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Abstract—In this paper we develop a simple model for the
effect of gossip spread on social network structure. We define
gossip as information passed between two individuals A and B
about a third individual C which affects the strengths of all
three relationships: it strengthens A-B and weakens both B-C
and A-C. We find out that if gossip does not spread beyond
simple triads, it destroys them but if gossip propagates through
large dense clusters, it strengthens them. This work is novel
in two respects. First, while past studies have looked at how
network structure affects gossip spread, here we show how gossip
spread affects network structure. And second, although there is
previous theoretical work on how information or matter flowing
through a network can change its structure, our contribution is
to specifically model this process when the flow affects edges not
necessarily along its direct path.

Index Terms—Gossip, Social Networks, Network Dynamics

I. INTRODUCTION

OSSIP is ubiquitous in human groups and has even

been argued to be fundamental to human society [7].
It usually has negative connotations: generally, no one wants
to be thought of as a gossip, and gossiping has traditionally
been viewed as an indirect form of aggressiveness. However,
gossip also seems to have a variety of benefits, including
helping individuals learn the cultural rules of their societal
group [3]. In [7], the author even proposed that gossip is
analogous to grooming in primates: it is essentially a tool to
create and maintain relationships between individuals, with
little importance given to the accuracy or quality of the actual
information being passed.

Unlike rumors, which pertain to issues and events of public
concern, gossip targets the behavior and life of a private
individual. Gossip can essentially be defined as information
passed from one individual (originator) to another (gossiper)
about an absent third individual (victim) [13]. Therefore, any
analysis of gossip must occur at the level of the triad or higher
[20]. We assume, for the purpose of this paper, that gossip
serves to strengthen the relationship between gossipers and
weakens the relationship between the victim and each gossiper
(Fig. 1).

Previous work has explored how social structure influences
the flow of gossip and which network types best promote
gossip [13]. This work is closely related to the vast body of
contagion literature [6] studying how cultural fads [4], [9],
technological innovations [1] or contagious disease [2], [12],
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[15], [18] spread on networks. Gossiping, however, has the
potential to change the structure of the network on which
it flows by damaging some relationships while strengthening
others [20]. This suggests a flip side to the problem of the
spread of gossip that has remained unaddressed to date. In
this paper, we address exactly this problem, by investigating
how gossip affects the structure of the social network it flows
through.

The process of an information flow molding a network has
been previously studied in the context of Hebbian learning,
where the simultaneous activation of neurons leads to an
increase in the strength of their synaptic connection [10]. A
similar type of path reinforcement has also been observed
in ants [8], humans [11], and even slime molds [16]. All of
the above models, however, explicitly describe modification of
the network only along the flow’s direct path. Information or
matter passed along one network edge only affects other edges
indirectly, due to a “conservation” principle: for example,
because there is a finite number of ants, by choosing one path
more, the ants are indirectly choosing the other paths less.
Our contribution is to model how information passed along
one edge can directly affect the strengths of other edges in
the network.
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Fig. 1. Schematic for the effect of gossip on strengths of relationships of
individuals in the triad. Individuals are represented as nodes and the strength
of their relationship is represented by the thickness of the line between them.
In a gossip event, an originator (O) spreads gossip about a victim (V) to a
mutual friend, the gossiper (G). The result is a stronger relationship between
the originator and the gossiper, and a weaker relationship between the victim
and each the originator and the gossiper.

II. METHODS

We built a simple network model in NetLogo [17] to
simulate how the spread of gossip influences social network
structure. In order to guarantee convergence, each simulation
was run for 10,000 gossip events. We ran simulations with 48
different parameter combinations (3 network types, 2 network
sizes, 2 methods of victim choice, 2 methods of originator
choice, 2 methods of changing connection strength) for 10
repetitions each, for a total of 480 simulation runs.



A. Model

To simulate a single gossip event on a network we first
choose a random node in the network to be the ’victim’
of the gossip event. Then we choose one of the victims
neighbors as the ’originator’ of the gossip event (Fig.2a).
In the first wave of a gossip event, the gossip is spread
to all the mutual neighbors, now gossipers, of the victim
and originator (Fig.2b). In subsequent waves, each of these
new gossipers then spreads the gossip to their mutual friends
with the victim (Fig.2c). This process continues until no new
individuals become gossipers (see Algorithm 1).

We assumed that spreading gossip results in a stronger re-
lationship between all gossipers, and a weakened relationship
between the victim and the gossipers. Allowing link weights to
take values between 0 and 1, we used two functions describing
this effect:

 normalized: For increasing, w1 < wy,+a(l—w,) and
for decreasing, wy, 1 < fw, in whicha < 1and 8 < 1.
This method has hysteresis, i.e. an increase followed by
a decrease does not necessarily lead to the initial value
of strength.

 quadratic: For increasing, wp4+1 < +/w, and for de-
creasing, wy, 1 < w2. Other powers can be used for
extensions.

All edges were initially set to have a strength of 0.5 at
the start of the simulations and those links whose weight
dropped below 0.0005, during the course of the simulation,
were severed.

Algorithm 1 Basic Model
1: for each gossip event do
2 set all individuals as non-gossipers
3 choose victim: pick a random individual
4:  choose originator: pick a random neighbor of victim
5
6

set originator as a gossiper
while 3 mutual neighbors of the victim and a gossiper
> are non-gossipers do
7: set all mutual neighbors of the victim and each
gossiper as gossipers
8:  end while
9:  decrease the links between the victim and each gossiper
10:  increase the links between all pairs of gossipers
11: end for

To test if any results we saw were due to just strengthening
and weakening connections between triads of nodes, we also
ran simulations on a null-gossip network, where a single gossip
event only occurred within a single triad of individuals. In
other words, gossip was only allowed to spread from the
originator to one other individual (see Algorithm 2).

B. Networks

We conducted simulations on several network types to
see if the effect of gossip varied with network structure:
random. We used random, small-world, and spatially clustered
networks. These network types match observed patterns of

Algorithm 2 Null Model
1: for each gossip event do
2:  set all individuals as non-gossipers
3:  choose victim: pick a random individual
4:  choose originator: pick a random neighbor of victim
5
6

set originator as a gossiper
choose one random mutual neighbor of the victim and
gossiper, and set as gossiper
7:  decrease the links between the victim and each gossiper
8:  increase the links between the pair of gossipers
9: end for

social organization and provide sufficient variation in average
path length and clustering. For the small-world networks, we
used the original generative algorithm [19] with a rewiring
probability of 0.15. The spatially clustered networks were
generated by distributing the nodes randomly in space and
then letting a randomly selected node establish a link with the
closest node.

We also varied network size, comparing small (N=50) and
large (N=200) networks, each with an average node degree of
6.

C. Alternative Gossip Algorithms

In the simplest case, the probability of becoming a gossip
victim or originator is uniform across nodes. Following the-
oretical arguments and previous empirical findings, we also
explored two additional algorithms for starting the gossip
event:

o The probability to become a victim increases with degree
centrality (see Algorithm 3). This algorithm models the
situation where more popular people are more likely to
be subjects of gossip, which is the working mechanism
in the hypothesis that gossip serves to equalize the social
status of individuals in a network [5].

o The probability to originate gossip is 1 for the agent with
the weakest connection with the victim (see Algorithm 4).
Here, we model the expectation that one is unlikely to
pass gossip about one’s close friends. Indeed, it has been
found that gossip tends to weaken already weak relations
[20].

We discuss further examples of alternative algorithms for

spreading gossip in the ’Future Directions’ section below.

D. Statistics

To quantify the results of our simulations, we looked at
the average node degree and the clustering coefficient of the
network at the end of each simulation. To measure the network
clustering, we first estimate the local clustering of each node
(how close the node’s neighbors are to being a complete graph)
and then average across all nodes [19].

We also looked at how final network structure, as defined
by number of clusters and clustering coefficient, was related
to connection strengths. We did this by including only links
greater than 0.8 strength and calculating the number of clusters
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Fig. 2. Schematic for how gossip spreads in a social network. a) We randomly chose a node to be the victim (V) and one of its neighbors to be the originator
of the gossip (O). b) The originator spreads the gossip to all mutual friends with the victim, strengthening connections between all gossipers and weakening
all connections between the victim and gossipers. ¢) This process continues until no more individuals can become gossipers.

Algorithm 3 Model with Popular Agents More Likely as
Victim
1: for each gossip event do
2:  set all individuals as non-gossipers
3:  choose victim: pick a random individual, chosen based
on degree — individuals with higher degree more likely
to be picked
4:  choose originator: pick a random neighbor of victim,
chosen completely randomly
5:  set originator as a gossiper
while 3 mutual neighbors of the victim and a gossiper
> are non-gossipers do
7: set all mutual neighbors of the victim and each
gossiper as gossipers
end while
. decrease the links between the victim and each gossiper
10:  increase the links between all pairs of gossipers
11: end for

Algorithm 4 Model with Victim’s Weakest Link as Originator

1: for each gossip event do
2:  set all individuals as non-gossipers
3:  choose victim: pick a random individual, chosen com-
pletely randomly
4:  choose originator: pick neighbor of victim with the
weakest connection to victim
5:  set originator as a gossiper
while 3 mutual neighbors of the victim and a gossiper
> are non-gossipers do
7: set all mutual neighbors of the victim and each
gossiper as gossipers
end while
. decrease the links between the victim and each gossiper
10:  increase the links between all pairs of gossipers
11: end for

and clustering coefficient. Then we included links greater than
0.6 and recalculated the number of clusters and clustering
coefficient. We repeated this for links greater than 0.5, 0.4
and 0.2 (see Results).

III. ANALYSIS
A. Triads

For the simplest case, we assume that we have only three
connected nodes and that links change according to the
quadratic function. Without loss of generality, we assume that
A gossips to B about C (see Fig.3).

Fig. 3. A gossips to B about C
In this case, c is replaced with ¢, a is replaced with a?
and b is replaced with b2. After n steps of the same action,
the new values are
a®") p") LM (1)
If the victim is chosen at random for each step, after n steps
the new values are (assuming that n is large enough)

a(l/g)(n/?’) X(Q)(%/S) _ a(g(n/3))7 b(Q(n/B))7 C(2<n/3)) (2)
which means that when the victims are chosen at random, with
further steps, the strengths of the connections weaken (until
all of them tend to zero).

B. Complete Clusters

In a complete cluster we have n nodes A; — A,, and there is
a link between each pair of the nodes. The total link weights
of node A; is Z?:l L;ji (assuming that A, = 0). If



n n
Z Liji > Z Ly,
j=1 j=1

then node A; has more probability than node A; to become
victim. So, considering the expected values regarding the
probabilities, total link weights of A; after change is'

n
Z Lijk+1 = P, x NewValues + (1 — P;) x OldValues
j=1
Because of the dissipating effects of gossip on the victim,
NewValues < OldValues. When P; is small, Z;'L:1 Lijk+1
is close to Z?Zl Liji; (as the second term, (1 — P; x
OldV alues, is dominant). But when P; is a big enough
number, NewV alues after being gossiped plays more role and
decreases 2?21 L;jk4+1 compared to Z?:1 L;jk. This means
that the proposed model of gossip moderates the network and
brings the total weights of the nodes closer to each other.

IV. RESULTS

In our model, although gossip both weakens and strengthens
links, weak links break but no new links are created. Hence,
a priori, we expect that gossip will decrease the networks
clustering and average node degree.

The negative effect of gossip on clustering is most extreme
in the null model: when gossip does not spread but occurs
randomly in triads, the simulations quickly converge to net-
works with zero clustering, regardless of the properties of
the initial network, the link-change function or the rules for
selecting a gossip victim and a gossip originator. Furthermore,
triads are unstable also when gossip spreads in networks with
small initial clustering. For example, the average clustering
coefficient after convergence in all 160 runs with random
networks is effectively zero (mean = 0.0048, std. dev. =
0.0076). These results confirm the analytical prediction that
gossip breaks triads.

Nevertheless, in networks with sufficient initial clustering,
the spread of gossip can have exactly the opposite effect: it
can make certain triads more stable. When gossip originates in
and spreads throughout a dense cluster, it strengthens more ties
than those that it weakens. For example, in a complete network
of five agents, gossip weakens only four relations (between
the victim and each of the gossipers), while it strengthens
six (among all gossipers). Hence, although over the long run
gossip destroys weakly triangulated links (i.e. “bridges”), it
makes the links in dense clusters maximally strong. The result
is a more fragmented and cliquish network (Fig. 6).

When we account for initial clustering, the effect of gossip
does not appear to differ among network types (Table 1).
We only find that gossip tends to destroy links and weaken
clustering to a lesser degree in large networks. Furthermore,
when the gossip originator is the victim’s weakest link, average
degree and clustering are lower compared to the case when the
originator is randomly chosen from the victim’s links. This

IThis is disregarding the increase in value when A; is selected by another
originator to gossip.

is so because, as elaborated in the analysis, under this rule
weaker links become more likely to be severed.

We also looked at network structure as a function of
minimum link strength (only including links stronger than
this ’min link strength’ value for the analysis). Clustering
coefficient varies little with min link strength (Fig. 4, top
panel). Network type influences clustering coefficient more
than network size (lines are clustered by color in Fig. 4). In
contrast, the fraction of clusters varies greatly with min link
strength, and seems to be influenced more by network size
than network type. (Fig. 4, bottom panel). Random networks
become especially fractured as a function of min link strength.
In most cases, both metrics show the largest jump in value
between 0.4 and 0.5. We believe this is due to the fact that
there are likely many links in the network that are never
affected by gossip over the course of the simulations, and stay
at their initial 0.5 strength.
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Fig. 4. Clustering coefficient as a function of what type of links are included
in the network. (e.g. min link strength of 0.6 means that only links of 0.6
strength and higher are included). Results are shown by network type: blue
is random network, green is small-world, and red is spatially clustered. Solid
lines are for N=50 and dashed are N-200. In all cases victims and originators
were chosen randomly. Panel 1 shows the result when the 'normalized’ link
change rule was used and Panel 2 shows the results when ’quadratic’ is used.

The link change rule also influences both of these network
metrics. With the quadratic method, most links converge
quickly to O or 1, leaving few links of intermediate strength.
This is demonstrated by the fact that the results for the
quadratic method for both methods are flat as a function of
min link strength (except the discontinuity at 0.5 mentioned
above). In contrast, the normalized link change method results
in links that are more uniformly distributed in strength. Hence,



TABLE 1
LINEAR RREGRESSIONS OF FINAL NETWORK PROPERTIES ON SIMULATION PARAMETERS WITH STANDARD ERRORS ADAPTED FOR CLUSTERING WITHIN
INITIAL CONDITION

Clustering Average Node Degree

Variable Coef. Std. Err.  Coef. Std. Err.
Large network .0631%* .0167 .5085%%* .0928
Quadratic effect -.0699%*% 0147 -.4006%* .0838
Spatially-clustered network ~ .0628 .0812 .6746 4522
Small-world network -.0698 .0499 -.3833 .2908
Victim: degree-central .0081 .0147 1131 .0841
Originator: weakest-link -.0763*%* 0147 -4286%* 0843
Initial clustering .8340%* 1539 -2.0728*  .8660
Constant -.0221 .0242 5.5103** 1241
R-squared 9183 7456

Fp < 0.05, ¥ p < 0.001

Number of observations = 480, Number of clusters = 48

the clustering coefficient is not flat as a function of min link
strength (Fig. 4, top panel), and the fraction of possible clusters
increases as a function of min link strength (Fig. 5, top panel).
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Fig. 5. Fraction of possible clusters (number of clusters / number of nodes)
as a function of what type of links are included in the network. (e.g. min link
strength of 0.6 means that only links of 0.6 strength and higher are included).
Results are shown by network type: blue is random network, green is small-
world, and red is spatially clustered. Solid lines are for N=50 and dashed are
N-200. In all cases victims and originators were chosen randomly. Panel 1
shows the result when the 'normalized’ link change rule was used and Panel
2 shows the results when ’quadratic’ is used.

V. DISCUSSION / FUTURE DIRECTIONS

In this paper, we developed a general model for the effect
of gossip on social structure. We only considered negative
gossip, which we defined as an exchange of information that
strengthens the relationships between those who gossip but

weakens the relationships between any gossiper and the victim
of gossip. We found that while gossip tends to dissolve isolated
friendship triads, it strengthens them when they are embedded
in dense clusters. Hence, gossip destroys clustering in weakly
clustered networks and increases cliquishness in networks with
already high clustering.

We made many simplifying assumptions in our model,
several of which could be relaxed to make it more realistic. For
example, gossip does not always have to be negative. Gossip
could be positive and conductive to forming new relationships
(Fig. 7). Furthermore, if O shares with G positive gossip about
V, G may decide to divert time from her relationship with O
and start hanging out with V. This time conservation principle
implies a potential reverse mechanism where gossip could
weaken the relationship between the gossipers and strengthen
the relationship between each gossiper and the gossip target.
Alternatively, this very effect could also occur when somebody
who has lost credibility starts maligning a third actor, i.e. when
negative gossip goes wrong. Schematic for positive gossip (as
opposed to negative gossip as depicted in Fig. 1).

The effect of gossip could differ not only in direction but
also in strength. It is reasonable to assume that the credibility
of gossip decreases as you move away from its source.
Consequently, a more realistic model would have the effect
of gossip decreasing with each step away from the originator.

Future developments of the model should also incorporate
more heterogeneity among the agents. Some individuals are
more likely to originate gossip or to pass it along. People
tend to exhibit conformist behavior because they pursue the
fundamental sense of belonging to a group, as well as social
approval from its members. Thus, being the one person in a
network who does not gossip might lead to social isolation
[14]. However, individuals succumb to peer pressure to dif-
ferent degree. Introducing individual variation in the tendency
to originate or repeat gossip to the simulation model would
lead to more realistic predictions about the effect of gossip on
social structure.
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a) initial network

Fig. 6. View of a small spatially clustered network before and after 10,000 gossip events, where the gossip victim is likely to be with higher degree-centrality
and the gossip originator is chosen to be the victim’s weakest link. Thicker links show stronger connections.

Fig. 7.

Schematic for positive gossip (as opposed to negative gossip as

depicted in Fig. 1). The originator (O) tells a gossiper (G) good things about
a friend V who G does not know, resulting in G making a connection with

V.
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