

Agent-mediated negotiation and auction protocols: an overview

Tutorial notes for Santa Fe Institute Complex Systems Summer School 22 June 2006

Valentin Robu

Dutch Center for Mathematics and Computer Science Amsterdam, The Netherlands

Overview of the problem

- Resource and task allocation problems occur in: electronic commerce, distributed logistics, scheduling, supply chain management, bandwidth usage etc.
- Many types of mechanisms exist, which can be classified by:
 - Number of parties (2 or more)
 - Number of issues (1 or more)
 - Complexity of preferences over those issues
 - Degree of self interest (cooperative / competitive)
 - Information shared (direct vs. indirect mech.)
 - Centralized vs. decentralized
 - One-shot vs. multiple offers etc., etc.

Types of resource allocation mechanisms

Negotiation (bargaining) mechanisms: typically decentralized, incomplete information

Bilateral negotiation (one/more issues)

One-many, many-many negotiations

Contract-net protocols

Coalition formation

Auction mechanisms: usually centralised, direct revelation

English, Dutch and sealed-bid (Vickrey) auctions

Combinatorial auctions (VCG etc.)

Concurrent / sequential auctions

Continuous Double Auctions (CDA-s)

Preference elicitation mechanisms

Bilateral multi-issue negotiation: example case study

- Two agents negotiating over several issues (attributes) simultaneously, leading to a large space of possible contracts
- Attributes can de discrete (e.g. quality level) or continuous (price)
- Bargaining follows an alternative offers protocol
- Applications: e-commerce, agents within the same organisation, work contract negotiations, scheduling
- Our example: buying of a car

Multi-issue (multi-attribute) negotiations

- n Fully Open Truthful Exchange (H. Raiffa)
- Both parties reveal their preferences to a central "mediator" agent, who computes optimal outcomes
- In an electronic environment, who controls the mediator agent? Can one prove its impartiality?
- n Reasons for not revealing full preferences:
- Fear the other may use it to get a better deal
- n Privacy concerns
- Preference elicitation problem (n items = 2ⁿ bundles)
- Heuristic search: Can we guess opponent's preferences based on his past bids (offers) ?

Example set-up: sale of a car

- Four attributes (CD player, Extra speakers, Tow hedge, Air conditioning) have value labels, and each party assigns to them an evaluation.
- n For Buyer: good =100, fairly good = 85, standard =70, meager = 20, none = 0
- n For Seller: good =30, fairly good = 65, standard = 80, meager = 65, none =100
- The evaluation of price is described by a linear function (ascending or descending)

Example set-up (2)

n Each attribute is given a preference weight coefficient.

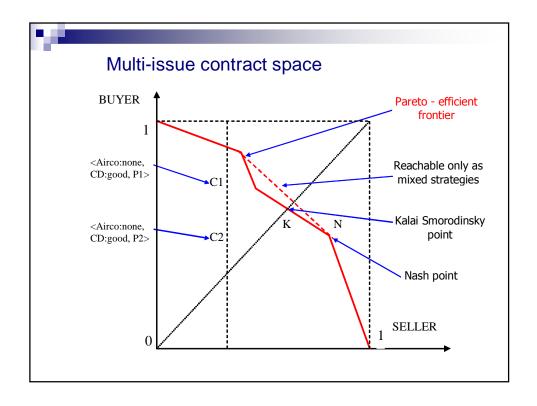
$$U_{\it contract} = \sum w_i * U_i \quad \text{ for all items i}$$

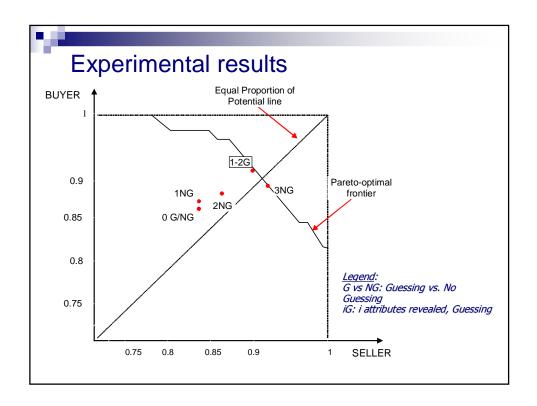
n Symmetrical vs. asymmetrical preferences

	Buyer	Seller
Airco	90 (18%)	15 (3%)
Dr. hook	90 (18%)	15 (3%)
CD player	15 (3%)	90 (18%)
Speakers	15 (3%)	90 (18%)
Price	300 (59%)	_

EXAMPLE TRACE

BUYER'S INTERFACE


round	price	drawing hook	airco	extra speakers	cd_player s	utility own bid	utility others
1	18000	good	good	good	good	1	0.740741
2	17450	fairly good	standard	meager	meager	0.92037	0.829185
3	18222	fairly good	standard	none	standard	0.909481	0.839926
9	18583	fairly good	standard	none	standard	0.882741	0.867407


SELLLER'S INTERFACE

round	price	drawing hook	airco		cd_player	utility own bid	-
1	16900	none	none	none	none	1	0.316667
2	19306	fairly good	standard	none	standard	0.938269	0.595321
3	19161	fairly good	standard	none	standard	0.919679	0.799295
9	18790	fairly good	standard	none	standard	0.872115	0.845577

- Pareto-optimal contract: A contract is said to be Paretooptimal if no further improvement is possible in the utility of one agent, without reducing the utility of the other agents
- Pareto frontier: Set of all Pareto-optimal contracts
- Among the set of Pareto-optimal points, there are a few so-called solution "concepts"
 - Utilitarian: contract combination which maximizes the sum of utilities of the agents
 - Egalitarian (Kalai-Smorodinsky): maximizes the MINIMUM of the two utilities
 - Nash point: maximizes the PRODUCT of the utility functions of both agents

Multi-issue negotiation heuristics

- Many techniques exist to learn based on other counter proposals
 - § Probabilistic
 - § Fuzzy logic
 - S Distance-based
- s BUT remember: this example is for linear utility functions only!
- S Non-linear utility function case is much harder: especially for high-dimensional, incomplete preference information

Bargaining with more than 2 agents

- n Contract net protocol [Smith, 1977]
- General mechanism for contracting and sub-contracting tasks
- Two types of agents: initiators (managers) and participants (contractors)
- Each initiator sends out a call for proposals (units, price, response deadline)
- 2. Participants review CFP-s and bid on feasible ones, accordingly.
- 3. After the deadline, the initiator chooses the best bid and awards the contract to the respective participant.
- 4. The initiator rejects the other bids.

After step 3, contractors may decompose/subcontract (parts of) tasks.

- Original CNP protocol assumes cooperative behavior, many extensions
- Original protocol assumes cooperation, many extensions exist!

Coalition formation & Shapley values

- Coalitions: groups of agents get higher payoff than individual agents
- Many concepts for forming coalitions and dividing joint gains (core, kernel, Shapley values)
- Shapley value example (after [Vidal '05])

Coalition	Value
None	0
A1 only	1
A2 only	3
A1 and A2	6

Q: How to divide the joint gains of 6?

A: Consider all possible orders of joining the coalition

$$Sh({1,2}, 1)=\frac{1}{2}*[v(1)-v()+v(1,2)-v(2)]=2$$

$$Sh(\{1,2\}, 2)=\frac{1}{2}*[v(1,2)-v(1)+v(2)-v()]=4$$

n

More centralized approaches: auctions

- very popular an widely researched
 - one shot, single unit: English, Dutch, sealed bid, Vickrey etc.
 - Many units, many items (combinatorial)

n Mechanism Design

- Designing the mechanism (auction protocol) in such a way that:
 - It is truthful
 - Efficiently computable
 - Simplify the computation problem for the agents

Designing the bidding strategies of the agents

- Many situations are inherently sequential (e.g. real-time planning and scheduling)
- No equilibrium bidding strategies exists for many auctions e.g. sequential auctions with complementarities, CDA-s etc.
- A variety of machine learning strategies can be used (TAC literature)

Single-item auctions: Open cry

- Ascending English auction:
 - In each round, all parties can submit a price that is higher than the one announced in the previous round
 - The auctioneer selects the highest price and announces it
 - Game repeats until no agent offers more
 - The good is given to the highest price agent at the price offered
- Descending Dutch auction:
 - Auctioneer starts from the highest price, and reduces it, in subsequent rounds
 - Auction stops when one agent offers to buy the item at the current price

Single-item auctions: sealed bids

- Imagine all the bidders submitting their offer for good G in a sealed envelope, without knowing what the other bidders offered
- The bidder with the highest bid gets the item and pays:
- First price sealed bid:
 - · Gets the item and pays the price he offered
 - NOT incentive compatible, the likely winner "shades" her bid (i.e. bids less than what it's truly worth to him/her)
- Second price sealed bid (Vickrey, 1961):
 - The winner gets the item, BUT pays the price of the second highest bidder + $\boldsymbol{\epsilon}$
 - Bidders will always bid their true worth for an item!

Sequential auctions & the bidding problem

- n Example adapted after (Wellman et al., '98)
- Suppose we have a scheduling problem on a machine and 2 time slots: S1, S2
- The two time slots will be auctioned off SEQUENTIALLY
- We have 2 agents that need to use the machine A1 and A2:
 - A1 need both slots and is willing to pay \$300, nothing for one slot
 - A2 needs exactly one slot (either S1 OR S2) is willing to pay \$200
- n No efficient equilibrium bidding strategy (check!)

Sequential auctions: bidding strategies

- Many (if not most) real-world settings involve many parties and dynamic environments (e.g. transportation logistics, electricity markets, travel reservations (TAC), dynamic supply chain chains, bandwidth demand in Starbucks, etc.
- Many machine learning techniques have been used: RL, evolutionary, Bayesian, fuzzy, other heuristics etc.
- To test the efficacy of these techniques against each other => Trading Agent Competition (TAC)
 - TAC Classic: inter-dependent reservations of hotel, flight and entertainment tickets
 - TAC Supply Chain Management: buy of computer parts and sell of ready assembled computers

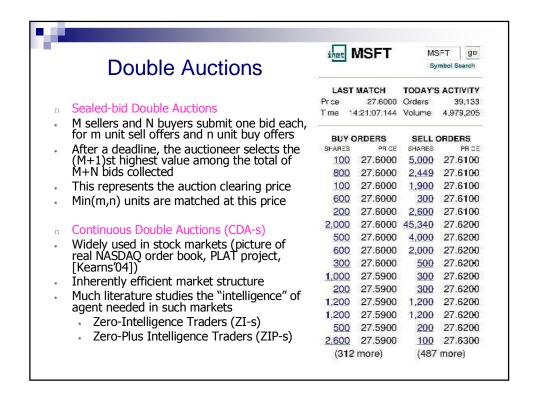
Combinatorial auctions

- Set of items k items has to be distributed among n agents
- Agents bid a value for all bundles that have a value for them
- Bidding languages, such as XOR of ANDs and k-additive
- n Mechanism Design
- Designing the mechanism (auction protocol) in such a way that:
 - It is truthful
 - · Efficiently computable
 - Simplify the computation problem for the agents
- Economic literature: generally considers the cases where equilibriums are exactly computable (restricted set)
- Computer Science/OR literature:
 - Considers combinatorial cases, where it's computationally intractable for agents to "beat" the system.
 - Graph theory/OR approximation and other methods are used for this.

Vickrey-Clarke-Groves mechanism

- Set of allocations: $A = (a_1...a_M)$
- Agents declare values: $\theta = (\theta_1 ... \theta_N)$
- Center selects allocation a* which maximizes $\sum_i v_i(a, \theta_i)$ the sum of values of agents i:
- n Each agent pays: $\sum_{j \neq i} v_j(a^{-1}, \theta_j) \sum_{j \neq i} v_j(a^*, \theta_j)$
- m Where a-1 solves for: $\max_{a \in A} \sum_{j \neq i} v_j(a, \theta_j)$
- $_{\mbox{\tiny n}}$ Intuition: Each agent pays the difference from the allocation which does not include her

VCG example


- Example and notation in previous slide: [Parkes,'04]
- Agents 1, 2, 3 and items A, B

Buyer 3 wins and pays 10-0 = 10.

Buyer 1 and 2 win and pay 7-5=2 each.

	Α	В	AB
1	5	0	5
2	0	5	5
3			12

	Α	В	AB
1	5	0	5
2	0	5	5
3	0	0	7

Other issues & conclusions

- n Preference elicitation
- The number of combinations is exponential in the number of items
- Even if we can solve the winner determination problem in polynomial time, this has limited applicability if the agents themselves may find it hard to specify their full preferences => new research area of pref. elicitation
- Overall conclusion:
- There are many mechanisms for resource allocation: choose one appropriate for your problem
- In any distributed application (e.g. planning, scheduling, networking etc.), allocating resources when agents are self-interested is much harder than the cooperative case