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In our attempt to justify the CVTree approach of inferring phylogenetic relationship among
bacteria from their complete genomes without using sequence alignment, we encountered the
problem of the uniqueness of the reconstruction of a protein sequence from its constituent
K-peptides, which has a natural relation to a well-understood problem in graph theory, namely,
the number of Eulerian loops in a graph. The existence of finite state automata to recognize the
uniqueness of a sequence reconstruction provides us with yet another application of factorizable
language, which was elucidated at a previous Dynamics Days Asia Pacific meeting (DDAP1).
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I. INTRODUCTION

In recent years we have developed a composition vec-
tor approach, abbreviated as CVTree [1,2], to infer the
phylogenetic relationship of prokaryotes from their com-
plete genomes. As bacterial genomes differ significantly
in their sizes and gene contents, one has to give up
sequence-alignment-based methods. Instead of using the
primary protein sequences, we decompose all the protein
sequences of a species into (overlapping) K-peptides and
build a composition vector from the number of different
K-peptides. An essential step in this approach is the sub-
traction of a random background by using a weak Marko-
vian assumption, which has led to phylogenetic results
comparable in details with the century-long effort of bac-
terial taxonomy. For a brief review for physicists see [3].
The justification of the CVTree [2] approach has inspired
the problem of the uniqueness of the reconstruction of a
protein sequence from its constituent K-peptides, which

∗E-mail: hao@itp.ac.cn; http://www.itp.ac.cn/˜hao/

will be formulated later.
The composition vector approach may be put into a

broader context. The composition of nucleotides in DNA
sequences or the amino acid frequencies in protein se-
quences have been widely used in characterizing DNA or
proteins. For example, the g + c content or CpG islands
have played an important role in gene-finding programs.
However, this kind of study usually has been restricted
to the frequency of single letters or short strings; e.g.,
dinucleotide correlations in DNA sequences, i.e., only
the K = 1 or the K = 2 case has been more or less
explored. The use of K-tuples takes into account short-
range correlation within K letters and corresponds to us-
ing (K − 1)-th order Markov models to characterize the
sequences. With K increasing, more and more species-
specific and even gene-specific features may come to the
surface. As the problem posed in this paper has a natu-
ral relation to the number of Eulerian loops in a graph,
we commence with a brief summary of necessary graph
theory notions.
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II. NUMBER OF EULERIAN LOOPS IN AN
EULER GRAPH

Eulerian paths and Euler graphs comprise a well-
developed chapter of graph theory (see, e.g., [4]). We
collect a few definitions in order to fix our notation. Con-
sider a connected directed graph made of a certain num-
ber of labeled nodes. A node i may be connected to a
node j by a directed arc. From a starting node vb, one
may go through a number of arcs to reach an ending
node vf in such a way that each arc has been passed
once and only once; such a path is then called an Eu-
lerian path. If vb and vf coincide the path becomes
an Eulerian loop. A graph in which an Eulerian loop
exists is called an Euler graph. An Eulerian path may
be modified to an Eulerian loop by drawing an auxiliary
arc from vf back to vb. We only consider Euler graphs
defined by an Eulerian loop.

From a given node, there may be dout arcs going out
to other nodes; dout is called the outdegree (fan-out) of
the node. There may be din arcs coming into a node, din

being the indegree (fan-in) of the node. The condition
for an undirected graph to be Eulerian was indicated by
Euler in 1736. In our case of directed graphs, it may be
formulated as

din(i) = dout(i) ≡ di

for all nodes numbered in a certain way from i = 1 to m.
The numbers di are simply called degrees. We put all
degrees into a diagonal matrix:

M = diag(d1, d2, · · · , dm).

The connectivity of the nodes is described by an adja-
cent matrix A = {aij}, where aij is the number of arcs
leading from node i to j. From the matrices M and A,
one forms the Kirchhoff matrix

C = M −A.

The Kirchhoff matrix has the peculiar property that its
elements along any row or column sum to zero:∑

i

cij = 0,
∑

j

cij = 0.

Furthermore, for any m ×m Kirchhoff matrix all (m −
1)×(m−1) minors are equal, and we denote this common
minor by ∆.

A graph is called simple if between any pair of nodes,
there are no parallel (repeated) arcs, and at all nodes,
there are no rings; i.e., aij = 0 or 1 ∀i, j and aii = 0 ∀ i.
The number R of Eulerian loops in a simple Euler graph
is given by
The BEST Theorem [4] (BEST stands for N. G. de
Brujin, T. van Aardenne-Ehrenfest, C. A. B. Smith, and
W. T. Tutte):

R = ∆
∏

i

(di − 1)!. (1)

The BEST formula in Eq. (1) gives the number of Eu-
lerian loops in an Euler graph without specifying a start-
ing node. If a node k is specified as the beginning (hence
ending) of the loop, then the number of loops starting
from k is [5]

R = ∆dk

∏
i

(di − 1)!, (2)

where dk is the degree of the node k. In what follows,
we consider only Eulerian loops with the starting node
fixed.

For a general Euler graph, there may be arcs going out
and coming into one and the same node (some aii 6= 0),
as well as parallel arcs leading from node i to j (aij > 1).
It is enough to put auxiliary nodes on each parallel arc
and ring to make the graph simple. By applying ele-
mentary operations to the larger Kirchhoff matrix thus
obtained, one can reduce it essentially to the original
size with some aii 6= 0 and aij > 1. In accordance with
the unlabeled nature of parallel arcs and rings, one must
eliminate the redundancy in the counting result by di-
viding it by aij !. Thus, the BEST formula is modified
to

R =
∆dk

∏
i(di − 1)!∏
ij aij !

. (3)

As 0! = 1! = 1 Eq. (3) reduces to Eq. (2) for simple
graphs. To the best of our knowledge, the modified
BEST formula Eq. (3) first appeared in [6] where Eu-
lerian loops from a fixed starting node were considered.

III. EULERIAN GRAPH FROM A PROTEIN
SEQUENCE

We decompose a given protein sequence of length L
into a set of L−K + 1 overlapping K-peptides by using
a window of width K, sliding one letter at a time. Com-
bining repeated peptides into one and recording their
copy number, we get a collection {WK

j , nj}M
j=1, where

M ≤ L−K + 1 is the number of different K-peptides.
Now, we pose the inverse problem. Given the collec-

tion {WK
j , nj}M

j=1 obtained from the decomposition of
a protein sequence, reconstruct all possible amino acid
sequences subject to the following constraints:

1. Keep the start K-peptide unchanged, because most
protein sequences start with methionine (M); even
the tRNA for this initiation M is different from
that for prolongation.

2. Use each WK
j string nj times until the given col-

lection is used up.
3. The reconstructed sequence must be of the original

length L.

Clearly, the inverse problem has at least one solution:
one can always recover the original protein sequence. For
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Fig. 1. An Euler graph derived from the protein
ANPA PSEAM sequence at K = 5.

some sequences, it may have multiple solutions. How-
ever, for K big enough, the solution must be unique, as
evidenced by the extreme choice K = L − 1. We are
concerned with how unique is the reconstruction for real
proteins. The uniqueness of most of the natural protein
sequences will speak in favor of the composition vector
approach as it brings the collections of K-peptides closer
to the primary protein sequences that are used in the tra-
ditional alignment-based methods.

In order to tell the number of reconstructed sequences,
we first transform the original protein sequence into an
Euler path by considering the two (K−1) substrings of a
K-peptide as two nodes and by drawing a directed arc to
connect them. The same repeated (K−1) substrings are
treated as a single node with more than one incoming and
outgoing arcs. Thus, we obtain a path from a beginning
node vb to an ending node vf , where vb is labelled by the
left (K−1)-substring of the first K-peptide of the protein
sequence and vf is labelled by the right (K−1)-substring
of the last K-peptide in the protein sequence. Generally
speaking, vb 6= vf , and we can add an auxiliary node v0 in
between vf and vb and draw auxiliary arcs from vf to v0

and then from v0 to vb to make the path a closed loop.
This Eulerian loop defines an Euler graph, and we are
concerned with the number of different Eualerian loops
in this graph with the node v0 fixed. Since the degree
of v0 is always d0 = 1, the modified BEST formula (3)
takes the simpler form

R =
∆

∏
i(di − 1)!∏
ij aij !

. (4)

Among natural proteins there are a few with vb = vf that
require some additional analysis. We skip that discussion
and note that Eq. (4) works as well.

Take the protein database SWISS-PROT [7] entry
ANPA PSEAM as an example. This antifreeze protein
A/B precursor of winter flounder has a short sequence
of 82 amino acids. Some of its repeated segments are
related to alanine-rich helices. The sequence reads

MALSLFTV GQ LIFLFWTMRI TEASPDPAAK
AAPAAAAAPA AAAPDTADDA AAAAALTAAN
AKAAAELTAA NAAAAAAATA RG .

Consider the case K = 5. The first 5-peptide
MALSL gives rise to a transition from node MALS

to node ALSL . Shifting by one letter, from the
next 5-peptide ALSLF , we get an arc from ALSL to
node LSLF , and so on, and so forth. Clearly, we get an
Eulerian path whose nodes all have equal indegrees and
outdegrees, except for the first and the last ones. Now,
we draw an auxiliary arc from the last node TARG to
the first node MALS to get a closed Eulerian loop. In
general, one draws an auxiliary arc from the last node vf

to an auxiliary node v0 and then another auxiliary arc
from v0 to the beginning node vb to form a loop. We skip
the special case vb = vf for which a separate discussion
is needed.

The Euler graph is defined by the above loop. In or-
der to get the number of different Eulerian loops in this
graph with v0 being the fixed starting node, we have
no need to generate a fully-fledged graph with all the
distinct (K − 1)-strings treated as nodes. Because we
are interested only in the number of Eulerian loops, the
graph can be simplified in several ways. For example, a
series of consecutive nodes with di = 1 may be replaced
by a single arc. In other words, only those strings in
{WK−1

j , nj} with nj ≥ 2 are used in drawing the graph.
In our example the short list

{AKAA, 2; AAPA, 2; APAA, 2; PAAA, 2; AAAA, 10;
AAAP, 2; LTAA, 2; TAAN, 2; AANA, 2}

leads to a small Euler graph with only 9 nodes (see
Fig. 1).

The corresponding Kirchhoff matrix is:

C =



2 −1 0 0 0 0 −1 0 0
0 2 −2 0 0 0 0 0 0
0 0 2 −2 0 0 0 0 0
0 0 0 2 −2 0 0 0 0
−1 0 0 0 4 −2 −1 0 0
0 −1 0 0 −1 2 0 0 0
0 0 0 0 0 0 2 −2 0
0 0 0 0 0 0 0 2 −2
−1 0 0 0 −1 0 0 0 2


.

The minor ∆ = 192, and by using R(K) to denote the
number of reconstructions at a given K, we have R(5) =
∆9!/6!26 = 1512. For this protein R(6) = 60, R(7) = 2,
and R(8) = 1.

We have written two programs: one exhaustively re-
constructs amino acid sequences from a given protein,
while the other implements the modified BEST formula
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in Eq. (4). The two programs yield identical results
whenever comparable - we had to impose a cutoff to let
the exhaustive enumeration program skip a protein when
the number of reconstructions exceeded a preset value,
say, 10 000. However, there is a third way to tackle the
uniqueness problem.

IV. FINITE STATE AUTOMATON FOR
CHECKING THE UNIQUENESS OF THE

RECONSTRUCTION

Recently, there appeared a paper [8] studying the
uniqueness of the reconstruction problem in an entirely
different context. A theorem was proved in Ref. [8]
that there exists a finite state automaton (FSA) that can
judge whether a sequence has a unique reconstruction at
a given K, but no explicit automaton was built. The
existence of such a FSA becomes evident if we recollect
the notion of a factorizable language that we discussed
at DDAP1 [9].

Take the 20 amino acid symbols as an alphabet Σ. De-
note by Σ∗ the collection of all possible sequences over Σ,
plus an empty string ε. In formal language theory, any
subset L ⊂ Σ∗ may be defined as a language (see, e.g.,
[10]). A language L is called factorizable if any substring
of a word x ∈ L also belongs to L. For a factorizable
language L, the set of forbidden words, i.e., the comple-
mentary set L′ = Σ∗ − L, acquires a minimal property;
namely, there is a subset L′′ ⊂ L′ of minimal forbidden
words that cannot be further cut into shorter words with-
out producing a word in L. A factorizable language L is
entirely determined by the subset of minimal forbidden
words L′′ [10].

Now, we define the language L as the collection of
all sequences that have a unique reconstruction at a
given K. In other words, L is the set of all uniquely
reconstructable sequences. The langauge L is factoriz-
able by construction as any substring of a word x ∈ L
must be uniquely reconstructable; otherwise, x cannot
belong to L.

In the case of natural proteins, one always deals with
sequences of finite length. Then, the corresponding lan-
guage L of uniquely reconstructable sequences must be
a regular language. Hence a FSA to recognize L exists.
In fact, such FSAs have been explicitly built and imple-
mented as computer programs [11]. We note that the
above discussion on factorizable langauge applies to any
finite alphabet with more than two letters.

V. RESULT OF DATABASE INSPECTION

Equipped with these programs, we can look at real
protein data. We studied a subset pdb.seq of the
SWISS-PROT database [7]. This is a collection of all

Table 1. Number of uniquely reconstructible proteins from
a set of 6790 natural proteins.

K #(proteins) Cumulative Cumulative

with R(K) = 1 #(proteins) percentage

2 10 10 0.15

3 82 92 1.35

4 1346 1438 21.12

5 3584 5022 73.78

6 1300 6322 92.88

7 232 6554 96.28

8 82 6636 97.49

9 44 6680 98.13

10 25 6705 98.50

11 10 6715 98.65

12 12 6727 98.82

13 9 6736 98.96

14 7 6743 99.06

15 7 6750 99.16

16 3 6753 99.21

17 4 6757 99.27

18 2 6759 99.29

19 1 6760 99.31

20 5 6765 99.38

21 4 6769 99.44

22 0 6769 99.44

23 2 6771 99.47

24 3 6774 99.51

25 0 6774 99.51

26 0 6774 99.51

27 1 6775 99.53

28 4 6779 99.59

29 1 6780 99.60

30 0 6780 99.60

proteins that have structural data in the PDB database
[12]. In the 2005 March Release of pdb.seq, there were
6790 protein sequences that did not contain the letter
X for undetermined amino acid. In Table 1, we list the
number of proteins that satisfy the R(K) = 1 relation
for the first time in order of increasing K ≤ 30, the cu-
mulative number of uniquely reconstructable proteins up
to the given K, and the cumulative percentage of these
sequences among the total of 6790 proteins. It is clearly
seen that there is a sharp transition in the percentage
of uniquely reconstructable proteins around K ∼ 5 to 6.
At K = 7, among the 6790 proteins, 96.28 % are uniquely
reconstructable.

The non-uniqueness of reconstruction is caused by the
presence of scattered repeated peptides in the protein
sequence. So far, we have used exact matching of let-
ters to determine repeated nodes. If one is to get closer
to biological reality, it is appropriate to introduce fur-
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Table 2. Proteins with a big number of reconstructions.

Protein Number of K for

Amino Acids R(K) = 1

APOA HUMAN 4548 35

RPB1 YEAST 1733 36

ICEN PSESY 1200 46

NEBU HUMAN 6669 59

FIB1 PETMA 966 61

MAGA XENLA 303 84

SRTX ATREN 543 101

CR1 HUMAN 2039 103

CNA STAAU 1183 128

CIPA CLOTM 1853 179

ther coarse-graining by combining amino acids with sim-
ilar physico-chemical properties. For example, by reduc-
ing the 20-letter alphabet to that of 16, combining R
with K, F with Y , D with E, and V with I, the number
of reconstructions would greatly increase. These inexact
matchings, in fact, reflect more biologically meaningful
repeats in homologous proteins. By dropping a few se-
quences with too large a number of nodes (> 200) or with
the letter X, we studied 221,415 proteins in the SWISS-
PROT database. It turns out that 46.8 % proteins still
have a unique reconstruction at K = 5.

VI. PROTEINS WITH LARGE NUMBERS OF
RECONSTRUCTIONS

It is curious to note that there exists a small set of
proteins that have a large number of reconstructions at
moderate K and that the K value that makes R(K) = 1
may be much greater than 5. Among the 6790 sequences
studied in the preceding section, there are 10 such pro-
teins. We list them in Table 2.

Take, for example, the protein ICEN PSESY in Ta-
ble 2. This ice nucleation protein of 1200 amino acids has
a reconstruction number as huge as R(11) = 1.56× 1027

at K = 11, which is caused by the large number of oc-
topeptide periodicities. Another protein SRTX ATREN
has R(11) = 9.97 × 105 caused mainly by 12 tandem
repeats, each having 40 almost identical amino acids.
These repeats account for the majority of the sequence,
i.e., 480 amino acids from a total of 543. Thus, we can
pick up some peculiar proteins without any prerequi-
site biological knowledge by looking for sequences with a
large number of reconstructions or by looking at large K
values that make R(K) = 1.

Correlations in DNA sequences have been widely stud-
ied; see, e.g., the review by W. Li [13]. However, unlike
DNA sequences, protein sequences are too short to al-
low for standard correlation studies because it is difficult

to define correlation functions by averaging over a long
enough sequence. Nonetheless, repeated segments may
be considered as the strongest form of correlation. As
we pointed out in the preceding sections, the nonunique-
ness of sequence reconstructions is caused by scattered
repeated peptides. We say “scattered” because simple
local repeats will not increase the number of reconstruc-
tions. Only the presence of similar, but not identical,
peptides at different parts of a protein leads to a com-
binatorial increase of the number of reconstructions. In
this way, repeated peptides in proteins may be classified
into simple and complex ones. Our programs may help
in picking out proteins with complex repeat structures.
Studies along this line are under way.

We note that the first part of this paper has been de-
posited to arXive.org [14], and Ref. [15] may be consid-
ered as a broad introduction to the subject of factorizable
language.
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