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Why Complexity?

• 1960-1980’s: Study of dynamical systems leads to a number of ways of

quantifying randomness or unpredictability: metric entropy, Lyapunov

exponents, fractal dimensions, ...

• But, dynamical systems do more than just be unpredictable.

• Dynamical systems produce patterns, organization, structure, complexity...

• These qualities are not captured by a measure of unpredictability.

• This led to a search for measures of complexity that are as general as

entropies and dimensions.

• What’s a pattern?
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One approach: Prescribing Complexity vs. Entropy Behavior

• Zero Entropy −→ Predictable −→ simple and not complex.

• Maximum Entropy −→ Perfectly Unpredictable −→ simple and not complex.

• Complex phenomena combine order and disorder.

• Thus, it must be that complexity is related to entropy as shown:
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• This plot is often used as the central criteria for defining complexity.
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Complexity-Entropy Phase Transition?

Edge of Chaos?

• Additionally, it has been conjectured that there is a sharp transition in

complexity as a function of entropy:
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• Perhaps this complexity-entropy curve is universal—it is the same for a broad

class of apparently different systems.

• Part of the motivation for this is the success of data collapse in critical

phenomena and condensed matter physics.
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Data Collapse

• Scaled magnetization vs. scaled temperature for five different magnetic

materials: EuO, Ni, YIG, CrBr3, and Pd3Fe.

• These materials are very different, but clearly possess some deep similarities.

• Figure source: H.E. Stanley, Rev. Mod. Phys. 71:S358. 1999.

• Perhaps there is a similar data collapse for some appropriate definitions of

complexity and entropy.

• Note: One could trivially obtain this by simply defining complexity to be a

single-valued function of the entropy.
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Complexity vs. Entropy: A Different Approach
Define Complexity on its own Terms

• Do not prescribe a particular complexity-entropy behavior.

• To be useful, a complexity measure must have a clear interpretation that

accounts in a direct way for the correlations and organization in a system.

• Consider a well known complexity measures: excess entropy

• Calculate complexity and entropy for a range of model systems.

• Plot complexity vs. entropy. This will directly reveal how complexity is related

to entropy.

• Is there a universal complexity-entropy curve?
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Review of Entropy and Complexity Measures

• An infinite sequence of discrete random variables:

· · ·S−2 S−1 S0 S1 S2 S3 · · ·

• E.g., Stationary Stochastic Process, A Stationary Time Series, Symbolic

Dynamical System, One-Dimensional Equilibrium Spin Chain

• The Shannon Entropy H measures the uncertainty associated with a

random variable:

H[S] ≡
∑

s

−Pr(s) log2 Pr(s) .

Pr(s) = Probability of seeing outcome s.

• Let H(L) be the Shannon entropy of L consecutive random variables.

• How does H(L) grow with L?
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Entropy growth

L

E

H(L)

• Slope = ∆H(L) = H(L) − H(L−1) = H[SL|SL−1SL−2 . . . S1]

• H[X |Y ] = entropy of X given that Y is known.

• The slope of H(L) tells you how uncertain you are about the next

measurement, given that the previous L symbols have been seen.

• Eventually, H(L) is a straight line — keeping track of more measurements

doesn’t reduce uncertainty at all.
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Entropy rate hµ

L

E

H(L)

• The asymptotic slope is denoted hµ:

hµ ≡ lim
L→∞

∆H(L) .

• hµ is known as: entropy rate , metric entropy , and entropy density .

• hµ is the irreducible randomness: the randomness that persists even after

statistics over arbitrarily long sequences are taken into account

• The entropy rate may also be written: hµ = limL→∞
H(L)

L
.
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How does ∆H(L) approach hµ?

µ

∆

L

H(L)

h

• For finite L , ∆H(L) ≥ hµ. Thus, the system appears more random than it

is.

• We can learn about the complexity of the system by looking at how the

entropy density converges to hµ.

• The excess entropy captures the nature of the convergence and is defined

as the area between the two curves above:

E ≡

∞
∑

L=1

[∆H(L) − hµ] .
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Excess Entropy

• E is thus the total amount of randomness that is “explained away” by

considering larger blocks of variables.

• One can also show that E is equal to the mutual information between the

“past” and the “future”:

E = I(
←

S ;
→

S ) ≡ H[
←

S ] − H[
←

S |
→

S ] .

• E is thus the amount one half “remembers” about the other, the reduction in

uncertainty about the future given knowledge of the past.

• Equivalently, E is the “cost of amnesia:” how much more random the future

appears if all historical information is suddenly lost.
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Excess Entropy and Entropy Rate Summary

• Excess entropy E is a measure of complexity (order, pattern, regularity,

correlation ... )

• Entropy rate hµ is a measure of unpredictability.

• Both E and hµ are well understood and have clear interpretations.

• Both E and hµ are functions of the distribution over sequences.

• For a periodic sequence, E = log2(Period), and hµ = 0.

• For more, see, e.g., Crutchfield and Feldman, Chaos. 15:23. 2003.

Let’s calculate hµ and E for some systems and see what the complexity-entropy

diagram looks like...

David P. Feldman http://hornacek.coa.edu/dave

CSE Seminar, 8 February 2006: Complexity-Entropy Diagrams 14

Iterated Map: Logistic Equation

• Iterate the logistic equation: xn+1 = f(xn), where f(x) = rx(1 − x).

• Generate symbol sequence via:

si =















0 x ≤ 1
2

1 x > 1
2

.

• As the parameter r is varied, the system exhibits a wide range of behavior:

periodic and chaotic.
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Logistic Equation: Bifurcation Diagram
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• For a given r (horizontal axis), the “final states” are shown.

• Chaotic behavior appears as a solid vertical line.

• Examples:

– r = 3.2: Period 2.

– r = 3.5: Period 5.

– r = 3.7: Chaotic.
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Complexity and Entropy: Logistic Equation

Plot of the excess entropy E and the entropy rate hµ for the logistic equation as a

function of the parameter r:

0

1

2

3

4

5

3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4

E
xc

es
s 

E
nt

ro
py

 E
, E

nt
ro

py
 R

at
e 

h µ

r

E
 hµ

• Note that E and hµ depend in a complicated way on r.

• Hard to see how complexity and entropy are related.
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Complexity-Entropy Diagram for Logistic Equation
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• Structure is apparent in this plot that isn’t visible in the previous one.

• Not all complexity-entropy values can occur.

• Maximum complexity occurs at zero entropy.

• Note self-similar structure. Not surprising, since the bifurcation diagram is

self-similar.
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Ising Models

Consider a one- or two-dimensional Ising system with nearest and next nearest

neighbor interactions:

• This system is a one- or two-dimensional lattice of variables si ∈ {±1}.

• The energy of a configuration is given by:

H ≡ −J1

∑

i

sisi+1 − J2

∑

i

sisi+2 − B
∑

si .

• The probability of observing a configuration C is given by the Boltzmann

distribution:

Pr(C) ∝ e−
1

T
H(C) .

• Ising models are very generic models of spatially extended, discrete degrees

of freedom that have some interaction that makes them want to either do the

same or the opposite thing.
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Complexity-Entropy Diagram for 1D Ising Models
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• Excess entropy E vs. entropy rate hµ for the one-dimensional Ising model

with anti-ferromagnetic couplings.

• Model parameters are chosen uniformly from the following ranges:

J1 ∈ [−8, 0], J2 ∈ [−8, 0], T ∈ [0.05, 6.05], and B ∈ [0, 3].

• Note how different this is from the logistic equation.

• These are exact transfer-matrix results.
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Complexity-Entropy Diagram for 2D Ising Models
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• Mutual information form of the excess entropy Ei vs. entropy density hµ for

the two-dimensional Ising model with AFM couplings

• Model parameters are chosen uniformly from the following ranges:

J1 ∈ [−3, 0], J2 ∈ [−3, 0], T ∈ [0.05, 4.05], and B = 0.

• Surprisingly similar to the one-dimensional Ising model.

• Results via Monte Carlo simulation of 100x100 lattices.
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Complexity-Entropy Diagram for 2D Ising Model
Phase Transition
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• Convergence form of the excess entropy Ec vs. entropy density hµ for the

two-dimensional Ising model with NN couplings and no external field.

• Model undergoes phase transition as T is varied at T ≈ 2.269.

• There is a peak in the excess entropy, but it is somewhat broad.

• Results via Monte Carlo simulation of 100x100 lattice.
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Ising Model Configurations

• Typical configurations for the 2D Ising model below, at, and above the critical

temperature.
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Cellular Automata

• The next row in the grid is determined by the row directly above it according to

a given rule

• Start with a random initial condition

Example:

Rule

TimeCondition
Initial

• The number of cells away from the center cell that the rule considers is known

as the radius of the CA.
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Different Rules Yield Different Patterns

• Each pattern is for a different rule.
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Complexity-Entropy Diagram for Radius- 2, 1D CAs
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• Excess entropy E vs. entropy rate hµ for 10, 000 radius-2, binary CAs.

• E and hµ from the spatial strings produced by the CAs.

• The CAs were chosen uniformly from the space of all such CAs.

• There are around 1030,000 such CAs, so it is impossible to sample the entire

space.
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Complexity-Entropy Diagram for Markov Models
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• Excess entropy E vs. entropy rate hµ for 100, 000 random Markov models.

• The Markov models here have four states, corresponding to dependence on

the previous two symbols, as in the 1D NNN Ising model.

• Transition probabilities chosen uniformly on [0, 1] and then normalized.

• Note that these systems have no forbidden sequences.
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Topological Markov Chain Processes

• Consider finite-state machines that produce 0’s and 1’s.

• Assume all branching transitions are equally probable

• Examples:
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Topological Processes and Statistical Complexity

• These topological processes can be exhaustively enumerated for any finite

number of states.

• We now use a different measure of complexity: the statistical complexity Cµ

• Cµ is the Shannon entropy of the asymptotic distribution over states.

• We consider only minimal machines.

• Cµ ≥ E.
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Complexity-Entropy Diagram for Topological
Processes
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• hµ, Cµ pairs for all 14, 694 distinct topological processes of n = 1 to n = 6

states.

• Note the prevalence of high-entropy, high-complexity processes.
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Complexity-Entropy Diagrams: Summary

• Is it the case that there is a universal complexity-entropy diagram?
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• No.

• However, because of this non-universality, complexity-entropy diagrams

provide a useful way to compare the information processing abilities of

different systems.

• Complexity-entropy plots allow comparisons across a broad class of systems.
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A Mosaic of Complexity-Entropy Diagrams
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Complexity-Entropy Diagrams: Conclusions

• There is not a universal complexity-entropy curve.

• Complexity is not necessarily maximized at intermediate entropy values.

• It is not always the case that there is a sharp complexity-entropy transition.

• Complexity-entropy diagrams provide a way of comparing the information

processing abilities of different systems in a parameter-free way.

• Complexity-entropy diagrams allow one to compare the information

processing abilities of very different model classes on similar terms.

• There is a considerable diversity of complexity-entropy behaviors.

David P. Feldman http://hornacek.coa.edu/dave


