runs parallel to the Boltzmann-Gibbs
program.

One can of course ask what the Tsallis entropy “means”. The entropy Sq is
a measure of lack of information along the same lines as the Boltzmann-Gibbs-
Shannon entropy is. In particular, perfect knowledge of the microscopic state of
the system yields Sq = 0, and maximal uncertainty (i.e., all W possible microscopic
states are equally probable) yields maximal entropy, Sq = lnq W . The question
remains how generic such correlations are and which physical systems exhibit
them, though at this point quite a lot of empirical evidence is accumulating to
suggest that such functions are at least a good approximation in many situations.
In addition recent results have shown that q-exponentials obey a central limit-like
behavior for combining random variables with appropriate long-range correlations.

A central question is what determines q? There is a class of natural, artificial
and social systems for which it is possible to choose a unique value of q such that
the entropy is simultaneously extensive (i.e., Sq(N) proportional to the number
of elements N , N 2 1) and there is finite entropy production per unit time (i.e.,
Sq(t) proportional to time t, t 2 1)[Tsallis et al., 2005b; Tsallis et al., 2005a]. It
is possible to acquire some intuition about the nature and meaning of the index q
through the following analogy: If we consider an idealized planar surface, it is only
its d = 2 Lebesgue measure which is finite; the measure for any d > 2 vanishes, and
that for any d < 2 diverges. If we have a fractal system, only the d = df measure
is finite, where df is the Hausdorff dimension; any d > df measure vanishes, and
any d < df measure diverges. Analogously, only for a special value of q does
the entropy Sq match the thermodynamical requirement of extensivity and the
equally physical requirement of finite entropy production. The value of q reflects
the geometry of the measure in phase space on which probability is concentrated.

Values of q differing from unity are consistent with the recent q-generalization of
the Central Limit Theorem and the alpha-stable (Levy) distributions. Indeed, if in-
stead of adding a large number of exactly or nearly independent random variables,
we add globally correlated random variables, the attractors shift from Gaussians
and Levy distributions to q-Gaussian and (q,α)-stable distributions respectively
[Moyano et al., 2006; Umarov et al., 2006; Umarov et al., 2006].

The framework described above is still in development. It may turn out to be
relevant to ‘statistical mechanics’ not only in nonequilibrium physics, but also in
quite different arenas, such as economics.
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6 QUANTUM INFORMATION

Until recently, most people thought of quantum mechanics in terms of the

uncertainty principle and unavoidable limitations on measurement. Einstein

and Schrödinger understood early on the importance of entanglement, but

most people failed to notice, thinking of the EPR paradox as a question for

philosophers. The appreciation of the positive application of quantum effects

to information processing grew slowly.

Nicolas Gisin

Quantum mechanics provides a fundamentally different means of computing,
and potentially makes it possible to solve problems that would be intractable on
classical computers. For example, with a classical computer the typical time it
takes to factor a number grows exponentially with the size of the number, but
using quantum computation Shor has shown that this can be done in polynomial
time [Shor, 1994]. Factorization is one of the main tools in cryptography, so this
is not just a matter of academic interest. To see the huge importance of expo-
nential vs. polynomial scaling, suppose an elementary computational step takes
∆t seconds. If the number of steps increases exponentially, factorizing a number
with N digits will take ∆t exp(aN) seconds, where a is a constant that depends
on the details of the algorithm. For example, if ∆t = 10−6 and a = 10−2, fac-
toring a number with N = 10, 000 digits will take 1037 seconds, which is much,
much longer than the lifetime of the universe (which is a mere 4.6 × 1017 sec-
onds). In contrast, if the number of steps scales as the third power of the number
of digits, the same computation takes a′∆tN3 seconds, which with a′ = 10−2,
is 104 seconds or a little under three hours. Of course the constants a, a′ and
∆t are implementation dependent, but because of the dramatic difference be-
tween exponential vs. polynomial scaling, for sufficiently large N there is always
a fundamental difference in speed. In fact for the factoring problem as such, the
situation is more subtle: at present the best available classical algorithm requires
exp(O(n1/3 log2/3 n)) operations, whereas the best available quantum algorithm
would require O(n2 log n log log n) operations. Factorization is only one of several
problems that could potentially benefit from quantum computing. The implica-
tions go beyond quantum computing, and include diverse applications such as
quantum cryptography and quantum communication [Nielsen and Chuang, 1990;
Kaye et al., 2007; Mermin, 2007; Lloyd, 2008].

The possibility for such huge speed-ups comes from the intrinsically parallel
nature of quantum systems. The reasons for this are sufficiently subtle that it took
many decades after the discovery of quantum mechanics before anyone realized
that its computational properties are fundamentally different. The huge interest
in quantum computation in recent years has caused a re-examination of the concept
of information in physical systems, spawning a field that is sometimes referred to
as “quantum information theory”.

Before entering the specifics of quantum information and computing, we give a
brief introduction to the basic setting of quantum theory and contrast it with its
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classical counterpart. We describe the physical states of a quantum systems, the
definition of quantum observables, and time evolution according to the Schrödinger
equation. Then we briefly explain the measurement process, the basics of quan-
tum teleportation and quantum computation. To connect to classical statistical
physics we describe the density matrix and the von Neumann entropy. Quantum
computation in practice involves sophisticated and highly specialized subfields of
experimental physics which are beyond the scope of this brief review – we have
tried to limit the discussion to the essential principles.

6.1 Quantum states and the definition of a qubit

In classical physics we describe the state of a system by specifying the values of
dynamical variables, for example, the position and velocity of a particle at a given
instant in time. The time evolution is then described by Newton’s laws, and any
uncertainty in its evolution is driven by the accuracy of the measurements. As
we described in Section 4.2, uncertainties can be amplified by chaotic dynam-
ics, but within classical physics there is no fundamental limit on the accuracy of
measurements — by measuring more and more carefully, we can predict the time
evolution of a system more and more accurately. At a fundamental level, however,
all of physics behaves according to the laws of quantum mechanics, which are very
different from the laws of classical physics. At the macroscopic scales of space,
time and energy where classical physics is a good approximation, the predictions
of classical and quantum theories have to be roughly the same, a statement that
is called the correspondence principle. Nonetheless, understanding the emergence
of classical physics from an underlying quantum description is not always easy.

The scale of the quantum regime is set by Planck’s constant, which has dimen-
sions of energy × time (or equivalently momentum × length). It is extremely
small in ordinary units17: h̄ = 1.05 × 10−34 Joule-seconds. This is why quantum
properties only manifest themselves at very small scales or very low tempera-
tures. One has to keep in mind however, that radically different properties at a
microscopic scale (say at the level of atomic and molecular structure) will also
lead to fundamentally different collective behavior on a macroscopic scale. Most
phases of condensed matter realized in nature, such as crystals, super, ordinary or
semi-conductors or magnetic materials, can only be understood from the quantum
mechanical perspective. The stability and structure of matter is to a large extent
a consequence of the quantum behavior of its fundamental constituents.

To explain the basic ideas of quantum information theory we will restrict our
attention to systems of qubits, which can be viewed as the basic building blocks of
quantum information systems. The physical state of a quantum system is described
by a wavefunction that can be thought of a vector in an abstract multidimensional
space, called a Hilbert space. For our purposes here, this is just a finite dimensional
vector space where the vectors have complex rather than real coefficients, and
where the length of a vector is the usual length in such a space, i.e. the square root

17We are using the reduced Planck’s constant, h̄ = h/2π.
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of the sum of the square amplitudes of its components18. Hilbert space replaces the
concept of phase space in classical mechanics. Orthogonal basis vectors defining
the axes of the space correspond to different values of measurable quantities, also
called observables, such as spin, position, or momentum.

As we will see, an important difference from classical mechanics is that many
quantum mechanical quantities, such as position and momentum or spin along the
x-axis and spin along the y-axis, cannot be measured simultaneously. Another
essential difference from classical physics is that the dimensionality of the state
space of the quantum system is huge compared to that of the classical phase
space. To illustrate this drastic difference think of a particle that can move along
an infinite line with an arbitrary momentum. From the classical perspective it has
a phase space that is two dimensional and real (a position x and a momentum
p ), but from the quantum point of view it it is given by a wavefunction Ψ of
one variable (typically the position x or the momentum p). This wave function
corresponds to an element in an infinite dimensional Hilbert space.

We discussed the classical Ising spin in section 3.2. It is a system with only two
states, denoted by s = ±1, called spin up or spin down, which can be thought of
as representing a classical bit with two possible states, “0” and “1”. The quantum
analog of the Ising spin is a very different kind of animal. Where the Ising spin
corresponds to a classical bit, the quantum spin corresponds to what is called a
qubit. As we will make clear in a moment, the state space of a qubit is much
larger then that of its classical counterpart, making it possible to store much more
information. This is only true in a certain sense, as one has to take into account to
what extent the state is truly observable and whether it can be precisely prepared,
questions we will return to later.

Any well-defined two level quantum system can be thought of as representing
a qubit. Examples of two state quantum systems are a photon, which possesses
two polarization states, an electron, which possesses two possible spin states, or
a particle in one of two possible energy states. In the first two examples the
physical quantities in the Hilbert space are literally spins, corresponding to angular
momentum, but in the last example this is not the case. This doesn’t matter –
even if the underlying quantities have nothing to do with angular momentum, as
long as it is a two state quantum system we can refer to it as a “spin”. We can
arbitrarily designate one quantum state as “spin up”, represented by the symbol
|1〉, and the other “spin down”, represented by the symbol |0〉.

The state of a qubit is described by a wavefunction or state vector |ψ〉, which
can be written as

(67) |ψ〉 = α|1〉 + β|0〉 with |α|2 + |β|2 = 1.

Here α and β are complex numbers19, and thus we can think of |ψ〉 as a vector
in the 2-dimensional complex vector space, denoted C2, and we can represent the

18More generally it is necessary to allow for the possibility of infinite dimensions, which in-
troduces complications about the convergence of series that we do not need to worry about
here.

19A complex number α has a real and imaginary part α = a1 + ia2, where a1 and a2 are both
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state as a column vector
(

α
β

)
. We can also define a dual vector space in C2

with dual vectors that can either be represented as row vectors or alternatively be
written

(68) 〈ψ| = 〈0|α∗ + 〈1|β∗ .

This allows us to define the inner product between two state vectors |ψ〉 and
|φ〉 = γ|1〉 + δ|0〉 as

(69) 〈φ|ψ〉 = 〈ψ|φ〉∗ = γ∗α + δ∗β .

Each additional state (or configuration) in the classical system yields an additional
orthogonal dimension (complex parameter) in the quantum system. Hence a finite
state classical system will lead to a finite dimensional complex vector space for the
corresponding quantum system.

Let us describe the geometry of the quantum configuration space of a single
qubit in more detail. The constraint |α|2 + |β|2 = 1 says that the state vector
has unit length, which defines the complex unit circle in C2, but if we write the
complex numbers in terms of their real and imaginary parts as α = a1 + ia2 and
β = b1 + ib2, then we obtain |a1 + a2i|2 + |b1 + b2i|2 = a2

1 + a2
2 + b2

1 + b2
2 = 1. The

geometry of the space described by the latter equation is just the three dimensional
unit sphere S3 embedded in a four dimensional Euclidean space, R4.

To do any nontrivial quantum computation we need to consider a system with
multiple qubits. Physically it is easiest to imagine a system of n particles, each with
its own spin. (As before, the formalism does not depend on this, and it is possible to
have examples in which the individual qubits might correspond to other physical
properties). The mathematical space in which the n qubits live is the tensor
product of the individual qubit spaces, which we may write as C2⊗C2⊗ ...⊗C2 =
C2n

. For example, the Hilbert space for two qubits is C2 ⊗ C2. This is a four
dimensional complex vector space spanned by the vectors |1〉⊗|1〉, |0〉⊗|1〉, |1〉⊗|0〉,
and |0〉 ⊗ |0〉. For convenience we will often abbreviate the tensor product by
omitting the tensor product symbols, or by simply listing the spins. For example

|1〉 ⊗ |0〉 = |1〉|0〉 = |10〉.

The tensor product of two qubits with wave functions |ψ〉 = α|1〉 + β|0〉 and
|φ〉 = γ|1〉 + δ|0〉 is

|ψ〉 ⊗ |φ〉 = |ψ〉|φ〉 = αγ|11〉 + γδ|10〉 + βγ|01〉 + βδ|00〉.

The most important feature of the tensor product is that it is multi-linear, i.e.
(α|0〉+β|1〉)⊗ |ψ〉 = α|0〉⊗ |ψ〉+β|1〉⊗ |ψ〉. Again we emphasize that whereas the
classical n−bit system has 2n states, the n−qubit system corresponds to a vector

real, and i is the imaginary unit with the property i2 = −1. Note that a complex number can
therefore also be thought of as a vector in a two dimensional real space.The complex conjugate is
defined as α∗ = a1−ia2 and the square of the modulus, or absolute value, as |α|2 = α∗α = a2

1+a2
2.
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of unit length in a 2n dimensional complex space, with twice as many degrees of
freedom. For example a three-qubit can be expanded as:

|ψ〉 = α1|000〉 + α2|001〉 + α3|010〉 + α4|011〉
+ α5|100〉 + α6|101〉 + α7|110〉 + α8|111〉

Sometimes it is convenient to denote the state vector by the column vector of its
components α1,α2, ...,α2n .

6.2 Observables

How are ordinary physical variables such as energy, position, velocity, and spin
retrieved from the state vector? In the quantum formalism observables are de-
fined as hermitian operators acting on the state space. In quantum mechanics
an operator is a linear transformation that maps one state into another, which
providing the state space is finite dimensional, can be represented by a matrix. A
hermitian operator or matrix satisfies the condition A = A†, where A† = (Atr)∗ is
the complex conjugate of the transpose of A. The fact that observables are repre-
sented by operators reflects the property that measurements may alter the state
and that outcomes of different measurements may depend on the order in which
the measurements are performed. In general observables in quantummechanics do
not necessarily commute, by which we mean that for the product of two observ-
ables A and B one may have that AB 0= BA. The reason that observables have
to be hermitian is because the outcome of measurements are the eigenvalues of
observables, and hermitian operators are guaranteed to have real eigenvalues.

For example consider a single qubit. The physical observables are the compo-
nents of the spin along the x, y or z directions, which are by convention written
sx = 1

2σx, sy = 1
2σy, etc. The operators σ are the Pauli matrices

(70) σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
,

which obviously do not commute. In writing the spin operators this way we
have arbitrarily chosen20 the z-axis to have a diagonal representation, so that
the eigenstates21 for spin along the z axis are the column vectors

|1〉 =
(

1
0

)
, |0〉 =

(
0
1

)
.

20We can rotate into a different representation that makes either of the other two axes diagonal,
and in which the z-axis is no longer diagonal – it is only possible to make one of the three axes
diagonal at a time. Experimental set-ups often have conditions that break symmetry, such as
an applied magnetic fields, in which case it is most convenient to let the symmetry breaking
direction be the z-axis.

21The eigenstates |χk〉 of a linear operator A are defined by the equation A|χk〉 = λk|χk〉. If A
is hermitian the eigenvalue λk is a real number. It is generally possible to choose the eigenstates
as orthonormal, so that 〈χj |χk〉 = δjk, where δij = 1 when i = j and δij = 0 otherwise.
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6.3 Quantum evolution: the Schrödinger equation

The wave function of a quantum system evolves in time according to the famous
Schrödinger equation. Dynamical changes in a physical system are induced by
the underlying forces acting on the system and between its constituent parts, and
their effect can be represented in terms of what is called the energy or Hamiltonian
operator H. For a single qubit system the operators can be represented as 2 × 2
matrices, for a two qubit system they are 4 × 4 matrices, etc. The Schrödinger
equation can be written

(71) ih̄
d|ψ(t)〉

dt
= H|ψ(t)〉.

This is a linear differential equation expressing the property that the time evolution
of a quantum system is generated by its energy operator. Assuming that H is
constant, given an initial state |ψ(0)〉 the solution is simply

(72) |ψ(t)〉 = U(t)|ψ(0)〉 with U(t) = e−iHt/h̄.

The time evolution is unitary, meaning that the operator U(t) satisfies UU† = 1.

(73) U† = exp(−iHt/h̄)† = exp(iH†t/h̄) = exp(iHt/h̄) = U−1.

Unitary time evolution means that the length of the state vector remains invariant,
which is necessary to preserve the total probability for the system to be in any
of its possible states. The unitary nature of the the time evolution operator U
follows directly from the fact that H is hermitian. Any hermitean 2 × 2 matrix
can be written

(74) A =
(

a b + ic
b − ic −a

)
,

where a, b and c are real numbers22.
For the simple example of a single qubit, suppose the initial state is

|ψ(0)〉 =
√

1
2
(|1〉 + |0〉) ≡

√
1
2

(
1
1

)
.

On the right, for the sake of convenience, we have written the state as a column
vector. Consider the energy of a spin in a magnetic field B directed along the
positive z-axis23. In this case H is given by H = Bsz. From (70)

(75) U(t) = exp(
−iBt

2h̄
σz) =

(
exp(−iBt/2h̄) 0

0 exp(iBt/2h̄)

)
.

Using (72) we obtain an oscillatory time dependence for the state, i.e.
22We omitted a component proportional to the unit matrix as it acts trivially on any state.
23Quantum spins necessarily have a magnetic moment, so in addition to carrying angular

momentum they also interact with a magnetic field.
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(76) |ψ(t)〉 =
√

1
2

(
e−iBt/2h̄

eiBt/2h̄

)
=

√
1
2

[
cos

Bt

2h̄

(
1
1

)
+ i sin

Bt

2h̄

(
−1
1

)]
.

We thus see that, in contrast to classical mechanics, time evolution in quantum
mechanics is always linear. It is in this sense much simpler than classical mechan-
ics. The complication is that when we consider more complicated examples, for
example corresponding to a macroscopic object such as a planet, the dimension of
the space in which the quantum dynamics takes place becomes extremely high.

6.4 Quantum measurements

Measurement in classical physics is conceptually trivial: One simply estimates the
value of the classical state at finite precision and approximates the state as a real
number with a finite number of digits. The accuracy of measurements is limited
only by background noise and the precision of the measuring instrument. The
measurement process in quantum mechanics, in contrast, is not at all trivial. One
difference with classical mechanics is that in many instances the set of measurable
states is discrete, with quantized values for the observables. It is this property
that has given the theory of quantum mechanics its name. But perhaps an even
more profound difference is that quantum measurement typically causes a radical
alteration of the wavefunction. Before the measurement of an observable we can
only describe the possible outcomes in terms of probabilities, whereas after the
measurement the outcome is known with certainty, and the wavefunction is irre-
vocably altered to reflect this. In the conventional Copenhagen interpretation of
quantum mechanics the wave function is said to “collapse” when a measurement is
made. In spite of the fact that quantum mechanics makes spectacularly successful
predictions, the fact that quantum measurements are inherently probabilistic and
can ”instantly” alter the state of the system has caused a great deal of controversy.
In fact, one can argue that historically the field of quantum computation emerged
from thinking carefully about the measurement problem [Deutsch, 1985].

In the formalism of quantum mechanics the possible outcomes of an observable
quantity A are given by the eigenvalues of the matrix A. For example, the three
spin operators defined in Eq. 70 all have the same two eigenvalues λ± = ±1/2. This
means that the possible outcomes of a measurement of the spin in any direction
can only be plus or minus one half. This is completely different than a spinning
object in classical physics, which can spin at any possible rate in any direction.
This is why quantum mechanics is so nonintuitive!

If a quantum system is in an eigenstate then the outcome of measurements in
the corresponding direction is certain. For example, imagine we have a qubit in
the state with α = 1 and β = 0 so |ψ〉 = |1〉. It is then in the eigenstate of
sz with eigenvalue +1

2 , so the measurement of sz will always yield that value.
This is reflected in the mathematical machinery of quantum mechanics by the
fact that for the spin operator in the z−direction, A = sz, the eigenvector with

eigenvalue λ+ = +1/2 is |1〉 =
(

1
0

)
and the eigenvector with λ− = −1/2 is
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|0〉 =
(

0
1

)
. In contrast, if we make measurements in the orthogonal directions

to the eigenstate, e.g. A = sx, the outcomes become probabilistic. In the example
above the eigenvectors of sx are |χ+〉 =

√
1
2 (|1〉 + |0〉) and |χ−〉 =

√
1
2 (|1〉 − |0〉).

In general the probability of finding the system in a given state in a measurement
is computed by first expanding the given state |ψ〉 into the eigenstates |χk〉 of the
matrix A corresponding to the observable, i.e.

(77) |ψ〉 =
∑

k

αk|χk〉 where αk = 〈χk|ψ〉.

The probability of measuring the system in the state corresponding to eigenvalue
λk is pk = |αk|2. The predictions of quantum mechanics are therefore probabilis-
tic but the theory is essentially different from classical probability theory. On
the one hand it is clear that a given operator defines a probability measure on
Hilbert space, however as the operators are non-commuting (like matrices) one
is dealing with a non-commutative probability theory [Holevo, 1982]. It is the
non-commutativity of observables that gives rise to the intricacies in the quantum
theory of measurement.

Let us discuss an example for clarification. Consider the spin in the x-direction,
A = sx, and |ψ〉 = |1〉, i.e. spin up in the z-direction. Expanding in eigenstates of
σx we get |ψ〉 = |1〉 =

√
1
2 |χ+〉 +

√
1
2 |χ−〉. The probability of measuring spin up

along the x-direction is |α+|2 = 1/2, and the probability of measuring spin down
along the x-direction is |α−|2 = 1/2. We see how probability enters quantum
mechanics at a fundamental level. The average of an observable is its expectation
value, which is the weighted sum

(78) 〈ψ|A|ψ〉 =
∑

k

|αk|2λk =
∑

k

pkλk.

In the example at hand 〈σx〉 = 0.
The act of measurement influences the state of the system. If we measure

sx = + 1
2 and then measure it again immediately afterward, we will get the same

value with certainty. Stated differently, doing the measurement somehow forces
the system into the eigenstate |χ+〉, and once it is there, in the absence of further
interactions, it stays there. This strange property of measurement, in which the
wavefunction collapses onto the observed eigenstate, was originally added to the
theory in an ad hoc manner, and is called the projection postulate. This postulate
introduces a rather arbitrary element into the theory that appears to be inconsis-
tent: The system evolves under quantum mechanics according to the Schrödinger
equation until a measurement is made, at which point some kind of magic associ-
ated with the classical measurement apparatus takes place, which lies completely
outside the rest of the theory.

To understand the measurement process better it is necessary to discuss the
coupling of a quantum system and a classical measurement apparatus in more
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detail. A measurement apparatus, such as a pointer on a dial or the conditional
emission of a light pulse, is also a quantum mechanical system. If we treat the
measurement device quantum mechanically as well, it should be possible to regard
the apparent “collapse” of the wavefunction as the outcome of the quantum evolu-
tion of the combined system of the measurement device and the original quantum
system under study, without invoking the projection postulate. We return to this
when we discuss decoherence in Section 6.7 .

Note that a measurement does not allow one to completely determine the state.
A complete measurement of the two-qubit system yields at most two classical
bits of information, whereas determining the full quantum state requires knowing
seven real numbers ( four complex numbers subject to a normalization condition).
In this sense one cannot just say that a quantum states “contains” much more
information that its classical counterpart. In fact, due to the non-commutativity
of the observables, with simultaneous measurements one is able to extract less
information than from the corresponding classical system.

There are two ways to talk about quantum theory: If one insists it is a theory of a
single system, then one has to live with the fact that it only predicts the probability
of things to happen and as such is a retrenchment from the ideal of classical physics.
Alternatively one may take the view that quantum theory is a theory that only
applies to ensembles of particles. To actually measure probability distributions
one has to make many measurements on “identically prepared” quantum systems.
From this perspective the dimensionality of Hilbert space should be compared to
that of classical distributions defined over a classical phase space, which makes the
difference between classical and quantum theories far less dramatic. This raises
the quest for a theory underlying quantum mechanics which applies for a single
system. So far nobody has succeeded in producing such a theory, and on the
contrary, attempts to build such theories based on “hidden variables” have failed.
The Bell inequalities suggest that such a theory is probably impossible [Omnes,
1999].

6.5 Multi qubit states and entanglement

When we have more than one qubit an important practical question is when and
how measurements of a given qubit depend on measurements of other qubits.
Because of the deep properties of quantum mechanics, qubits can be coupled in
subtle ways that produce consequences for measurement that are very different
from classical bits. Understanding this has proved to be important for the prob-
lems of computation and information transmission. To explain this we need to
introduce the opposing concepts of separability and entanglement, which describe
whether measurements on different qubits are statistically independent or statis-
tically dependent.

An n-qubit state is separable if it can be factored into n-single qubit states24,
i.e. if it can be written as n− 1 tensor products of sums of qubit states, with each

24Strictly speaking this is only true for pure states, which we define in the next section.
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factor depending only on a single qubit. An example of a separable two-qubit state
is

(79) |ψ〉 =
1
2
(|00〉 + |01〉 + |10〉 + |11〉) =

1
2
(|0〉 + |1〉) ⊗ (|0〉 + |1〉).

If an n-qubit state is separable then measurements on individual qubits are sta-
tistically independent, i.e. the probability of making a series of measurements on
each qubit can be written as a product of probabilities of the measurements for
each qubit.

An n-qubit state is entangled if it is not separable. An example of an entangled
two-qubit state is

(80) |ψ〉 =
1√
2
(|00〉 + |11〉),

which cannot be factored into a single product. For entangled states measurements
on individual qubits depend on each other.

We now illustrate this for the two examples above. Suppose we do an experiment
in which we measure the spin of the first qubit and then measure the spin of the
second qubit. For both the separable and entangled examples, there is a 50%
chance of observing either spin up or spin down on the first measurement. Suppose
it gives spin up. For the separable state this transforms the wave function as

1
2
(|0〉 + |1〉) ⊗ (|0〉 + |1〉) → 1√

2
(|1〉) ⊗ (|0〉 + |1〉) =

1√
2
(|10〉 + |11〉).

If we now measure the spin of the second qubit, the probability of measuring spin
up or spin down is still 50%. The first measurement has no effect on the second
measurement.

In contrast, suppose we do a similar experiment on the entangled state of equa-
tion 80 and observe spin up in the first measurement. This transforms the wave
function as

(81)
1√
2
(|00〉 + |11〉) −→ |11〉.

(Note the disappearance of the factor 1/
√

2 due to the necessity that the wave
function remains normalized). If we now measure the spin of the second qubit we
are certain to observe spin up! Similarly, if we observe spin down in the first mea-
surement, we will also observe it in the second. For the entangled example above
the measurements are completely coupled – the outcome of the first determines
the second25. This property of entangled states was originally pointed out by Ein-
stein, Podolski and Rosen [Einstein et al., 1935], who expressed concern about the
possible consequences of this when the qubits are widely separated in space. This

25One may argue that a perfectly correlated classical system would exhibit similar behaviour.
The difference between classical and classical system would still become manifest in the depen-
dence of the correlation on the angle of two successive measurements with different measurement
angle.
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line of thinking did not point out a fundamental problem with quantum mechan-
ics as they perhaps originally hoped, but rather led to a deeper understanding of
the quantum measurement problem and to the practical application of quantum
teleportation as discussed in Section 6.9.

The degree of entanglement of a system of qubits is a reflection of their past
history. By applying the right time evolution operator, i.e. by introducing appro-
priate interactions, we can begin with a separable state and entangle it, or begin
with an entangled state and separate it. Separation can be achieved, for example,
by applying the inverse of the operator that brought about the entanglement in
the first place – quantum dynamics is reversible. Alternatively separation can be
achieved by transferring the entanglement to something else, such as the exter-
nal environment. (In the latter case there will still be entanglement, but it will
be between one of the qubits and the environment, rather than between the two
original qubits).

6.6 Entanglement and entropy

So far we have assumed that we are able to study a single particle or a few particles
with perfect knowledge of the state. This is called a statistically pure state, or
often more simply, a pure state. In experiments it can be difficult to prepare a
system in a pure state. More typically there is an ensemble of particles that might
be in different states, or we might have incomplete knowledge of the states. Such a
situation, in which there is a nonzero probability for the particle to be in more than
one state, is called a mixed state. As we explain below, von Neumann developed an
alternative formalism for quantum mechanics in terms of what is called a density
matrix, which replaces the wavefunction as the elementary level of description.
The density matrix representation very simply handles mixed states, and leads
to a natural way to measure the entropy of a quantum mechanical system and
measure entanglement.

Consider a mixed state in which there is a probability pi for the system to have
wavefunction ψi and an observable characterized by operator A. The average value
measured for the observable (also called its expectation value) is

(82) 〈A〉 =
∑

i

pi〈ψi|A|ψi〉.

We can expand each wavefunction ψi in terms of a basis |χj〉 in the form

|ψi〉 =
∑

j

〈χj |ψi〉|χj〉,

where in our earlier notation 〈χj |ψi〉 = α(i)
j . Performing this expansion for the

dual vector 〈ψi| as well, substituting into (82) and interchanging the order of
summation gives

〈A〉 =
∑

j,k

(
∑

i

pi〈χj |ψi〉〈ψi|χk〉
)
〈χk|A|χj〉
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=
∑

j,k

〈χj |ρ|χk〉〈χk|A|χj〉

= tr(ρA),

where

(83) ρ =
∑

i

pi|ψi〉〈ψi|

is called the density matrix26. Because the trace tr(ρA) is independent of the
representation this can be evaluated in any convenient basis, and so provides an
easy way to compute expectations. Note that tr(ρ) = 1. For a pure state pi = 1
for some value of i and pi = 0 otherwise. In this case the density matrix has rank
one. This is obvious if we write it in a basis in which it is diagonal – there will
only be one nonzero element. When there is more than one nonzero value of pi it
is a mixed state and the rank is greater than one.

To get a better feel for how this works, consider the very simple example of a
single qubit, and let ψ1 = |1〉. If this is a pure state then the density matrix is just

ρ = |1〉〈1| =
(

1 0
0 0

)
.

The expectation of the spin along the z-axis is tr(ρsz) = 1/2. If, however, the
system is in a mixed state with 50% of the population spin up and 50% spin down,
this becomes

ρ =
1
2

(|1〉〈1| + |0〉〈0|) =
1
2

(
1 0
0 1

)
.

In this case the expectation of the spin along the z-axis is tr(ρsz) = 0.
This led von Neumann to define the entropy of a quantum state in analogy with

the Gibbs entropy for a classical ensemble as

(84) S(ρ) = −tr ρ log ρ = −
∑

i

pi log pi .

The entropy of a quantum state provides a quantitative measure of “how mixed”
a system is. The entropy of a pure state is equal to zero, whereas the entropy of
a mixed state is greater than zero.

In some situations there is a close relationship between entangled and mixed
states. An entangled but pure state in a high dimensional multi-qubit space can
appear to be a mixed state when viewed from the point of view of a lower dimen-
sional state space. The view of the wavefunction from a lower dimensional factor
in a tensor product space is formally taken using a partial trace. This is done by

26The density matrix provides an alternative representation for quantum mechanics – the
Schrödinger equation can be rewritten in terms of the density matrix so that we never need to
use wavefunctions at all.
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summing over all the coordinates associated with the factors we want to ignore.
This corresponds to leaving some subsystems out of consideration, for example,
because we can only measure a certain qubit and can’t measure the qubits on
which we perform the partial trace. As an example consider the entangled state of
equation (80), and trace it with respect to the second qubit. To do this we make
use of the fact that tr(|ψ〉〈φ|) = 〈ψ|φ〉. Using labels A and B to keep the qubits
straight, and remembering that because we are using orthogonal coordinates terms
of the form 〈0|1〉 = 0, the calculation can be written

tr (|ψAB〉〈ψAB |) =
1
2
tr (|1〉A〈1|B + |0〉A〈0|B) (〈0|B〈0|A + 〈1|B〈1|A)

=
1
2

(|1〉A〈1|A〈1|1〉B + |0〉A〈0|A〈0|0〉B)

=
1
2

(|1〉A〈1|A + |0〉A〈0|A)

This is a mixed state with probability 1/2 to be either spin up or spin down. The
corresponding entropy is also higher: In base two S = − log(1/2) = 1 bit, while
for the original pure state S = log 1 = 0. In general if we begin with a statistically
pure separable state and perform a partial trace we will still have a pure state, but
if we begin with an entangled state, when we perform a partial trace we will get a
mixed state. In the former case the entropy remains zero, but in the latter case it
increases. Thus the von Neumann entropy yields a useful measure of entanglement.

6.7 Measurement and Decoherence

In this section we return to the measurement problem and the complications that
arise if one wants to couple a classical measurement device to a quantum system.
A classical system is by definition described in terms of macro-states, and one
macro-state can easily correspond to 1040 micro-states. A classical measurement
apparatus like a Geiger counter or a photo multiplier tube is prepared in a meta-
stable state in which an interaction with the quantum system can produce a decay
into a more stable state indicating the outcome of the measurement. For example,
imagine that we want to detect the presence of an electron. We can do so by
creating a detector consisting of a meta-stable atom. If the electron passes by
its interaction with the meta-stable atom via its electromagnetic field can cause
the decay of the meta-stable atom, and we observe the emission of a photon.
If it doesn’t pass by we observe nothing. There are very many possible final
states for the system, corresponding to different micro-states of the electron and
the photon, but we aren’t interested in that – all we want to know is whether
or not a photon was emitted. Thus we have to sum over all possible combined
photon-electron configurations. This amounts to tracing the density matrix of the
complete system consisting of the electron and the measurement apparatus over
all states in which a photon is present in the final state. This leads to a reduced
density matrix describing the electron after the measurement, with the electron
in a mixed state, corresponding to the many possible photon states. Thus even
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though we started with a zero entropy pure state in the combined system of the
electron and photon, we end up with a positive entropy mixed state in the space
of the electron alone. The state of the electron is reduced to a classical probability
distribution, and due to the huge number of microstates that are averaged over,
the process of measurement is thermodynamically irreversible. Even if we do not
observe the outcoming photon with our own eyes, it is clear whether or not the
metastable atom decayed, and thus whether or not the electron passed by.

The description of the measurement process above is an example of decoherence,
i.e. of a process whereby quantum mechanical systems come to behave as if they
were governed by classical probabilities. A common way for this to happen is for
a quantum system to interact with its environment, or for that matter any other
quantum system, in such a way that the reduced density matrix for the system
of interest becomes diagonal in a particular basis. The phases are randomized, so
that after the measurement the system is found to be in a mixed state. According
to this view, the wavefunction does not actually collapse, there is just the appear-
ance of a collapse due to quantum decoherence. The details of how this happen
remain controversial, and is a subject of active research [Zurek, 1991; Zurek, 2003;
Schlosshauer, 2004; Omnes, 1999]. In Section 6.11 we will give an example of how
decoherence can be generated even by interactions between simple systems.

6.8 The no-cloning theorem

We have seen that by doing a measurement we may destroy the original state.
One important consequence connected to this destructive property of the act of
measurement is that a quantum state cannot be cloned; one may be able to transfer
a state from one register to another but one cannot make a xerox copy of a given
quantum state. This is expressed by the no-cloning theorem [Wootters and Zurek,
1982; Dieks, 1982]. Worded differently, the no-cloning theorem states that for
an arbitrary state |ψ1〉 on one qubit and some particular state |φ〉 on another,
there is no quantum device [A] that transforms |ψ1〉 ⊗ |φ〉 → |ψ1〉 ⊗ |ψ1〉, i.e. that
transforms |φ〉 into ψ1〉. Letting UA be the unitary operator representing A, this
can be rewritten |ψ1〉|ψ1〉 = UA|ψ1〉|φ〉. For a true cloning device this property has
to hold for any other state |ψ2〉, i.e. we must also have |ψ2〉|ψ2〉 = UA|ψ2〉|φ〉. We
now show the existence of such a device leads to a contradiction. Since 〈φ|φ〉 = 1
and U†

AUA = 1, and UA|ψi〉|φ〉 = UA|φ〉|ψi〉, the existence of a device that can
clone both ψ1 and ψ2 would imply that

〈ψ1|ψ2〉 = (〈ψ1|〈φ|) (|φ〉|ψ2〉) = (〈ψ1|〈φ|U†
A) (UA|φ〉|ψ2〉)

= (〈ψ1|〈ψ1|)(|ψ2〉|ψ2〉)
= 〈ψ1|ψ2〉2.

The property 〈ψ1|ψ2〉 = 〈ψ1|ψ2〉2 only holds if ψ1 and ψ2 are either orthogonal
or equal, i.e. it does not hold for arbitrary values of ψ1 and ψ2, so there can
be no such general purpose cloning device. In fact, in view of the uncertainty of
quantum measurements, the no-cloning theorem does not come as a surprise: If
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it were possible to clone wavefunctions, it would be possible to circumvent the
uncertainty of quantum measurements by making a very large number of copies
of a wavefunction, measuring different properties of each copy, and reconstructing
the exact state of the original wavefunction.

6.9 Quantum teleportation

Quantum teleportation provides a method for privately sending messages in a way
that ensures that the receiver will know if anyone eavesdrops. This is possible
because a quantum state is literally teleported, in the sense of StarTrek: A quan-
tum state is destroyed in one place and recreated in another. Because of the
no-cloning theorem, it is impossible to make more than one copy of this quantum
state, and as a result when the new teleported state appears, the original state
must be destroyed. Furthermore, it is impossible for both the intended receiver
and an eavesdropper to have the state at the same time, which helps make the
communication secure.

Quantum teleportation takes advantage of the correlation between entangled
states as discussed in Section 6.5. Suppose Alice wants to send a secure message
to Charlie at a (possibly distant) location. The process of teleportation depends
on Alice and Charlie sharing different qubits of an entangled state. Alice makes
a measurement of her part of the entangled state, which is coupled to the state
she wants to teleport to Charlie, and sends him some classical information about
the entangled state. With the classical information plus his half of the entangled
state, Charlie can reconstruct the teleported state. We have indicated the process
in figure 7. We follow the method proposed by Bennett et al. [1993], and first
realized in an experimental setup by the group of Zeilinger in 1997 [Bouwmeester
et al., 1997]. In realistic cases the needed qubit states are typically implemented
as left and right handed polarized light quanta (i.e. photons).

The simplest example of quantum teleportation can be implemented with three
qubits. The (A) qubit is the unknown state to be teleported,

(85) |ψA〉 = α|1〉 + β|0〉.

This state is literally teleported from one place to another. If Charlie likes, once
he has the teleported state he can make a quantum measurement and extract the
same information about α and β that he would have been able to extract had he
made the measurement on the original state.

The teleportation of this state is enabled by an auxiliary two-qubit entangled
state. We label these two qubits B and C. For technical reasons it is convenient to
represent this in a special basis consisting of four states, called Bell states, which
are written

|Ψ(±)
BC〉 =

√
1
2
(|1B〉|0C〉± |0B〉|1C〉)

|Φ(±)
BC〉 =

√
1
2
(|1B〉|1C〉± |0B〉|0C〉).(86)
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Figure 7. Quantum teleportation of a quantum state as proposed by Bennett et
al. [1993], using an entangled pair. An explanation is given in the text.

The process of teleportation can be outlined as follows (please refer to Figure 7).

1. Someone prepares an entangled two qubit state BC (the Entangled pair in
the diagram).

2. Qubit B is sent to Alice and qubit C is sent to Charlie.

3. In the Scanning step, Alice measures in the Bell states basis the combined
wavefunction of qubits A (the original in the diagram) and the entangled
state B, leaving behind the Disrupted original.

4. Alice sends two bits of classical data to Charlie telling him the outcome of
her measurements (Send classical data).

5. Based on the classical information received from Alice, Charlie applies one
of four possible operators to qubit C (Apply treament), and thereby recon-
structs A, getting a teleported replica of the original. If he likes, he can now
make a measurement on A to recover the message Alice has sent him.

We now explain this process in more detail. In step (1) an entangled two qubit
state ψBC such as that of (80) is prepared. In step (2) qubit B is transmitted to
Alice and qubit C is transmitted to Charlie. This can be done, for example, by
sending two entangled photons, one to each of them. In step (3) Alice measures
the joint state of qubit A and B in the Bell states basis, getting two classical
bits of information, and projecting the joint wavefunction ψAB onto one of the
Bell states. The Bell states basis has the nice property that the four possible
outcomes of the measurement have equal probability. To see how this works, for
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convenience suppose the entangled state BC was prepared in state |Ψ(−)
BC〉. In this

case the combined wavefunction of the three qubit state is
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|ψABC〉 = |ψA〉|Ψ(−)
BC〉(87)

=
α√
2
(|1A〉|1B〉|0C〉 − |1A〉|0B〉|1C〉) +

β√
2
(0A〉|1B〉|0C〉 − |0A〉|0B〉|1C〉).

If this is expanded in the Bell states basis for the pair AB, it can be written in
the form

|ψABC〉 = 1
2

[
|Ψ(−)

AB〉(−α|1C〉 − β|0C〉) + |Ψ(+)
AB〉(−α|1C〉 + β|0C〉)

|Φ(−)
AB〉(β|1C〉 + α|0C〉) + |Φ(+)

AB〉(−β|1C〉 + α|0C〉)
]

.(88)

We see that the two qubit AB has equal probability to be in the four possible
states |Ψ(−)

AB〉, |Ψ(+)
AB〉, |Φ(−)

AB〉 and |Φ(+)
AB〉.

In step (4), Alice transmits two classical bits to Charlie, telling him which of the
four basis functions she observed. Charlie now makes use of the fact that in the
Bell basis there are four possible states for the entangled qubit that he has, and
his qubit C was entangled with Alice’s qubit B before she made the measurement.
In particular, let |φC〉 be the state of the C qubit, which from (88) is one of the
four states:

(89) |φC〉 =
(

α
β

)
;
(

−α
β

)
;
(

β
α

)
; and

(
−β
α

)
.

In step (5), based on the information that he receives from Alice, Charlie selects
one of four possible operators Fi and applies it to the C qubit. There is one
operator Fi for each of the four possible Bell states, which are respectively:

(90) F = −
(

1 0
0 1

)
;

(
−1 0
0 1

)
;

(
0 1
1 0

)
; and

(
0 −1
1 0

)
.

Providing Charlie has the correct classical information and an intact entangled
state he can reconstruct the original A qubit by evolving |φC〉 with the appropriate
unitary operator Fi.

(91) |ψA〉 = α|1〉 + β|0〉 = Fi|φC〉 .

By simply multiplying each of the four possibilities it is easy to verify that as long
as his information is correct, he will correctly reconstruct the A qubit α|1A〉+β|0A〉.

We stress that Charlie needs the classical measurement information from Alice.
If he could do without it the teleportation process would violate causality, since
information could be transferred instantaneously from Alice to Charlie. That
is, when Alice measures the B qubit, naively it might seem that because the B
and C qubits are entangled, this instantaneously collapses the C qubit, sending
Charlie the information about Alice’s measurement, no matter how far away he
is. To understand why such instantaneous communication is not possible, suppose
Charlie just randomly guesses the outcome and randomly selects one of the four
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operators Fi. Then the original state will be reconstructed as a random mixture of
the four possible incoming states |φC〉. This mixture does not give any information
about the original state |ψA〉.

The same reasoning also applies to a possible eavesdropper, conveniently named
Eve. If she manages to intercept qubit (C) and measures it before Charlie does,
without the two bits of classical information she will not be able to recover the
original state. Furthermore she will have affected that state. If Charlie somehow
gets the mutilated state he will not be able to reconstruct the original state A.
Security can be achieved if Alice first sends a sequence of known states which
can be checked by Charlie after reconstruction. If the original and reconstructed
sequence are perfectly correlated then that guarantees that Eve is not interfering.
Note that the cloning theorem is satisfied, since when Alice makes her measurement
she alters the state ψA as well as her qubit B. Once she has done that, the only
hope to reconstruct the original ψA is for her to send her measurement to Charlie,
who can apply the appropriate operator to his entangled qubit C.

The quantum security mechanism of teleportation is based on strongly corre-
lated, highly non-local entangled states. While a strength, the non-locality of the
correlations is also a weakness. Quantum correlations are extremely fragile and
can be corrupted by random interactions with the environment, i.e. by decoher-
ence. As we discussed before, this is a process in which the quantum correlations
are destroyed and information gets lost. The problem of decoherence is the main
stumbling block in making progress towards large scale development and applica-
tion of quantum technologies. Nevertheless, in 2006 the research group of Gisin at
the University of Geneva succeeded in demonstrating teleportation over a distance
of 550 meters using the optical fiber network of Swisscom [Landry et al., 2007].

6.10 Quantum computation

Quantum computation is performed by setting up controlled interactions with
non-trivial dynamics that successively couple individual qubits together and alter
the time evolution of the wavefunction in a predetermined manner. A multi-qubit
system is first prepared in a known initial state, representing the input to the
program. Then interactions are switched on by applying forces, such as magnetic
fields, that determine the direction in which the wavefunction rotates in its state
space. Thus a quantum program is just a sequence of unitary operations that are
externally applied to the initial state. This is achieved in practice by a correspond-
ing sequence of quantum gates. When the computation is done measurements are
made to read out the final state.

Quantum computation is essentially a form of analog computation. A physical
system is used to simulate a mathematical problem, taking advantage of the fact
that they both obey the same equations. The mathematical problem is mapped
onto the physical system by finding an appropriate arrangement of magnets or
other fields that will generate the proper equation of motion. One then prepares
the initial state, lets the system evolve, and reads out the answer. Analog com-
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puters are nothing new. For example, Leibnitz built a mechanical calculator for
performing multiplication in 1694, and in the middle of the twentieth century,
because of their vastly superior speed in comparison with digital computers, elec-
tronic analog computers were often used to solve differential equations.

Then why is quantum computation special? The key to its exceptional power is
the massive parallelism at intermediate stages of the computation. Any operation
on a given state works exactly the same on all basis vectors. The physical process
that defines the quantum computation for an n qubit system thus acts in parallel
on a set of 2n complex numbers, and the phases of these numbers (which would not
exist in a classical computation) are important in determining the time evolution
of the state. When the measurement is made to read out the answer at the end
of the computation we are left with the n-bit output and the phase information is
lost.

Because quantum measurements are generically probabilistic, it is possible for
the ‘same’ computation to yield different “answers”, e.g. because the measurement
process projects the system onto different eigenstates. This can require the need
for error correction mechanisms, though for some problems, such as factoring large
numbers, it is possible to test for correctness by simply checking the answer to be
sure it works. It is also possible for quantum computers to make mistakes due to
decoherence, i.e. because of essentially random interactions between the quantum
state used to perform the computation and the environment. This also necessitates
error correction mechanisms.

The problems caused by decoherence are perhaps the central difficulty in creat-
ing physical implementations of quantum computation. These can potentially be
overcome by constructing systems where the quantum state is not encoded locally,
but rather globally, in terms of topological properties of the system that cannot
be disrupted by external (local) noise. This is called topological quantum comput-
ing. This interesting possibility arises in certain two-dimensional physical media
which exhibit topological order, referring to states of matter in which the essential
quantum degrees of freedom and their interactions are topological [Kitaev, 2003;
DasSarma et al., 2007].

6.11 Quantum gates and circuits

In the same way that classical gates are the building blocks of classical comput-
ers, quantum gates are the basic building blocks of quantum computers. A gate
used for a classical computation implements binary operations on binary inputs,
changing zeros into ones and vice versa. For example, the only nontrivial single bit
logic operation is NOT , which takes 0 to 1 and 1 to 0. In a quantum computation
the situation is quite different, because qubits can exist in superpositions of 0 and
1. The set of allowable single qubit operations consists of unitary transformations
corresponding to 2 × 2 complex matrices U such that U†U = 1. The correspond-
ing action on a single qubit is represented in a circuit as illustrated in figure 8.
Some quantum gates have classical analogues, but many do not. For example, the
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Figure 8. The diagram representing the action of a unitary matrix U corresponding
to a quantum gate on a qubit in a state |ψ〉.

operator X =
(

0 1
1 0

)
is the quantum equivalent of the classical NOT gate,

and serves the function of interchanging spin up and spin down. In contrast, the

operation
(

1 0
0 −1

)
rotates the phase of the wavefunction by 180 degrees and

has no classical equivalent.
A general purpose quantum computer has to be able to transform an arbitrary n-

qubit input into an n-qubit output corresponding to the result of the computation.
In principle implementing such a computation might be extremely complicated,
and might require constructing quantum gates of arbitrary order and complexity.

Fortunately, it is possible to prove that the transformations needed to implement
a universal quantum computer can be generated by a simple – so-called universal
– set of elementary quantum gates, for example involving a well chosen pair of
a one-qubit and a two-qubit gate. Single qubit gates are unitary matrices with
three real degrees of freedom. If we allow ourselves to work with finite precision,
the set of all gates can be arbitrary well approximated by a small well chosen
set. There are many possibilities – the optimal choice depends on the physical
implementation of the qubits. Typical one-qubit logical gates are for example the
following:

X =
(

0 1
1 0

)
(92)

P (θ) =
(

1 0
0 expiθ

)
(93)

H =
√

1
2

(
1 1
1 −1

)
(94)

X is the quantum equivalent of the classical NOT gate, serving the function of
interchanging |1〉 and |0〉. The two other ones have no classical equivalent. The
P (θ) operation corresponds to the phase gate, it changes the relative phase by θ
degrees, typically with θ an irrational multiple of π. For the third gate we can
choose the so-called Hadamard gate H which creates a superposition of the basis
states, e.g. |1〉 ⇒ 1

2 (|1〉 + |0〉).
From the perspective of experimental implementation, a convenient two-qubit

gate is the CNOT gate. It has been shown that for example the CNOT in
combination with a Hadamard and a phase gate forms a universal set [Barenco et
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al., 1995]. The CNOT gate acts as follows on the state |A〉 ⊗ |B〉:

(95) CNOT : |A〉 ⊗ |B〉 ⇒ |A〉 ⊗ |[A + B]mod 2〉

In words, the CNOT gate flips the state of B if A = 1, and does nothing if A = 0.
In matrix form one may write the CNOT gate as

(96) CNOT :





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



 .

We have fully specified its action on the basis states in figure 9.

Figure 9. The circuit diagram representing the action of the CNOT gate defined
in (96) on the four possible two-qubit basis states. The filled dot on the upper
qubit denotes the control and the cross is the symbol for the conditional one qubit
NOT gate.

With the CNOT gate one can generate an entangled state from a separable one,
as follows:

(97) CNOT :
1√
2
(|0〉 + |1〉) ⊗ |0〉 ⇒ 1√

2
(|00〉 + |11〉) .

In fact, from an intuitive point of view the ability to generate substantial speed-
ups using a quantum computer vs. a classical computer is related to the ability
to operate on the high dimensional state space including the entangled states. To
describe a separable n-qubit state with k bits of accuracy we only need to describe
each of the individual qubits separately, which only requires the order of nk bits.
In contrast, to describe an n-qubit entangled state we need the order of k bits
for each dimension in the Hilbert space, i.e. we need the order of k2n bits. If we
were to simulate the evolution of an entangled state on a classical computer we
would have to process all these bits of information and the computation would be
extremely slow. Quantum computation, in contrast, acts on all this information at
once – a quantum computation acting on an entangled state is just as fast as one
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acting on a separable state. Thus, if we can find situations where the evolution
of an entangled state can be mapped into a hard mathematical problem, we can
sometimes get substantial speedups.

The CNOT gate can also be used to illustrate how decoherence comes about.
Through the same action that allows it to generate an entangled state from a
separable state, when viewed from the perspective of a single qubit, the resulting
state becomes decoherent. That is, suppose we look at (97) in the density matrix
representation. Looking at the first qubit only, the wavefunction of the separable
state is |ψ〉 = 1/

√
2(|1〉 + |0〉), or in the density matrix representation

|ψ〉〈ψ| =
1
2
(|1〉〈1| + |1〉〈0| + |0〉〈1| + |0〉〈0|)

=
1
2

(
1 1
1 1

)
.

Under the action of CNOT this becomes 1
2

(
1 0
0 1

)
, i.e. it becomes diagonal

and clearly has positive entropy.

6.12 Applications.

At the present point in time there are many different efforts in progress to im-
plement quantum computing. In principle all that is needed is a simple two level
quantum system that can easily be manipulated and scaled up to a large number
of qubits. The first requirement is not very restrictive, and many different physi-
cal implementations of systems with a single or a few qubits have been achieved,
including NMR, spin lattices, linear optics with single photons, quantum dots,
Josephson junction networks, ion traps and atoms and polar molecules in optical
lattices [Di Vincenzo, 2001]. The much harder problem that has so far limited
progress toward practical computation is to couple the individual qubits in a con-
trollable way and to achieve a sufficiently low level of decoherence. With the great
efforts now taking place, future developments could be surprisingly fast27. If we
had quantum computers at our disposal, what miracles would they perform? As
we said in the introduction to this section, there are many problems where the
intrinsic massive parallelism of quantum evolution might yield dramatic speedups.
The point is not that a classical computer would not be able to do the same compu-
tation – after all, one can always simulate a quantum computer on a classical one –
but rather the time that is needed. As we mentioned already, the most spectacular
speedup is the Shor algorithm (1994) for factorizing large numbers into their prime
factors [Shor, 1994]. Because many security keys are based on the inability to fac-
tor large numbers into prime factors, the reduction from an exponentially hard
to a polynomial hard problem has many practical applications for code breaking.
Another important application is the quadratic speedup by Grover’s algorithm

27A first 16-qubit quantum computer has been announced by D-Wave Systems Inc. in Cali-
fornia, but at the time of writing this product is not available yet.



The Physics of Information 683

(1996) [Grover, 1996] for problems such as the traveling salesman, in which large
spaces need to be searched. Finally, an important application is the simulation
of quantum systems themselves [Aspuru-Guzik et al., 2005]. Having a quantum
computer naturally provides an exponential speed-up, which in turn feeds back
directly into the development of new quantum technologies.

Quantum computation and security are another challenging instance of the sur-
prising and important interplay between the basic concepts of physics and informa-
tion theory. If physicists and engineers succeed in mastering quantum technologies
it will mark an important turning point in information science.

7 BLACK HOLES: A SPACE TIME INFORMATION PARADOX

In this section we make a modest excursion into the realm of curved space-time
as described by Einstein’s theory of general relativity. As was realized only in
the 1970’s, this theory poses an interesting and still not fully resolved information
paradox for fundamental physics. In general relativity gravity is understood as a
manifestation of the curvature of space-time: the curvature of space-time deter-
mines how matter and radiation propagate, while at the same time matter and
radiation determine how space-time is curved. Particles follow geodesics in curved
space-time to produce the curvilinear motion that we observe.

An unexpected and long-ignored prediction of general relativity was the exis-
tence of mysterious objects called black holes that correspond to solutions with
a curvature singularity at their center. Black holes can be created when a very
massive star burns all of its nuclear fuel and subsequently collapses into an ultra-
compact object under its own gravitational pull. The space-time curvature at the
surface of a black hole is so strong that even light cannot escape – hence the term
“black hole”. The fact that the escape velocity from a black hole is larger then
the speed of light implies, at least classically, that no information from inside the
black hole can ever reach far away observers. The physical size of a black hole of
mass M is defined by its event horizon, which is an imaginary sphere centered on
the hole with a radius (called the Schwarzchild radius)

(98) RS =
2GNM

c2
,

where GN is Newton’s gravitational constant and c is the velocity of light. For a
black hole with the mass of the sun this yields RS = 3km, and for the earth only
RS = 1cm! The only measurable quantities of a black hole for an observer far
away are its mass, its charge and its angular momentum.

But what about the second law of thermodynamics? If we throw an object with
non-zero entropy into black hole, it naively seems that the entropy would disappear
for ever and thus the total entropy of the universe would decrease, causing a blunt
violation of the second law of thermodynamics. In the early 1970’s, however,
Bekenstein [1973] and Hawking [Bardeen et al., 1973] showed that it is possible
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to assign an entropy to a black hole. This entropy is proportional to the area
A = 4π(RS)2 of the event horizon,

(99) S =
Ac3

4GN h̄
.

A striking analogy with the laws thermodynamics became evident: The change
of mass (or energy) as we throw things in leads according to classical general
relativity to a change of horizon area, as the Schwarzchild radius also increases.
For an electrically neutral, spherically symmetric black hole, it is possible to show
that the incremental change of mass dM of the black hole is related to the change
of area dA as

(100) dM =
κ

2π
dA

where κ = h̄c/2Rs is the surface gravity at the horizon. One can make an anal-
ogy with thermodynamics, where dA plays the role of “entropy”, dM the role of
“heat”, and the κ the role of “temperature”. Since no energy can leave the black
hole, dM is positive and therefore dA ≥ 0, analogous to the second law of ther-
modynamics. At this point the correspondence between black hole dynamics and
thermodynamics is a mere analogy, because we know that a classical black hole
does not radiate and therefore has zero temperature. One can still argue that the
information is not necessarily be lost, it is only somewhere else and unretrievable
for certain observers.

What happens to this picture if we take quantum physics into account? Steven
Hawking was the first to investigate the quantum behavior of black holes and his
results radically changed their physical interpretation. He showed [Hawking, 1974;
Hawking, 1975] that if we apply quantum theory to the spacetime region close
to the horizon then black holes aren’t black at all! Using arguments based on
the spontaneous creation of particle-antiparticle pairs in the strong gravitational
field near the horizon he showed that a black hole behaves like a stove, emitting
black body thermal radiation of a characteristic temperature, called the Hawking
temperature, given by28

(101) TH ≡ h̄c

4πRS
=

h̄c3

8πGNM
,

fully consistent with the first law (100). We see that the black hole temperature is
inversely proportional to its mass, which means that a black hole becomes hotter
and radiates more energy as it becomes lighter. In other words, a black hole will
radiate and lose mass at an ever-increasing rate until it finally explodes29.

28We recall that we adopted units where Boltzmann’s constant k is equal to one.
29The type of blackholes that are most commonly considered are very massive objects like

collapsed stars. The lifetime of a black hole is given by τ * G2
NM3/h̄c4 which implies that the

lifetime of such a massive black hole is on the order of τ ≥ 1050 years (much larger than the
lifetime of the universe τ0 * 1010 y). Theoretical physicists have also considered microscopic
black holes, where the information paradox we are discussing leads to a problem of principle.
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We conclude that quantum mechanics indeed radically changes the picture of
a black hole. Black holes will eventually evaporate, presumably leaving nothing
behind except thermal radiation, which has a nonzero entropy. However, as we
discussed in the previous section, if we start with a physical system in a pure state
that develops into a black hole, which subsequently evaporates, then at the level of
quantum mechanics the information about the wavefunction should be rigorously
preserved – the quantum mechanical entropy should not change.

It may be helpful to compare the complete black hole formation and evapora-
tion process with a similar, more familiar situation (proposed by Sidney Coleman)
where we know that quantum processes conserve entropy. Imagine a piece of coal
at zero temperature (where by definition S = 0) that gets irradiated with a given
amount of high entropy radiation, which we assume gets absorbed completely. It
brings the coal into an excited state of finite temperature. As a consequence the
piece of coal starts radiating, but since there is no more incoming radiation, it
eventually returns to the zero temperature state, with zero entropy. As the quan-
tum process of absorbing the initial radiation and emitting the outgoing radiation
is unitary, it follows that the outcoming radiation should have exactly the same
entropy as the incoming radiation.

Thus, if we view the complete process of black hole formation and subsequent
evaporation from a quantum mechanical point of view there should be no loss of
information. So if the initial state is a pure state than a pure state should come out.
But how can this be compatible with the observation that only thermal radiation
comes out, independent of what we throw in? Thermal radiation is produced
by entropy generating processes, is maximally uncorrelated and random, and has
maximal entropy. If we throw the Encyclopedia Brittanica into the black hole and
only get radiation out, its highly correlated initial state would seem to have been
completely lost. This suggests that Hawking’s quantum calculation is in some way
incomplete. These conflicting views on the process of black hole formation and
evaporation are referred to as the black hole information paradox. It has given rise
to a fundamental debate in physics between the two principle theories of nature:
the theory of relativity describing space-time and gravity on one hand and the
theory of quantum mechanics describing matter and radiation on the other. Does
the geometry of Einstein’s theory of relativity prevail over quantum theory, or visa
versa?

If quantum theory is to survive one has to explain how the incoming information
gets transferred to the outgoing radiation coming from the horizon30, so that a
clever quantum detective making extremely careful measurements with very fancy
equipment could recover it. If such a mechanism is not operative the incoming
information is completely lost, and the laws of quantum mechanics are violated.
The question is, what cherished principles must be given up?

30It has been speculated by a number of authors that there is the logical possibility that the
black hole does not disappear altogether, but leaves some remnant behind just in order to preserve
the information. The final state of the remnant should then somehow contain the information of
the matter thrown in.
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There is a generic way to think about this problem along the lines of quantum
teleportation and a so-called final state projection [Horowitz and Maldacena, 2004;
Lloyd, 2006]. We mentioned that Hawking radiation can be considered as a con-
sequence of virtual particle-antiparticle pair production near the horizon of the
black hole. The pairs that are created and separated at the horizon are in a highly
entangled state, leading to highly correlated in-falling and outgoing radiation. It is
then possible, at least in principle, that the interaction between the in-falling radi-
ation and the in-falling matter (making the black hole) would lead to a projection
in a given quantum state. Knowing that final state - for example by proving that
only a unique state is possible - one would instantaneously have teleported the
information from the incoming mass ( qubit A) to the outgoing radiation (qubit
C) by using the entangled pair (qubit pair BC) in analogy with the process of tele-
portation we discussed in section 6.9 . The parallel with quantum teleportation
is only partial, because in that situation the sender Alice (inside the black hole)
has to send some classical information on the outcome of her measurements to the
receiver Charlie (outside the black hole) before he is able decode the information
in the outcoming radiation. But sending classical information out of a black hole
is impossible. So this mechanism to rescue the information from the interior can
only work if there is a projection onto an a priori known unique final state, so that
it is as if Alice made a measurement yielding this state and sent the information
to Charlie. But how this assumption could be justified is still a mystery.

A more ambitious way to attack this problem is to attempt to construct a
quantum theory of gravity, where one assumes the existence of microscopic degrees
of freedom so that the thermodynamic properties of black holes could be explained
by the statistical mechanics of these underlying degrees of freedom. Giving the
quantum description of these new fundamental degrees of freedom would then
allow for a unitary description. Before we explain what these degrees of freedom
might be, let us first consider another remarkable property of black holes. As
we explained before, the entropy of systems that are not strongly coupled is an
extensive property, i.e. proportional to volume. The entropy of a black hole, in
contrast, is proportional to the area of the event horizon rather than the volume.
This dimensional reduction of the number of degrees of freedom is highly suggestive
that all the physics of a black hole takes place at its horizon, an idea introduced by
’t Hooft and Susskind [Susskind and Lindesay, 2004], that is called the holographic
principle31.

Resolving the clash between the quantum theory of matter and general relativ-
ity of space-time is one of the main motivations for the great effort to search for a
theory that overarches all of fundamental physics. At this moment the main line
of attack is based on superstring theory, which is a quantum theory in which both
matter and space-time are a manifestation of extremely tiny strings (l = 10−35m).
This theory incorporates microscopic degrees of freedom that might provide a sta-

31A hologram is a two dimensional image that appears to be a three dimensional image; in a
similar vein, a black hole is a massive object for which everything appears to take place on the
surface.
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tistical mechanical account of the entropy of black holes. In 1996 Strominger and
Vafa[Strominger and Vafa, 1996] managed to calculate the Bekenstein-Hawking
entropy for (extremal) black holes in terms of microscopic strings using a prop-
erty of string theory called duality, which allowed them to count the number of
accessible quantum states. The answer they found implied that for the exterior
observer information is preserved on the surface of the horizon, basically realizing
the holographic principle.

There are indeed situations (so-called Anti-de Sitter/Conformal Field Theory
dualities or AdS/CFT models) in string theory describing space-times with a
boundary where the holographic principle is realized explicitly. One hopes that
in such models the complete process of formation and evaporation of a black hole
can be described by the time evolution of its holographic image on the boundary,
which in this case is a super-symmetric gauge theory, a well behaved quantum
conformal field theory (CFT). A caveat is that in this particular Anti-de Sitter
(AdS) classical setting so far only a static “eternal” black hole solution has been
found, so interesting as that situation may be, it doesn’t yet allow for a decisive
answer to a completely realistic process of black hole formation and evaporation.
Nevertheless, the communis opinion - at least for the moment - is that the prin-
ciples of quantum theory have successfully passed a severe test32 [Susskind and
Lindesay, 2004].

8 CONCLUSION

The basic method of scientific investigation is to acquire information about nature
by doing measurements and then to make models which optimally compress that
information. Therefore information theoretic questions arise naturally at all levels
of scientific enterprise: in the analysis of measurements, in performing computer
simulations, and in evaluating the quality of mathematical models and theories.

The notion of entropy started in thermodynamics as a rather abstract math-
ematical property. With the development of statistical mechanics it emerged as
a measure of disorder, though the notion of disorder referred to a very restricted
context. With the passage of time the generality and the power of the notion of
entropy became clearer, so that now the line of reasoning is easily reversed – fol-
lowing Jaynes, statistical mechanics is reduced to an application of the maximum
entropy principle, using constraints that are determined by the physical system.
Forecasting is a process whose effectiveness can be understood in terms of the in-
formation contained in measurements, and the rate at which the geometry of the
underlying dynamical system, used to make the forecast, causes this information
to be lost. And following Rissanen, the whole scientific enterprise is reduced to

32Indicative is that a long standing bet between Hawking and Presskil of Caltech was settled in
2004 when Hawking officially declared defeat. In doing so he recognized the fact that information
is not lost when we throw something into a black hole – quantum correlations between the in-
falling matter and the out-coming radiation should in principle make it possible to retrieve the
original information.
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the principle of minimum description length, which essentially amounts to finding
the optimal compromise between the information contained in a model and the
information contained in the discrepancies between the model and the data.

Questions related to the philosophy of information have lead us naturally back to
some of the profound debates in physics on the nature of the concept of entropy as
it appears in the description of systems about which we have a priori only limited
information. The Gibbs paradox, for example, centers around the question of
whether entropy is subjective or objective. We have seen that while the description
might have subjective components, whenever we use the concept of entropy to ask
concrete physical questions, we always get objective physical answers. Similarly,
when we inject intelligent actors into the story, as for Maxwell’s demon, we see that
the second law remains valid – it applies equally well in a universe with sentient
beings.

Fundamental turning points in physics have always left important traces in infor-
mation theory. A particularly interesting example is the development of quantum
information theory, with its envisaged applications to quantum security, quantum
teleportation and quantum computation. Another interesting example is the black
hole information paradox, where the notions of entropy and information continue
to be central players in our attempts to resolve some of the principal debates of
modern theoretical physics. In a sense, our ability to construct a proper statistical
mechanics is a good test of our theories. If we could only formulate an underly-
ing statistical mechanics of black holes, we might be able to resolve fundamental
questions about the interface between gravity and quantum mechanics.

Finally, as we enter the realm of nonequilbrium statistical mechanics, we see
that the question of what information means and how it can be used remains vital.
New entropies are being defined, and their usefulness and theoretical consistency
are topics that are actively debated. The physics of information is an emerging
field, one that is still very much in progress.
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