
Abstract

In this study we reconstruct predator-prey relationships from biomass
time series of a simulated system of interacting species. To overcome
the shortcomings of a static food webs representation we introduce
a new model which accounts for both population and interaction dy-
namics. It is a derived version of the light-cone model from special
relativity theory. To identify the existence of predator–prey relation-
ships in the system we quantify the notion of distance in a food web.
We use known measures from information theory, namely mutual in-
formation and transfer entropy, and we introduce a new measure based
on causal states of point and patch predictors. To evaluate our results
we compare the distances measured with a minimum distance mea-
sure from the underlying food web, and examine the accuracy of the
measures in inferring the existence of the actual predator–prey rela-
tionships. First results show that our new measure based on causal
states of point and patch predictors together with the transfer entropy
measure outperform the mutual information measure in terms of dis-
tance accuracy. A threshold based method to estimate adjacent links
shows similar results.
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1 Introduction

In this study we are interested in reconstructing dynamic food webs from
biomass time-series data of individual species in an ecosystem. The ques-
tion is how relationships between species can be identified solely by knowing
their population dynamics. We know that information theory provides a
number of tools to identify these relationships as static measures (e.g. mu-
tual information between species). However, we know that food webs are
not static — the relationships between species change over time. Local in-
formation theoretic measures can reveal more about the dynamics in time
than their averaged counterparts (e.g. see Lizier et al. [2007]), however they
do not reveal the internal states of the system. A more ambitious goal is to
capture the internal states of the species, the structure in the dynamics of
these relationships, and represent these in an appropriate model which can
also be used for prediction of the dynamics.

A food web is a set of related food chains in a particular ecosystem. A
food chain is a set of related species. The relationship among the species is
in such a way that each species feeds upon on the one below it and is eaten
by the species above it in the chain. This is what is known as predator–
prey relationship. The food web can be represented as a graph G = (U,A)
with node set U = {u1, . . . , un} and arc set A = {aij : ∀i, j}. Each arc
aij ∈ A defines a predator–prey relationship from species ui to species uj .
To represent cannibalism a special case for i = j is included.

Each node in the food web represents a species and is associated to
a quantity e.g. biomass. Arcs represent relationships between species and
connect to a quantity e.g. biomass flow. These quantities are dynamic: they
change over time. Also, they can become zero and extinguished species and
predator–prey relationships disappear from the graph. Alternatively, new
species may appear over time. This shows that the graph G is not a good
way to visualize the dynamics of a food web. It is rather a static snapshot
of the process or an aggregation over a certain period of time. We have
also seen an animated version of the graph [Williams et al., 2007], where
nodes and arcs shrink and expand to represent the value of there quantities.
Obviously, an animation is difficult to illustrate on paper. Therefore we
propose a different model, which is derived from special relativity theory.

To model the dynamics of the food web we adapt the light cone model
for our particular network problem. In addition to the vertices and edges
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Figure 1: Light-cone diagram of an event at the point 〈u, t〉. Time runs
vertically upwards. The shaded nodes denote the past light-cone of 〈u, t〉,
the white ones the future light-cone. Space, here drawn as one-dimensional
lattice, is an ordered set of U i, with U i ⊂ U and of Ej , with Ej ⊂ E .
[Bochmann, 2005]

of the graph G a time coordinate t ∈ N or t ∈ Z is introduced, creating
a spatiotemporal lattice structure. Each combination of vertex and time
is called a point 〈u, t〉. At each point, there is a random variable X (〈u, t〉)
taking values in an alphabet set A. The alphabet is a set of discrete symbols
a e.g. the boxed biomass of the species. The signal propagation speed c in
the network is assumed to be one hub per time unit (where a one hub signal
propagation at a given time step is only possible between causal information
sources and destinations, i.e. vertices connected by an edge in the graph).
Each event has a space and a time coordinate just as the random variable
X (〈u, t〉), where the space is defined by a particular species in graph G. As
in figure 1, each event has a (virtual) double–cone structure attached to it,
where the root vertex corresponds to the event itself. A surface crossing that
vertex horizontally represents the present, and the position of the vertex is
the position of the observer. By convention, “time” runs vertically in this
diagram. The upward-directed cone opens to enclose the directions pointing
towards events in the future (future light-cone). The downward-directed
cone directions pointing towards events in the past (past light-cone).

Events in the past belong to the past light-cone of a point 〈u, t〉, if they
could influence the field at that point. Its configuration is given by

L− (〈u, t〉) ≡
⋃
τ≥0

{
X (〈v, t− τ〉) , X (〈(p (v) , v), t + τ〉) |

k=cτ∨
k=0

vEku

}
. (1)
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Events which could influence the observer at any given time lie inside a
concentric1 ring on the past light-cone. Given the observer event is 〈u, t〉,
all events 〈v, τ〉 for τ < t and ∀v : vEku = c(t − τ) lie inside that ring. All
other events in the past are too far in distance that the signal could reach
the observer. For practical reasons, τ ≤ τ−max limits how far the light-cones
used for analysis extend into the past.

The future light-cone of a point 〈u, t〉 is the set of all points whose fields
could be influenced by the field at 〈u, t〉 (excluding 〈u, t〉). Its configuration
is given by

L+ (〈u, t〉) ≡
⋃
τ≥1

{
X (〈v, t + τ〉) , X (〈(p (v) , v), t + τ〉) |

k=cτ∨
k=0

vEku

}
. (2)

Events which could be influenced by the observers state at a specific time in
the future lie on a concentric ring on the future light-cone. All other future
events are either too far in distance that the signal could reach them at this
time or they are closer in distance and the signal would have reached them
at some earlier time. The actions of two observers “meet” and may influence
each other at a time, when their future light-cones overlap. For practical
reasons, τ ≤ τ+

max limits how far light-cones extend into the future.
In attempting to recreate food web dynamics, we initially have no in-

formation on which species are directly connected to which other species.
That is to say, we do not know which nodes are linked thereby allowing a
one-hub signal propagation between them at any given time step. To per-
form any analysis, we have to assume that every species is directly linked
to every other species. Examining a food web in the light cone model then
means that the cone in fact becomes a concentric multi-dimensional ring
only (there are no events inside the light cone since each node is linked to
each other node at the next time step).

While it would be theoretically accurate, it becomes practically intractable
to analyze or model the system as a whole or even individual nodes when
one has to assume that every node is causally linked to every other node.
Ideally, the alternative is to establish the links in the species network to
allow a simplified but still accurate analysis for each species (note that the
network could not be expected to form a regular lattice structure in gen-
eral). In this paper we will describe analytic techniques which could be used
to indicate the links in the species network. We will also describe a more
simplified analytic technique to produce models of the dynamics at each
species, which represent a compromise between accuracy and tractability.

1Constant signal propagation speed is assumed.

5



Reconstructing adjacent structure in a food web, that is to distinguish
direct from indirect predator-prey relationships among the different species,
is a nontrivial problem. We know from Wagner [2001] that the identification
of adjacent interactions usually involves perturbation of the system. Since
we are limited to observations only we will focus on reachability relationships
rather then adjacent relationships.

2 Background

Population dynamics in general can be seen as a stochastic process, where
one might be interested in the amount of information shared by the his-
tory and the future of the process. A food web represents the interaction
of different species. To reconstruct the relationships between the species
one might be interested in the information dynamics of their interactions.
We will describe two information-theoretical measures which will be used to
analyze the interactions. We are also interested in the structural pattern of
the dynamics and of the interactions, in particular in developing models of
the processes involved. Computational mechanics provides some promising
approaches, and the models that it produces might provide a deeper under-
standing of dynamic food webs. We will outline the theory of causal states
and ε-machine subsequently.

2.1 Mutual Information and Transfer Entropy

Mutual information by Shannon and Weaver [1964] is a measure of the
amount of information that one random variable contains about another
random variable. It is the average reduction in the uncertainty of one ran-
dom variable X due to the knowledge of the other (fixing Y ). The random
variable Y carries information about X, if knowing Y makes X more cer-
tain on average than if Y were unknown. The mutual information I [X;Y ]
between two random variables X and Y is

I [X;Y ] ≡ H[X]−H [X | Y ]

≡ EX,Y

[
log2

Pr (X = x, Y = y)
Pr (X = x) Pr (Y = y)

]
.

(3)

It is the expected logarithm of the ratio between the actual joint distribution
of X and Y , and the product of their marginal distributions.

If H[X] = 0 or H[Y ] = 0, then there is no information to share and
I [X;Y ] = 0. Independence of X and Y means there is no ”communication”
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between the variables and again I [X;Y ] = 0. Mutual information is sym-
metric in X and Y . Assuming the history light-cone X = L− (〈u, t〉) and
the future light-cone Y = L+ (〈u, t〉) as random variables, then the measure
is the amount of information that the future process contains about the
history. Alternatively, we can assume the history light-cone of one point
X = L− (〈u, t〉) and the history light-cone of another point Y = L− (〈v, t〉)
as random variables. Then the measure is the amount of information that
one point contains about the other.

The mutual information has also been used as a measure of information
transfer, however this is criticized by Schreiber Schreiber [2000] because mu-
tual information is a static, asymmetric measure of shared information only.
To address these inadequacies, Schreiber introduced the transfer entropy as
a dynamic, asymmetric measure of information transfer Schreiber [2000].
The transfer entropy describes the amount of information that a source Y
provides 2 about the next state of a destination X ′ that was not contained
in the k past states of the destination X(k):

TY→X = EY,X′,X(k)

log2

Pr
(
X ′ = xn+1|X(k) = x

(k)
n , Y = yn

)
Pr

(
X ′ = xn+1|X(k) = x

(k)
n

)
 . (4)

The formulation is completely accurate in the limit k → ∞, however since
this is not practically computable, reasonable estimates can be made with
finite values of k [Lizier et al., 2007]. The transfer entropy can also be
represented as a conditional mutual information:

TY→X = I
[
Y ;X ′ | X(k)

]
= I

[
X ′ | X(k)

]
− I

[
X ′ | Y, X(k)

]
. (5)

Clearly, the transfer entropy quantifies the information added by the source
about the next state of the destination in the context of the destination’s
past; as such, it is a dynamic, direction measure of information transfer. It
is not explicitly a measure of causality; however where one has access to
observational data only, perturbation-based techniques are not possible and
transfer entropy represents a reasonable compromise to infer causality.

2.2 Causal States and ε-Machine

Computational mechanics is a way of measuring the complexity of an pro-
cess. It provides a direct structural model of a system’s intrinsic information

2We set the source length l (see Schreiber [2000]) to its default value of 1 so as to
consider transfer from the immediately previous source value only.
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processing. In other words, it explains how a system stores, transmits and
manipulates information. To produce this model, we use a measuring de-
vice to observe the original process via a learning channel. The measurement
projects the internal state of the process down to a lower dimensional dis-
cretized state. The problem for the observer is to infer the causal states
and state transitions of the minimal stochastic model of the original pro-
cess. This model is called ε-machine and provides insights on the intrinsic
computation, the pattern and complexity of the original hidden process.

The fundamental idea about causal states is that it makes only sense to
distinguish two different inputs if they actually create meaningfully different
outputs. In the context of our initial problems this means: 1. We observe
history sequences and try to predict future sequences. Two history sequences
belong to the same causal state if we predict the same set of future sequences
with the same probabilities for each. 2. We observe history sequences and
are interested in predicting interactions between species in the web. Two
history sequences belong to the same causal state, if they predict the same
interaction.

Shalizi and Crutchfield [2001] developed the mathematical foundation
of causal states. Formally, there is a distribution over future light-cones
conditional to each past light-cone realization l− at a point

Pr
(
L+ (〈u, t〉) | L− (〈u, t〉) = l−

)
≡ Pr

(
L+ | l−

)
. (6)

To define the equivalence relationship, it is assumed that two pasts are
equivalent if they have the same probability distribution of future light-
cones.

l−1 ∼ l−2 ⇔ Pr
(
L+ | l−1

)
= Pr

(
L+ | l−2

)
. (7)

The set of all pasts having the same distribution on the future light-cone
is called an equivalence class. This allows one to define a local statistic
F = η (L− (〈u, t〉) = l−), which is the equivalence class on the past light-
cone. A good local statistic predicts something about what will happen
in the future light-cone; here this is quantified as the mutual information
between that local statistic and the future light-cone I [L+;F ]. The data
processing inequality bounds the information which can be conveyed in a
statistic to

I
[
l+;F

]
≤ I

[
l+; l−

]
. (8)

A sufficient statistic F is one that reaches this boundary, and is thus as
informative as the original data. The local causal state at a point 〈u, t〉 is
the set of all past light-cones whose conditional distribution of future light-
cones is the same and therefore it is the equivalence class at that point.
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S (〈u, t〉) = ε
(
l−

)
=

{
λ : Pr

(
l+ | λ

)
= Pr

(
l+ | l−

)}
(9)

The local causal states are sufficient statistic because Pr (l+ | ε (l−)) =
Pr (l+ | l−), and so I [l+; ε (l−)] = I [l+; l−]. They are predicting the same
possible future with the same probabilities as the past light-cones would,
which they contain. It is the coarsest set of predictively sufficient states.
The past and the future light cone are independent given the local causal
state.

Local causal states are minimal (optimality) because equivalent sufficient
statistics η

(
l−1

)
= η

(
l−2

)
with Pr

(
l+ | l−1

)
= Pr

(
l+ | l−2

)
would belong to

the same causal state ε (l−). They would capture the minimal amount of
information needed to predict the future of the process, which is how much
information about the past of the process is relevant to predicting its future.
Moreover, they are unique because any other state would just relabel the
same state.

The causal states S =
{
T (s), s ∈ A

}
together with the probability of

transitions T
(s)
ij between causal states are an ε-machine M = {S, T }, a min-

imal model capable of statistically reproducing the original process. The
ε-machine is deterministic in the sense that given the symbol always leads
to at most one single state.

With respect to our application to food webs, constructing ε-machines
for single species would allow us to build models for the dynamics of each
species. Ideally, this would be performed considering using light-cones con-
taining all other species (since we do not know the relevant causal links),
however as stated earlier this is computationally very difficult. Instead, we
will construct ε-machines for single species using their single-dimensional
time-series only, which models the dynamics observed when viewing each
species in isolation.

Furthermore, we are also interested in an investigation of the interac-
tion of different species in the food web. Shalizi [2003] has addressed the
problem of predicting multiple vertices in the limit of the entire network,
where only local causal states are available. Let us assume a connected
set of points at a common time t (patch). As shown in figure 2, this patch
has a past and a future light-cone (P− and P+), which are the unions of
the cones of the constituent points. If the patch is defined as two spa-
tially adjacent points 〈u, t〉 and 〈v, t〉, several regions in the joint light-
cones can be defined. Regions that belong exclusively to point 〈u, t〉 are
U− = L− (〈u, t〉) \L− (〈v, t〉) and U+ = L+ (〈u, t〉) \L+ (〈v, t〉), overlapping
regions that belong to point 〈u, t〉 and 〈v, t〉 are C− = L− (〈u, t〉)∩L− (〈v, t〉)
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Figure 2: Two-point patch predictor: The light grey shaded points belong
exclusively to the light-cones of point 〈u, t〉 (U− and U+), the dark gray
shaded ones belong exclusively to the point 〈v, t〉 (V − and V +). The white
points belong to the area of overlap (C− and C+). [Bochmann, 2005]

and C+ = L+ (〈u, t〉)∩L+ (〈v, t〉) and regions that belong exclusively to point
〈v, t〉 are V − = L− (〈v, t〉) \ L− (〈u, t〉) and V + = L+ (〈v, t〉) \ L+ (〈u, t〉).

When reconstructing a dynamic food web, we might come to the ques-
tion of what kind of predator–prey relationship it is supposed to represent.
Beside the static and aggregated versions we have discussed earlier, in a
dynamic context one could be interested in how much a predator has influ-
enced the prey population up to time t. This would be a quantity related to
the region C−. On the other hand, the region C+ is related to the prediction
problem: How much will a predator influence the current prey population
in the future.

3 Data and Methods

The data for this study where generated using a simulation tool from Williams
et al. [2007] with a food web called “Nic20withName”. A static view of the
food web is shown in figure 3, with predator–prey relationships marked by
links in the diagram. It was initialized with 20 nodes and 41 interactions, in-
cluding two self-interactions to model cannibalism. The underlying dynamic
model was not known to us at the time of this analysis, with the motivation
of the experiment being to attempt to model the dynamics using biomass
data only.

The simulation was run for 117438 time steps. At each time step the
biomass at each species and biomass-flow at each interaction where recorded.
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Figure 3: Example food web “Nic20withName” with 20 species and 41
predator-prey interactions. The names of the species are as informative
as Plant1, Plant2, Plant3, Plant4, Plant5, Plant6, Insect1, Insect2, Insect3,
Insect4, Insect5, Insect6, Insect7, Insect8, Bird1, Bird2, Frog1, Lizard1, Par-
asite1 and Parasite2. [Williams et al., 2007]
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We had two extinction events shortly after the start of the simulation (Plant1,
Plant5). To avoid any problems with non-stationarity we truncated the time
series at this point. The corrected data-set consists of 18 biomass time series
and 116823 time steps. To simulate the discretization of a measuring device
we boxed the continuous data into a binary data-set at the median3 of each
time series (0 ≡ low, 1 ≡ high). The 18 corrected and boxed time series
were used during subsequent analysis. To simulate a realistic reconstruction
scenario, the qualitative and quantitative interaction data (biomass-flow)
are used only to evaluate our results.

Our experiments focus on using computational mechanics to discover
topological patterns in the food web network, which is to our knowledge, a
new approach. Ideally, we would reconstruct the ε-machine for the global
light-cone configuration of a fully connected network, however computa-
tional resource and data constraints make this intractable. Intractable also
is the creation of ε-machines for local light-cone configurations using full
connectivity. Instead, we examine creating point predictor ε-machines for
each node using their single-dimensional time-series, then investigate meth-
ods of inferring the food web network structure so as to determine the actual
light-cone structure for each species and create more complete yet tractable
ε-machines.

3.1 Point predictor ε-Machine reconstruction

As a first approximation, we construct an ε-machine for each species (a
point predictor) using only the single-dimensional time-series biomass data
for that species. For ε-machine reconstruction we used the algorithm from
Shalizi and Shalizi [2003] with history length m = 10 and significance level
α = 0.001.

3.2 Inferring predator–prey relationships

In order to reconstruct more accurate ε-machine point predictor models for
each species, we need to know which species should be included in the light-
cone for the species under consideration. This requires knowledge of the
links (i.e. predator–prey relationships) in the food web. To attempt to infer
predator–prey relationships, construct three distance metrics to be measured
between each species pair in the food web. A small distance could be used
to infer the existence of a predator–prey relationship.

3Thanks to Tom Carter we know that this is the maximum entropy configuration.
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3.2.1 Mutual Information distance measure

The mutual information was evaluated between the biomass data of each
species pair, examining the single states of each species at common time
steps. The mutual information represents a closeness measure between 0
and 1 bit; a distance metric is computed by subtracting this value from
1. Interestingly, a related study by Nichols [2005] used mutual information
between two populations to study their relationship.

The use of mutual information as a distance measure is potentially prob-
lematic however because it represents statically shared information rather
than necessarily an indication of a causal link in either direction between
the species. Two species could have a high mutual information because of
interactions both have with a shared third party rather than with each other.

3.2.2 Transfer entropy distance measure

An alternative distance measure can be obtained using the transfer entropy.
It will not reflect shared information as the mutual information does, but a
directional information transfer which is potentially more akin to effects in
predator-prey relationships. The transfer entropy is measured between the
biomass data of each species pair, examining the transfer from the previous
value of the source variable to the next state of the destination, conditioned
on the previous k = 10 states of the destination variable. The transfer en-
tropy represents a directional closeness measure between 0 and 1 bit. A
directional distance measure could be computed as for the mutual informa-
tion by subtracting this value from 1. A symmetric distance measure on the
other hand could be computed by taking the larger of the two transfer en-
tropies and subtracting it from one; strength in either connection is enough
to infer a predator–prey relationship.

3.2.3 ε-Machine patch predictor distance measure

Another measure of distance between two species is suggested here, based
on statistical complexities of individual point predictors for pairs of nodes
and the corresponding patch predictor for those same nodes.

We start with the assumption that observing the event at point 〈u, t〉
renders the point 〈u, t + 1〉 in the future light-cone independent from the
history light-cone. Next, having an ε-machine M u for process u renders all
points 〈u, t + i〉 in the future light-cone independent and determines point
〈u, t + 1〉. We can do the same for a process v. Then, observing the event at
point 〈v, t〉 and having the ε-machine M v summarizes all information from
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the history light-cone to predict 〈v, t + i〉 for i = 2 . . .∞4 and determines
point 〈v, t + 1〉. If we now assume that there is a region C−∗ ∈ C− of the
patch 〈(u, v), t〉 that contains structure which contributes to the prediction
of 〈u, t + i〉 and 〈v, t + i〉, then this structure is part of both, M u and M v.
We can now reconstruct an ε-machine M (u,v) for processes u and v. Because
of minimality of causal states, M (u,v) contains structure coming from C−∗

only one time, while M u and M v both carry this structure. This allows
us to isolate the structure coming from C−∗, which can be quantified with
statistical complexity Cµ as:

Cµ(u, v) ≡ Cµ(M u) + Cµ(M v)− Cµ(M (u,v)). (10)

This new measure quantifies the history-structure common to both processes
that is used to predict both of their futures independently. It is similar to
mutual information in the sense that it is symmetric in u and v.

Again, for ε-machine reconstruction we used the algorithm from Shalizi
and Shalizi [2003] with history length m = 10 and significance level α =
0.001. We reconstructed patch predictors for each possible pair combination.

4 Results and discussion

4.1 Point predictor ε-machine reconstruction

We have reconstructed ε-machines for the single-dimensional time series of
all species. One example for species “Insect6” is shown in figure 4. The nodes
in the graph represent causal states and arcs represent state transitions.
The emitted symbol a is labeled on each state transition together with the
transition probability. Loops in the trajectory represent recursive patterns
in the dynamic process. The size of the reconstructed patterns is bounded
by the parameter m. We are using the inferred statistical complexity Cµ of
each of this point predictors together with the patch predictor to create a
distance measure.

To learn more about the dynamics of the process and the convergence of
the reconstructed ε-machines to its original process we increased the consid-
ered history length m gradually and observed the model size. The diagram
in figure 5 shows the number of causal states and figure 6 the statistical com-
plexity Cµ as a function of history length m for all the species5. In case of

4note that this is only a subset of the future light-cone
5The labels in the diagram should read: Plant1, Plant2, Plant3, Plant4, Plant5, Plant6,

Insect1, Insect2, Insect3, Insect4, Insect5, Insect6, Insect7, Insect8, Bird1, Bird2, Frog1,
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Figure 4: Example of one of the ε-machines reconstructed for the single-
dimensional time series of the species “Insect6”. CSSR inferred 141 states
with Cµ = 4 using a history of m = 10 at significance level α = 0.001.
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Figure 5: Number of inferred states as function of history length m for each
of the species.

convergence we would expect some settling of size and complexity with in-
crease of m. We can not see any sign of it in the range 10 < m < 20.
This could have several reasons. One reason could be that the processes
have no finite model, e.g. chaotic process. Another reason could be that
the data-sets are to short. CSSR tends to find non-existing patterns due to
over-fitting.

4.2 Inferring predator–prey relationships

The results for the distance metrics computed between each pair of species
are presented here in two-dimensional plots using the multi-dimensional scal-
ing technique (MDS). This technique projects a set of n points, specified by
their distance matrix, onto an m-dimensional space. For example, see a
description of the MDS implementation for Matlab at Mathworks [2007].

These two dimensional projections of the computed distances between
each node are shown for the mutual information, transfer entropy and ε-
machine patch predictor measures respectively in Figures 7, 8 and 9.

To evaluate the relative success of the measures in inferring links in
the food web, compare the distance projections to the actual links in the
generating food web model in figure 3. These reconstructions appear to

Liyard1, Parasite1, Parasite2 instead of N0, N1, N2, N3, N4, N5, N6, N7, N8, N9, N10,
N11, N12, N13, N14, N15, N16, N17, N18, N19.
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Figure 6: Statistical complexity Cµ as function of history length m for each
of the species.

accurately represent some of the structure in the original food web, e.g.
proximity of Parasite 1 and Plant 2 in figure 3 and figure 8, but miss others
such as the Lizard 1 and Insect 4 relationship.

To quantify this evaluation, we compare the distances measured by each
metric to some notion of actual distance in the original food web. The dis-
tance in a graph is frequently expressed as shortest path between two nodes:
we take the shortest paths between each pair using the known predator–prey
links in the original food web model to create a reference distance matrix
here. An MDS plot generated from the shortest path distances can be seen
in figure 10. This allows a visual comparison with the original food web in
figure 3 and with our generated distance measures in figure 7, figure 8 and
figure 9.

We then make a quantitative comparison by normalizing each distance
matrix and subsequently taking the mean square error of the pair-wise dis-
tances computed by each of our distance metrics compared to the shortest
path length in the known network structure. We found the normalized mean
square errors were as follows (in square normalized units): mutual informa-
tion measure: 0.2056; transfer entropy measure: 0.1481; patch predictor
measure: 0.1514. This suggests that the patch predictor method and the
transfer entropy method produce the more accurate reconstruction of the
distances between each species then the mutual information method. These
measures are not necessarily a correct representation of accuracy here how-
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Figure 7: Mutual Information distances projected onto a two-dimensional
plot. Axes are in units for the projected space.
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Figure 8: Transfer Entropy distances projected onto a two-dimensional plot.
Axes are in units for the projected space.
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Figure 9: Patch predictor distances projected onto a two-dimensional plot.
Axes are in units for the projected space.
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Figure 10: MDS plot shortest path distance of original food web
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ever, since there is little evidence to indicate that using the shortest path
lengths in the known structure is plausible as a refernce measure.

The latter is supported by a visual inspection of the MDS plots. We
can easily identify clusters around “Insect3”, “Insect5” and “Plant6” in the
mutual information measure, the transfer entropy measure and the patch
measure, that do not show in the reference measure.

A more detailed comparison involves analyzing the variation in the num-
ber of actual links detected and false links inferred by each technique as a
function of a variable threshold distance used to infer the existence of a link.
This is analogous to Relative Operating Curve (ROC) plots which are used
to evaluate the accuracy of diagnostic systems (e.g. anomaly detection sys-
tems for internet servers) in terms of the detection rate and false alarm rate
as a function of some sensitivity of the system Swets [1988]. Here, we define
analagous parameters for our purposes: the relationship detection rate is
the proportion of all actual predator–prey relationships which are inferred
at the given threshold distance; the false relationship inference rate is the
proportion of all non-existent predator–prey relationships which are inferred
at the given threshold distance. The ROC plot for each measure is shown
in figure 11. This plot demonstrates that the mutual information measure
is clearly the least useful distance metric in terms of inferring predator–
prey links; in fact it appears no better than a random inference method
(due to its close approximation to the diagonal here). At first glance, the
transfer entropy and patch predictor distance metrics appear to have similar
performance; both demonstrate a more refined ability to distinguish links
appropriately. On closer inspection however, we notice that the patch pre-
dictor method performs better at low sensitivities (lower detection and false
inference rates) while the transfer entropy performs better at higher sensi-
tivities. We believe performance at lower sensitivities is more important,
subjectively judging low false inference as more important than high detec-
tion because in this region the detection rate is much higher than the false
inference rate. As such, we suggest that the patch predictor technique is a
marginally better performer on this experiment.

The strength of the patch predictor method appears to lie in detecting
the stronger predator–prey links, the proverbial “low hanging fruit” (e.g.
at 40 % detection rate, the false inference rate is only 5 %). There is still
much room for improvement here though. Perhaps the technique would have
performed better given access to larger data sets, or using longer history
lengths. Possibly also the technique itself could be improved. While the
premise of investigating entanglement in joint models appears sound, the
assumption that the joint statistical complexity Cµ would be smaller than
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Figure 11: Relative Operating Curve (ROC) plot for predator–prey rela-
tionship inference detection rate versus false inference rate for each distance
measure (mutual information in red, transfer entropy in green, patch pre-
dictor in blue) as a function of variable sensitivity threshold

the sum of the individual statistical complexities for a predator-prey link
may not be accurate in all cases. A contrary example predator–prey link is
where the predator adds a significant amount of predictive power about the
prey, but that information was not relevant to prediction of the predator
itself and was not available for analysis of the prey in isolation; here the
joint statistical complexity would be larger. We intend to investigate how
the measure could be made more comprehensive in future work.

5 Conclusion

Future work shall include reconstructing more complete ε-machines for each
species using the patch predictors technique to infer the predator–prey links
for each species that should be included in their light-cone for the reconstruc-
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tion. The patch predictor method shall also be investigated in an attempt
to improve its performance.

We think that computational mechanics is one of the most important
foundations in complex systems research. It should be more prominent
represented in the curriculum of students in particular at the SFI summer
school on complex systems in Santa Fe.
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