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1. Classical Game Theory

Game theory is the study of interactive decision making. The classical theory
studies the systematic, strategic play by so-called rational agents; that is, we assume Rational agent

that the players in classical context seek to optimize a quantity known as utility.
Often utility can be thought in terms of money, but it need not be. Because
optimization depends not only on what one agent chooses to do, but on what all
the other players decide to do, game theoretic problems are, typically, hard to
analyze. Before going to far, however, it’s important to make precise just what a
game is.

A game is a collection of rules and strategies. The rules specify who can do Game

what and when, whereas the strategies describe what do to and when. In general Strategy

strategies can be very complicated, or entirely arbitrary. In the select-a-meal game,
you might employ a strategy that consists of spinning around three times, closing
your eyes, and standing on one leg. According to this strategy, if the time it
takes for you to lose balance is less than twenty seconds you take the comfort food
option and the vegetarian offering otherwise. This strategy is both elaborate and
arbitrary, and by the definition, perfectly valid. Strategies can be deterministic or
probabilistic. As long as it completely specifies an legal action for each possible
state of the game at hand, it’s valid.

In order to study the structure of games, it is necessary to be able to write it
down. Since a game really reduces to a series of decisions, it makes sense to write
each possible choice down, one at a time, in the order dictated by the rules. This
sort of representation lends itself nicely in the form of a (graph theoretic) tree. Well, there’s nothing that

really requires the
structure of an arbitrary
game to be a tree. In
fact, it need not even be
an acyclic directed graph.
Loops are fine. But it
doesn’t hurt to think of
games essentially as
trees.

Normally we think of the tree as being rooted at some node that represents what
happens just before the game begins. The first move of the game made by a player
is usually decided by an “act of God.” Often the internal nodes carry labels with
either the name or number of the player whose turn it is to move during that state
of the game. Directed edges point to the state of the game that results in the
action taken at the node. Terminal nodes carry additional information. The value
of payoff at the end of the game along with the name of the recipient(s) to receive Payoff

the prize. A walk from the root to a terminal node is called a play of the game. Play

You could think of a play as simply a single match (or instantiation or whatever
makes most sense).

The resultant graph structure is the extensive form of the game. While the Extensive form

extensive form of the game encodes the entire history, even for small games the size
of the tree can be unwieldy or even deceptive. For this reason, people have come
up with an alternative description of games.

Any new, more compact representation must include the following information:
(1) The number of players in the game,

1All of the notes from this tutorial have been lifted almost entirely from lectures given by Tim
Killingback at the University of Massachusetts Boston during a course on game theory, ecology,

and evolution in the spring of 2008.
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(2) A complete description of all the strategies available to each player, andThe strategy set of one
player may not be the
same as the others. In a
play of Marco Polo, for
example, only one player
can shout “Marco!”
whereas everyone else
yells “Polo!”

(3) A catalogue of payoffs that accrue to each player using each strategies
against any other player using any of his strategies.

For two-player games, and those are the only kind we’re going to consider in this
tutorial, we can package everything together in a bimatrix. In this representation,

Bimatrix
the normal or strategic form fo the game, the rows list the strategies of player i,

Normal form and the columns gives the strategies of player ii.
In this case we label the strategies available to each player with names like A

or B, and leave the details of their exact specification out of the picture. For thisYou can pretend that
each strategy has been
meticulously drawn up
and housed in a very safe
place, so that if someone
asked to you play the
game in real life you
could. But since we’re
modeling behavior, and
playing the game for real
takes a lot of time, it’s
best left someone where
else.

description, only the fact that the strategies exist and that we know their payoffs
matter. The payoff values, an ordered pair of numbers, make up the entries of
the bimatrix. Within the pair, the payoff to player i comes first; the payoff
to player ii, second. For example, say the rows are labeled with strategies A
and B for player i and the columns by C, D, E for player ii. Then the pair
(π1(A,D), π2(A,D)) consisting of the payoffs of an A-strategist (player i) against
a D-strategist π1(A,D) and the payoff of a D-strategist (player ii) against an
A-stragetist π2(A,D) appears in the Ath row and Dth column of the payoff matrix.

There is no reason to assume in advance that the two payoffs are equal. Generally
the payoffs will not equal each other. That is, if player i adopts some strategy x
and player ii adopts another strategy y, then the payoffs the two players receive
need not be equal:Asymmetric game

π1(x, y) 6= π2(x, y).

Such games are called, surprisingly enough, asymmetric games.Exercise. Fill in the
corresponding matrix
with the appropriate
payoffs. Remember that
π1(x, y) is the payoff to
player i for playing x
when player 2 chooses
strategy y, and similarly
for π2(x, y).

» C D E

A ∗ ∗ ∗
B ∗ ∗ ∗

–

2. Two-player, Two-strategy Games

For the rest of this section, we are going to investigate the behavior of three
classes of games parametrized by the following payoff matrix

[ A B
A (1

2 (a − b), 1
2 (a − b)) (a, 0)

B (0, a) ( 1
2 (a + c), 1

2 (a + c))

]
.

Here a, b, and c are just numbers that we’ll fill in as time goes by. You may
notice that the payoffs, in this case, are symmetric. A games whose corresponding
payoff matrix is symmetric is itself called a symmetric game. We’ll discuss someSymmetric game

Yes, for this to work the
sets of strategies
available to each player
have to be identical.

simplifications we can make for symmetric games in a bit more detail later on but
for now let’s just plug in some values and play some games.

2.1. Prisoner’s Dilemma (a = 4,b = 2, c = 0). In our first example, plugging in
the parameters yields the following pay-off matrix

[ A B
A (1, 1) (4, 0)
B (0, 4) (2, 2)

]
.

Before you read on, go find someone else and play the game once. Remember
that player i chooses a strategy x from one of the rows, and player ii selects
a strategy y from one of the columns. Also, the payoff to player i is the first
number in the pair where the row x and column y meet—denoted by the symbol
π1(x, y)—and the payoff to player ii is the second number, denoted by π2(x, y).
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In this case strategy A dominates B; that is, no matter what your opponent
chooses, you obtain a higher payoff if you choose A. So it makes sense for both
players to choose A. If classical game theory were my lawyer advising me to plead
strategy A or B in a court of law, it’d surely tell me to go with A. We’ll say some
more about that a little bit later.

2.1.1. The Story. All of these games come with a funny little narrative. This one
is called Prisoner’s Dilemma, and its story goes something like this:2

Flávia and Petr several years ago had planned to rob a bank. Unfortunately Disclaimer: The
characters mentioned in
my game theoretic stories
are fictitious, even when
they represent real
people.

for them, the robbery was not as clean as they would have hoped, and quickly
found themselves engaged in a high-speed chase covering an excess of 400 miles
over the rural roads of Nebraska. After several hours and considerable damage to
the local corn fields, the Nebraska state police, in a singular act of courage and
quick maneuverability, surrounded the car that contained the would-be robbers,
and arrested them. Back at the police station, Flávia and Petr were placed in two
separate interrogation rooms and made an identical offer.

“Flávia, here’s the offer that we are making to both you and Petr. If you both
hold out on us, and don’t confess to bank robbery, then we admit that we don’t
have enough proof to convict you. However, we will be be able to jail you both for
one year, for reckless driving and endangerment of corn. If you turn state’s witness
and help us convict Petr (assuming he doesn’t confess), then you will go free, and
Petr will get twenty years in prison. On the other hand, if you don’t confess and
Petr does, then he will go free and you will get twenty years.”

“What happens if both Petr and I confess?” asked Flávia.
“Then you both get ten years,” said the interrogator.
Flávia, who had been a participant at the 2008 Santa Fe Institute Complex

Summer School, reasoned this way: “Suppose Petr intends to confess. Then if I
don’t confess, I’ll get twenty years, but if I do confess, I’ll only get ten years. On the
other hand, suppose Petr intends to hold out on the cops. Then if I don’t confess,
I’ll go to jail for a year, but if I do confess, I’ll go free. So no matter what Petr
intends to do, I am better off confessing than holding out. So I’d better confess.”

Naturally, Petr employed the very same reasoning. Both criminals confessed,
and both went to jail for ten years. (Actually, they didn’t go to jail. When they
were in court, and heard that they had both turned state’s witness, they strangled
each other. But that’s another story.) The police, of course, were triumphant, since
the criminals would have been free in a year had both remained silent.

Our payoff matrix doesn’t measure in terms of jail time, instead it uses some
other utility. Even still the structure is the same as in the story: strategy A A = Defect

B = Cooperatecorresponds to Fink and strategy B corresponds to Stay mum.

2.2. Nash Equilibrium. The pair of strategy (A, A) is in some sense the only
non-stupid move (that is, of course, unless you have some extra information about
your opponent). Once both players choose this strategy neither can do better by
unilaterally switching to some other strategy. This is likely true of any “good” pair
of strategies that we would want to look for.

2This version of the Prisoner’s Dilemma has been shameless adapted from a problem set that
accompanies the Structure and Interpretation of Programming Languages by Sussman and Abel-
son on the book website http://mitpress.mit.edu/sicp/psets/ps4prs/readme.html; at least it

did at 11:13am, 7 June 2008.
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A general pair of strategies (s, t) is good if
(1) Strategy s is an optimal choice for player i given that player ii will

choose t; s is a best response to t.
(2) Strategy t is an optimal choice for player ii given that player i will

choose s; t is a best response to s.
If both properties hold simultaneously, then the pair (s, t) is called a Nash equi-Nash equilibrium

librium (NE). We can cast our observations in a more mathematical language by
noting that for all strategies s̃ and t̃,s̃ is pronounced

s-twiddles.
(1) s is a best response to t if and only if π1(s, t) ≥ π1(s̃, t),
(2) t is a best response to s if and only if π2(s, t) ≥ π2(s, t̃).

If the inequalities are strict, then the corresponding pair is called a strict NashStrict Nash equilibrium

equilibrium. An arbitrary two-person game with finite strategies may have more
than one NE. In that case, classical game theory does not give a clear-cut way
of selecting among them. On the other hand, strict Nash equilibria are unique.
(Why?)

2.2.1. Mixed Strategies. Up until now we have been considering pure strategies,Pure strategy

those strategies labeled on the sides of the payoff matrix. A mixed strategy σMixed strategy

choose pure strategies s1, . . . , sn with probabilities p1, . . . , pn. Since the pi really
are probabilities we require that pi ≥ 0 for all i and that they sum to one. With
these definitions, the pure strategy si is also the mixed strategy with pi = 1 and
all other pj = 0.

It is common to write a mixed strategy as a linear combination of pure strategiesLet s =
`
s1 · · · sn

´T and

p =
`
p1 · · · pn

´T , then
their inner product is
σ = 〈s, p〉. σ = p1s1 + · · · + pnsn =

n∑
i=1

pisi.

We need to expand our notion of payoff to accommodate mixed strategies. ToPayoff for mixed strategies

do so, we’ll sum over the the payoffs of the pure strategies, because we already
know how to do that, but weight them according to how often two strategies are
(probably) played against each other. So, let σ =

∑n
i=1 pisi and τ =

∑m
j=1 qjtj ,

then the payoff to player i in the game of σ against τ isThe product piqj

measures about how
often si plays against tj .

I’ve turned the payoff
bimatrix in one just for
player i with the payoff
function π1 in that
second equality.

π1(σ, τ) =
n∑

i=1

m∑
j=1

piqjπ1(si, tj) = 〈p, π1(s, t) · q〉,

and similiarly for player ii.
Not only do we need to revise our concept of payoff, but also of Nash equilibrium.

We say that a pair of mixed strategies (σ, τ) is a Nash equilibrium if for any otherNash equilibrium for mixed
strategies (mixed) strategies σ̃ and τ̃ ,

π1(σ, τ) ≥ π1(σ̃, τ) and π2(σ, τ) ≥ π2(σ, τ̃).

A strict NE over mixed strategies is defined similarly.
The Fundamental Theorem of Classical Game Theory, sometimes known as

Nash’s Existence Theorem, promises that for any two-person game with a finite
number of pure strategies, at least one Nash equilibrium exists in (possibly) mixed
strategies.

Proposition 2.1. The pair (A,A) is a Nash equilibrium of the Prisoner’s Dilemma
with the payoff matrix given above.
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Proof. We want to show that A is a best response to any other mixed strategy σ
for both of the first player and the second player. (So there are two things to show
here.) So let σ = pA + (1− p)B for some probability p ∈ [0, 1). If player i adopts
σ then the payoff to her is The second equality

comes directly from the
payoff matrix.» A B

A (1, 1) (4, 0)
B (0, 4) (2, 2)

–π1(σ,A) = p π1(A,A) + (1 − p)π1(B,A)

= p · 1 + (1 − p) · 0
= p.

But since p < 1 and π1(A,A) equals 1, we’ve shown that A is a best response for
player i against A. Identical reasoning establishes the equality for player ii. �

Because the inequalities were strict, we actually proved something much stronger.

Proposition 2.2. The pair (A,A) is the unique Nash equilibrium in the Prisoner’s
Dilemma.

2.3. Hawk-Dove Game. (a = 2,b = 4, c = 0). Again, go find a partner and have
a shot at the game described by the payoff matrix

[ A B
A (−1,−1) (2, 0)
B (0, 2) (1, 1)

]
.

In this game there are (count’em, one, two) three Nash equilibria. Two of them
include only pure strategies, (A,B) and (B,A). To find the third we need to consider
mixed strategies as well. Indeed, once we do we discover that the strategy ( 1

2 , 1
2 ) I’m being a little sloppy.

A NE consists of a pair
of strategies. But ( 1

2 , 1
2 )

describes on a single
albeit mixed strategy.
Call it σ∗. Then the real
NE is (σ∗, σ∗).

also does the trick.

This class of games goes by a few different names. Sometimes it is called Chicken,
the Snowdrift Game, and the Hawk-Dove Game. Each name reflects a different
interpretation.

In the game of Chicken, Ari and Ben drive their cars straight on at each pedal- A = Don’t swerve
B = Swerveto-the-metal. If one of the players swerves, both escape with their lives but only

one receives the glory. If both are bull-headed and refuse to swerve, then they
collide at a fantastic speed and incur large medical bills as a result. If both of them
swerve, then they split the glory evenly having showed equal amounts of courage
(and stupidity) for playing the game at all.

The second interpretation also involves cars. Imagine that you live in a cold and A = Turn up the heat
and wait
B = Shovel

snowy place. During the day the elements unleashed a terrific blizzard, blocking
of the many small roads you use on your ride home from work with a snowdrift.
Luckily, another tired worker on her way home meets the impasses at just about
the same time but from the other side. Being aware of your environment both of
you remembered to keep a shovel in your trunk for just such an emergency. You
could go out and clear away the snowdrift, which would benefit both of you, or you
could decide to stay inside, crank up the heat, and turn on the radio and wait for
the other person to do it for you. If neither of you shovels, though, no one gets
home and both of you are attacked by bears. (Did I mention there were bears?)

The last common interpretation of the game considers two types of fighters:
hawks and doves. Biologist John Maynard Smith used this description to help A = Escalate the fight

B = Posture, but run
away if threatened

describe the frequency of conventional contests in the animal world. Suppose there
are two types of behaviors. The first one, Hawk, escalates conflict until injury or
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until its opponent flees. The second, Dove, makes threatening displays but retreats
once a fight begins. It’s worth noting that these names are complete misnomers.
First off, the game is supposed to take place between individuals in the same species.
Hawks aren’t doves, so we’re already off to a misleading start. Also, in real life,
doves do escalate the fight.

We’ll return to the Hawk-Dove game again in an even more evolutionary context.
This game has been used as a model of conflict, but also of group behavior and
evolutionary branching and specialization.

2.4. Stag Hunt. (a = 4,b = 0, c = 6). Once again, turn to your neighbor and
play the game given by the payoff matrix

[ A B
A (2, 2) (4, 0)
B (0, 4) (5, 5)

]
.

You may not be surprised to learn that this game also admits two pure and one
mixed Nash equilibria. They are (A,A), (B,B) and ( 1

3 , 2
3 ). For those of you who

attended the tutorial, you may remember that one-third of you voted for strategy A
and about two-thirds of you voted for strategy B. How’s that for external validation?Well, it’s almost external

validation. We had to
look at a population of
pure strategists to
express the mixed
strategy. It’s impossible
to know if someone really
has adopted a mixed
strategy in a one-shot
game. After all, what
does one-third of one
game even mean? We’ll
return to this point later.

This game comes to us by way of Rousseau, who was interested in the tension
between the goals of the individual and the goals of the group. In this example the
group is as small as can be. Kathleen and Abby, bored by the lizards in the desert,
venture on a big-game hunting trip in rugged Idaho. In the forest they happen upon
a single stag and one rabbit. While neither has a sure enough shot to take down
the stag on her own, they could easily do so together. But the two of them have
been in the forest all day and are hungry. It occurs to both of them independently
that it’d be easier to catch an eat a rabbit of their own instead. Going for the stag

A = Hunt the rabbit
B = Hunt the stag

results in more food, but only if the other one coordinates her efforts. But if they
both go for the rabbit, each enjoys a much smaller share.

This sort of game is also called a coordination game. The pure Nash equilibriaCoordination game

in this game come in two different flavors: risk dominant and payoff dominant.Risk dominance

Payoff dominance Strategy A always ensures that the player adopting this strategy gets some food,
and in some sense minimizes risk. A B-strategist could go hungry, but he could
also end up with the stag, and thus maximizes his payoff. Again, classical game
theory does not offer clear suggestions for choosing between these two equilibria. In
evolutionary game theory, one could investigate the basins of attraction surrounding
points.


