Introduction to Nonlinear Dynamics

Santa Fe Institute

Complex Systems Summer School

9-10 June 2011

Liz Bradley

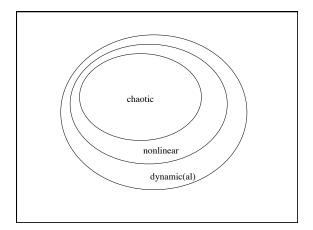
lizb@cs.colorado.edu

© 2011 Liz Bradley

Chaos

Complex behavior, arising in a deterministic nonlinear dynamic system, which exhibits two special properties:

- sensitive dependence on initial conditions
- characteristic structure...



Chaos

Complex behavior, arising in a deterministic nonlinear dynamic system, which exhibits two special properties:

- sensitive dependence on initial conditions
- characteristic structure...

Systems that exhibit chaos are ubiquitous; many of them are also simple, well-known, and "well-understood"

Where chaos turns up

- Flows (of fluids, heat, ...)
 - Eddy in creek
 - Weather
 - Vortices around marine invertebrates
 - Air/fuel flow in combustion chambers

Where chaos turns up

- Driven nonlinear oscillators
 - Pendula
 - Hearts
 - Fireflies

- and lots of other electronic, chemical, & biological systems $\,$

Where chaos turns up

- Classical mechanics
 - three-body problem
 - paired black holes
 - pulsar emission
 -
- Protein folding
- Population biology
- And many, many other fields (including yours)

Hut & Bahcall Ap.J. 268:319

- continuous time systems:
 - time proceeds smoothly
 - \bullet "flows"
 - modeling tool: differential equations
- discrete time systems:
 - time proceeds in clicks
 - "maps"
 - modeling tool: difference equation

- "cobweb" diagram
- aka return map
- aka correlation plot

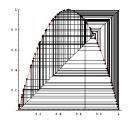


Image from Doug Ravenel's website at URochester

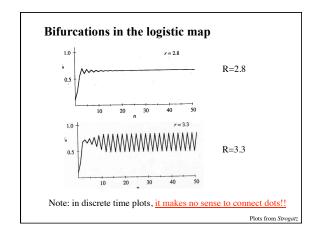
Bifurcations

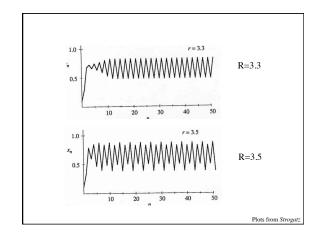
Qualitative changes in the dynamics caused by changes in *parameters*

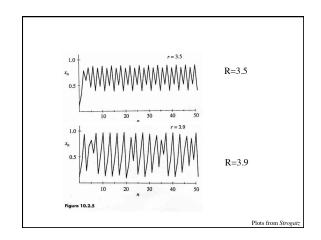
Bifurcations

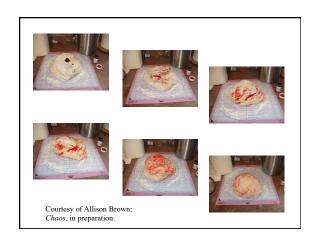
Qualitative changes in the dynamics caused by changes in *parameters*:

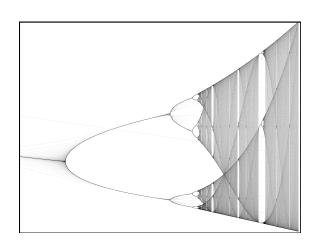
- Heart: pathology
- Eddy in creek: water level
- Olfactory bulb: smell
- Brain: blood chemicals
- etc. etc.



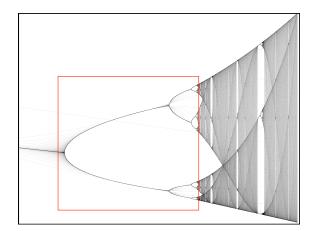




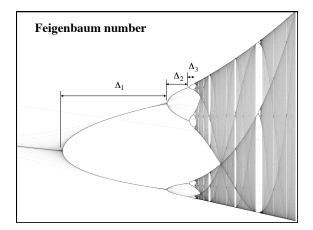




• chaos
• veils/bands: places where chaotic attractor is dense (UPOs)



- chaos
- veils/bands: places where chaotic attractor is dense (UPOs)
- $\bullet \ period-doubling \ cascade \ @ \ low \ R$

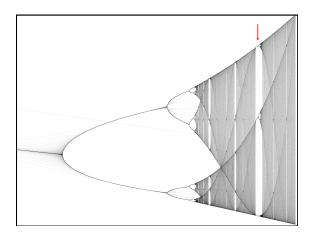


Universality!

Feigenbaum number and many other interesting chaotic/dynamical properties hold for any 1D map with a quadratic maximum.

Proof: renormalizations. See Strogatz §10.7

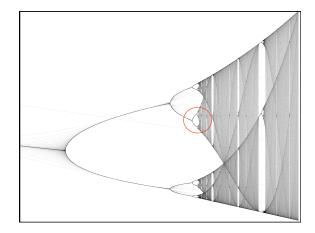
 $Don't \ take \ this \ too \ far, \ though...$



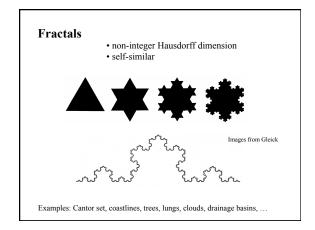
- chaos
- veils/bands: places where chaotic attractor is dense (UPOs)
- \bullet period-doubling cascade @ low R
- windows of order within the chaos, complete with their own period-doubling cascades (e.g., 3 to 6 to 12)

A bit more lore on periods and chaos

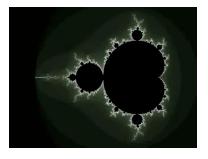
- Sarkovskii (1964) 3,5,7,...3x2,5x2,...3x2²,5x2²,...2²,2,1 Yorke (1975)
- Metropolis et al. (1973)



- chaos
- veils/bands: places where chaotic attractor is dense (UPOs)
- period-doubling cascade @ low R
- windows of order within the chaos, complete with their own period-doubling cascades (e.g., 3 to 6 to 12)
- small copies of object embedded in it (fractal)



The Mandelbrot set



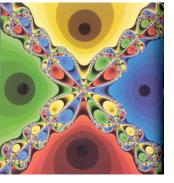
www.youtube.com/watch?v=G_GBwuYu00s

Fractals in computer graphics

Matthew Ward, WPI davis.wpi.edu/~matt/courses/fractals/trees.html

Fractals in maps

Newton's method on x^4 - 1 = 0



Erom Strogetz

Fractals and chaos...

The connection: *many (most)* chaotic systems have fractal state-space structure.

But not "all."

So far: mostly about maps.

- discrete time systems:
 - time proceeds in clicks
 - "maps"
 - modeling tool: difference equation

Next up: flows

- continuous time systems:
 - time proceeds smoothly
 - "flows"
 - modeling tool: differential equations

Attractors attractor W basin of attraction boundary of basin of attraction

- Attractors exist only in dissipative systems!
- Dissipation 🕽 contraction of state space under the influence of the dynamics
- Can still have chaos if no dissipation...just not chaotic attractors

Conditions for chaos in continuous-time systems

Necessary:

- Nonlinear
- At least three state-space dimensions (NB: only one needed in maps)

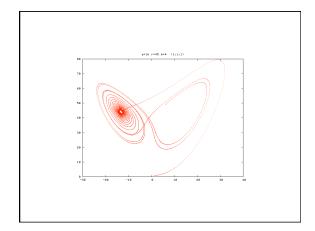
Necessary and sufficient:

• "Nonintegrable"

i.e., cannot be solved in closed form

Concepts: review

- State variable
- State space
- Initial condition
- Trajectory
- Attractor
- Basin of attraction
- Transient
- Fixed point (un/stable)
- Bifurcation
- Parameter



www.exploratorium.edu/
complexity/java/lorenz.html

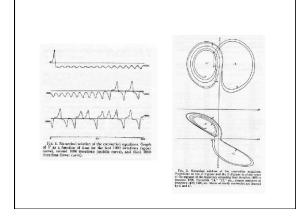
(Note: by Jim Crutchfield!)

Deterministic Nonperiodic Flow¹

EDWARD N. LORENZ Massachusetts Institute of Technology ript received 18 November 1962, in revised form 7 January 1963)

estens of deterministic ordinary nonlinear differential equations may be designed to inpulve hydrodynamic flow. Solistions of these equations can be identified with traje this respect to sensity modifications, so that slightly different for list states on evolve into not states. Systems with bounded solutions are shown to possess bounded numerical yetter representing cellular convertion is solved numerically. All of the solutions as this, and almost all of them are nonperiodic.

J. Atm. Sci. 20:130



• Equations:

$$x' = a(y-x)$$

$$y' = rx - y - xz$$

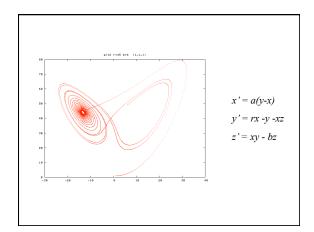
$$z' = xy - bz$$

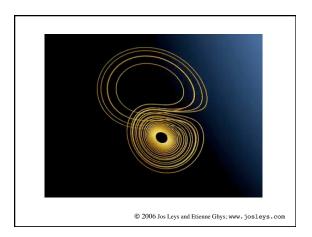
(first three terms of a Fourier expansion of the Navier-Stokes eqns)

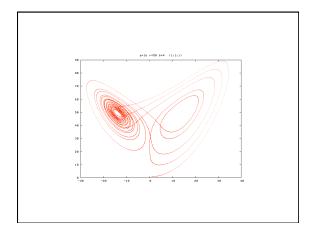
- State variables:
 - x convective intensity
 - y temperature
 - z deviation from linearity in the vertical convection profile

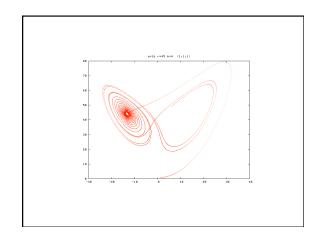
- Parameters:
 - a Prandtl number fluids property
 - r Rayleigh number related to ΔT

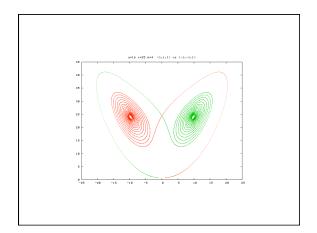
• b aspect ratio of the fluid sheet

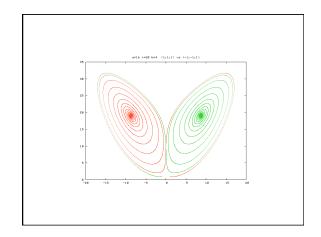


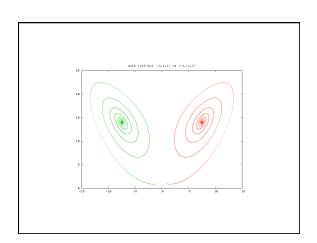


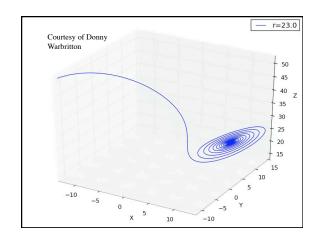












Attractors

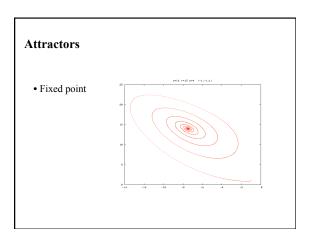
Four types:

- fixed points
- limit cycles (aka periodic orbits)
- quasiperiodic orbits
- chaotic attractors

A nonlinear system can have any number of attractors, of all types, sprinkled around its state space

Their basins of attraction (plus the basin boundaries) $\ensuremath{\textit{partition}}$ the state space

And there's no way, *a priori*, to know where they are, how many there are, what types, etc.

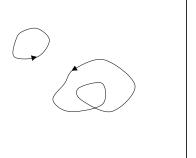


Attractors

• Limit cycle

• often fractal

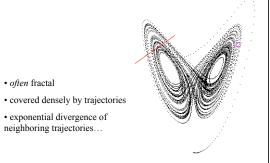
• exponential divergence of neighboring trajectories...



Attractors

• Quasi-periodic orbit...

"Strange" or chaotic attractors



Lyapunov exponents

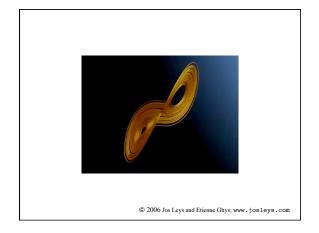
 \bullet nonlinear analogs of eigenvalues: one λ for each

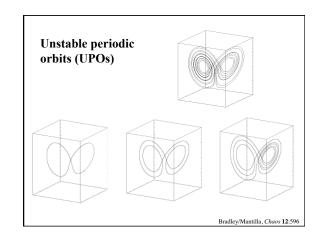
Lyapunov exponents: summary

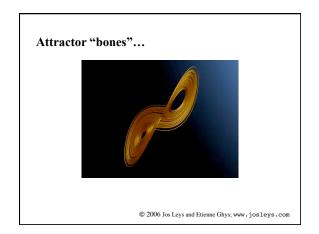
- \bullet nonlinear analogs of eigenvalues: one λ for each
- \bullet negative λ_i compress state space; positive λ_i stretch it
- $\Sigma \lambda_{_{i}} \! < \! 0$ for dissipative systems
- long-term average in definition; biggest one dominates as $t \rightarrow \bar{infinity}$
- ullet positive λ is a signature of chaos
- λ_i are same for all ICs in one basin

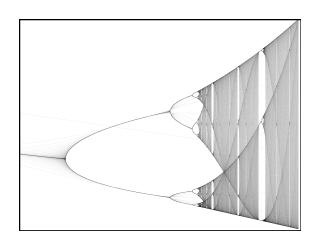
"Strange" or chaotic attractors:

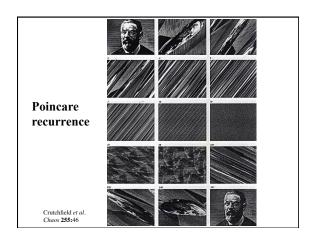
- · exponential divergence of neighboring trajectories
- often fractal
- · covered densely by trajectories
- · contain an infinite number of "unstable periodic orbits"...





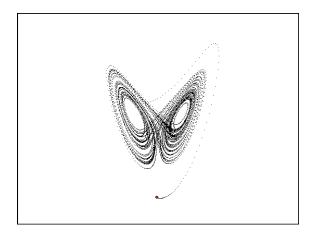


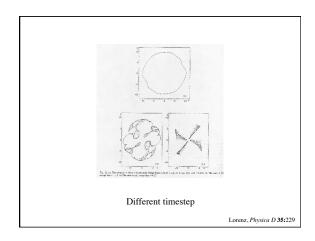


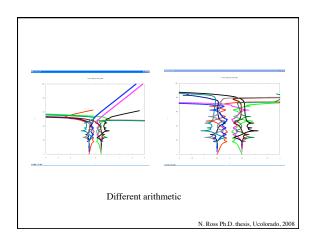


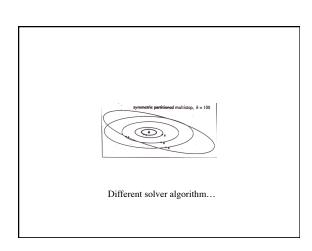
The rest of today...

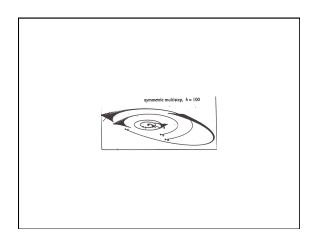
- Symbolics I: after lunch (here)
- Dynamics Lab I:
 - Meet here at 3pm
 - Bring your laptop, if you have one here
 - Lab handouts on the CSSS wiki

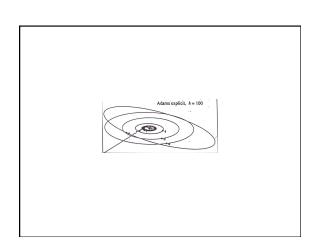












Moral: numerical methods can run amok in "interesting" ways...

- can cause distortions, bifurcations, etc.
- and these look a lot like real, physical dynamics...
- source: algorithms, arithmetic system, timestep, etc.
- Q: what could you do to diagnose whether your results included spurious numerical dynamics?

Moral: numerical methods can run amok in "interesting" ways...

- can cause distortions, bifurcations, etc.
- and these look a lot like real, physical dynamics...
- source: algorithms, arithmetic system, timestep, etc.
- Q: what could you do to diagnose whether your results included spurious numerical dynamics?
 - change the timestep
 - change the method
 - change the arithmetic

So ODE solvers make mistakes.

...and chaotic systems are sensitively dependent on initial conditions....

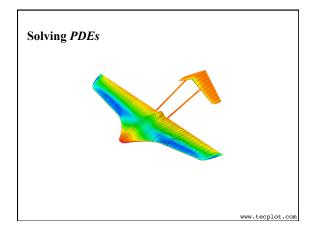
...??!?

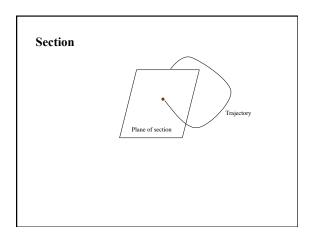
Shadowing lemma

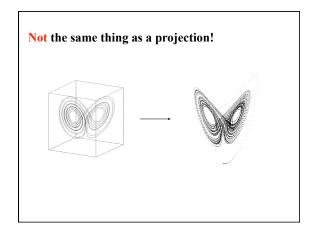
Every* noise-added trajectory on a chaotic attractor is *shadowed* by a true trajectory.

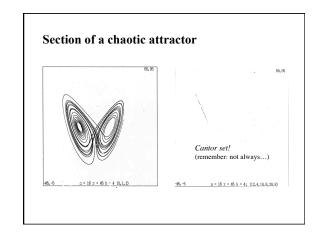
Important: this is for *state* noise, not *parameter* noise.

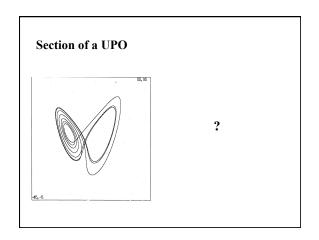
(*) Caveat: not if the noise bumps the trajectory out of the basin

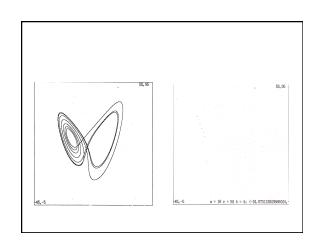


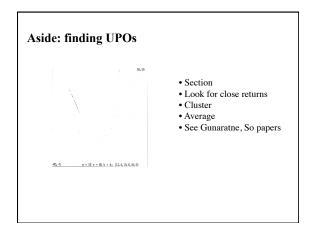








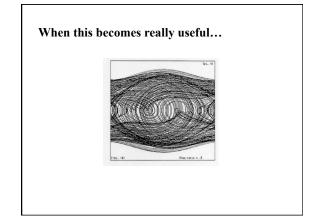


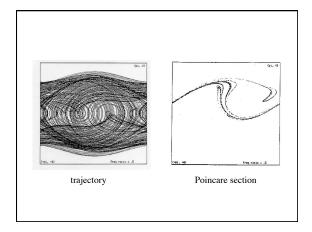


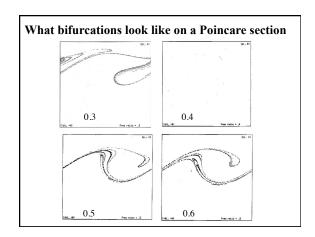
Back to sections...time-slice ones now.

Time-slice sections of periodic orbits: some thought experiments

- pendulum rotating @ 1 Hz and strobe @ 1 Hz?
- pendulum rotating @ 1 Hz and strobe @ 2 Hz?
- pendulum rotating @ 1 Hz and strobe @ 3 Hz?
- pendulum rotating @ 1 Hz and strobe @ 1/2 Hz?
- \bullet pendulum rotating @ 1 Hz and strobe @ π Hz? (or some other irrational)







Computing sections

- Space-slice: use the "inside-outside" function
- Time-slice: use modulo on the timestamp

Stability, λ , and the un/stable manifolds

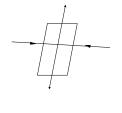
Lyapunov exponents:

- one λ for each dimension; $\Sigma \lambda < 0$ for dissipative systems
- λ are same for all ICs in one basin
- \bullet negative λ compress state space along stable manifolds
- \bullet positive λ stretch it along unstable manifolds
- biggest one λ dominates as $t \rightarrow$ infinity
- positive λ_1 is a signature of chaos
- calculating them:
 - \bullet From equations: eigenvalues of the variational matrix (see variational system notes on CSC15446 homepage)
 - \bullet From data: various algorithms that are hideously sensitive to numerics, noise, data length, & algorithmic parameters...

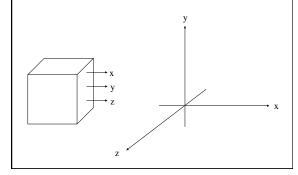
Calculating λ (& other invariants) from data

- A good reference: Kantz & Schreiber, Nonlinear Time Series Analysis (Abarbanel's book is also very good)
- Associated software: TISEAN www.mpipks-dresden.mpg.de/~tisean
- Be careful! TISEAN has lots of knobs and its results are incredibly sensitive to their values!
- Use your dynamics knowledge to understand & use those knobs intelligently

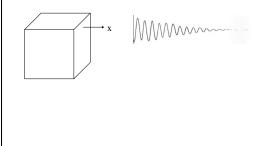
These λ & manifolds play a role in control of chaos...



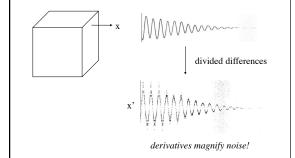
We've been assuming that we can measure all the state variables...

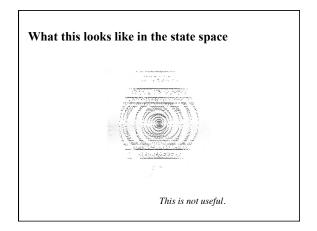


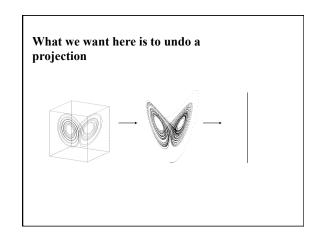
But often you can't.



How to reconstruct the other state vars?

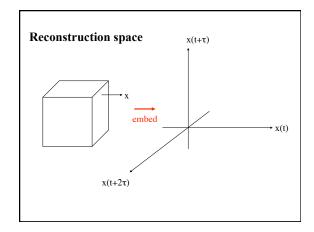


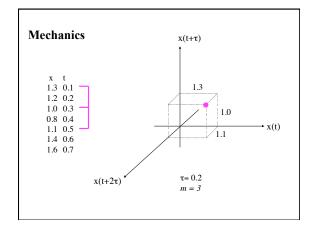


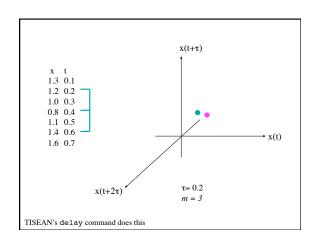


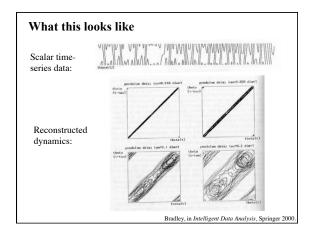
Delay-coordinate embedding

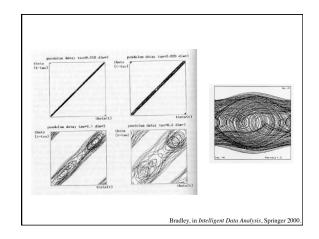
"reinflate" that squashed data to get a *topologically identical* copy of the original thing.











Takens(*) theorem

For the right τ and enough dimensions, the embedded dynamics are diffeomorphic to (have same topology as) the original state-space dynamics.

Note: the measured quantity must be a smooth, generic function of at least one state variable, and must be uniformly sampled in time.

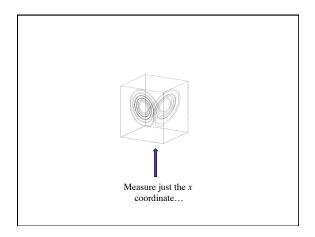
* Whitney, Mane, ...

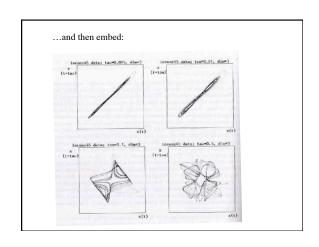
Diffeomorphisms and topology

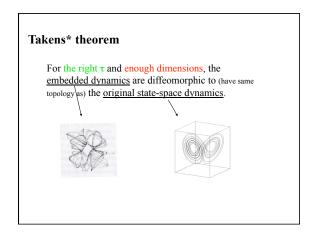
Diffeomorphic: mapping from the one to the other is differentiable and has a differentiable inverse.

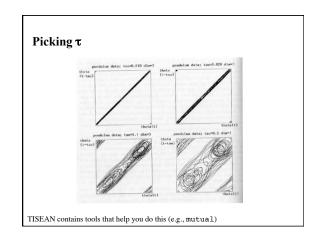
What that means:

- qualitatively the same shape
- have same dynamical invariants (e.g., λ)

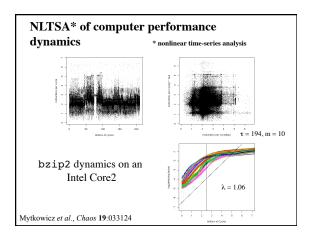


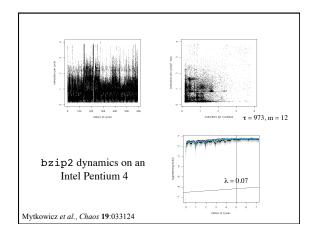


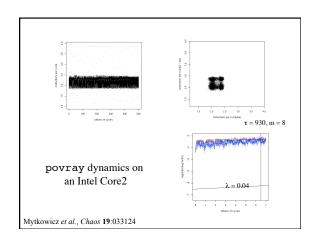




Picking m m > 2d: sufficient to ensure no crossings in reconstruction space: ...may be overkill. "Embedology" paper: m > 2 d_box (box-counting dimension) TISEAN contains tools that help you do this (e.g., false_nearest)







If Δt is not uniform

Theorem (Takens): for τ >0 and τ >2d, reconstructed trajectory is diffeomorphic to the true trajectory

Conditions: evenly sampled in time

Interspike interval embedding

<u>idea</u>: lots of systems generate spikes — hearts, nerves, etc.

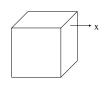
if you assume that the spikes are the result of an integrate-and-fire system, then the Δt has a one-to-one correspondence to some state variable's *integrated* value...

in which case the Takens theorem still holds.

(with the Δ ts as state variables)

Sauer Chaos 5:127

What if we measured time-series data from a roulette wheel?

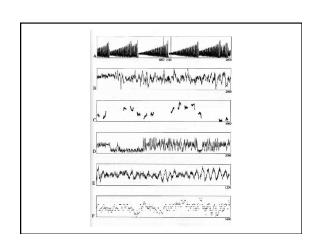


<u>The Eudaemonic Pie</u> (or <u>The Newtonian Casino</u>)

1.3 0.1 1.2 0.2 1.0 0.3 0.8 0.4 1.1 0.5 1.4 0.6 1.6 0.7

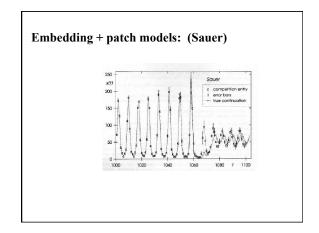
The Santa Fe competition

- Weigend & Gershenfeld, 1992
- · put a bunch of data sets up on an ftp server
- · and invited all comers to predict their future
- chronicled in Time Series Prediction:
 Forecasting the Future and Understanding the
 Past, Santa Fe Institute, 1993 (from which the images on
 the following half-dozen slides were reproduced)

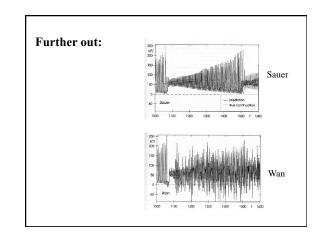


The Santa Fe competition: data

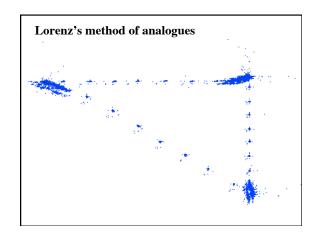
- Laboratory laser
- Medical data (sleep apnea)
- Currency rate exchange
- RK4 on some chaotic ODE
- Intensity of some star
- A Bach fugue

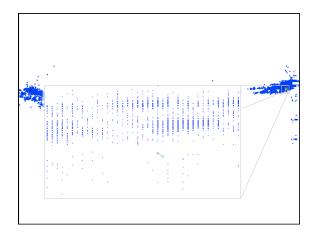


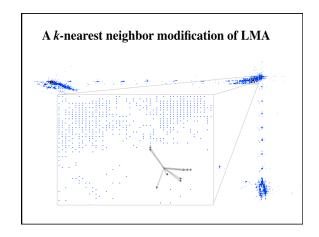


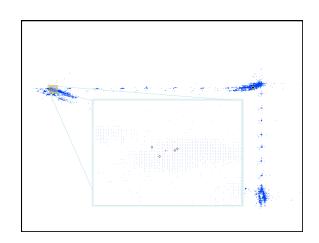


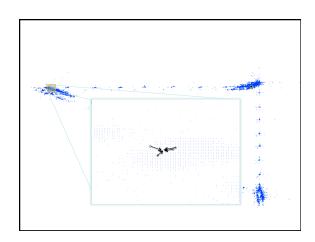
Sauer's algorithm: In his competition entry, shows in Figure 3, Stear used a careful implementation of local-linear fitting that had five steps: 1. Low-pass maked the data to help remove measurement and quantitation noise. The low-pass fiftening professes a monothet various of the original series. (We explained such fiftened embedding step for givening original series. (We explained such fiftened embedding step for givening the points obtained from Step 1. This is to increase the coverage in embedding space. 2. In the contrast originate of the point of prediction (the choice of it tries to balance the increasing bins and decreasing watersoe that come from using a larger angilochrobood). 4. Use a local SVID to project (possibly very noisy) points not the local surface. (Even if a point is very far away from the surface, this step forces the dynamics back on the reconstructed solution manifold.) 5. Regress a linear model for the neighborhood and use it to generate the forecast.

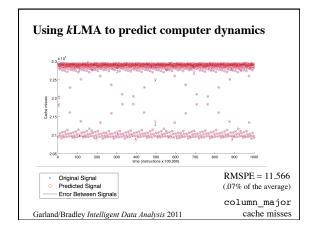








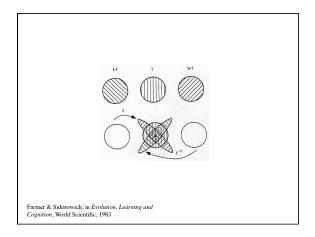




Noise...

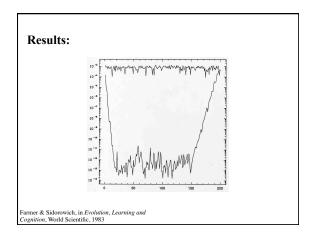
Linear filtering: a bad idea if the system is chaotic Nonlinear alternatives:

 use the stable and unstable manifold structure on a chaotic attractor...



Idea:

- If you have a model of the system, you can simulate what happens to each point in forward and backward time
- If your system has transverse stable and unstable manifolds, that does useful things to the noise balls
- Since all three versions of that data should be identical at the middle time, can average them
- → noise reduction!
- Works best if manifolds are perpendicular, but requires only transversality

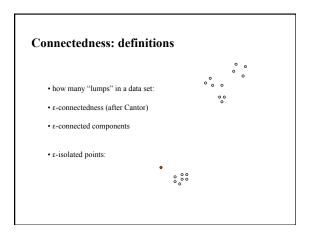


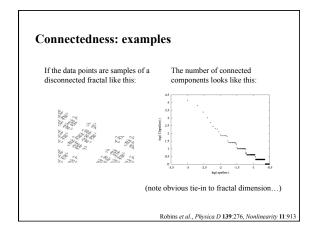
Noise...

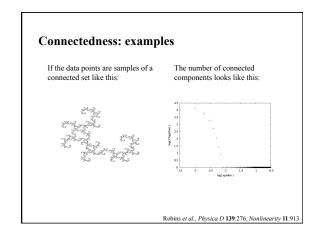
Linear filtering: a bad idea if the system is chaotic Nonlinear alternatives:

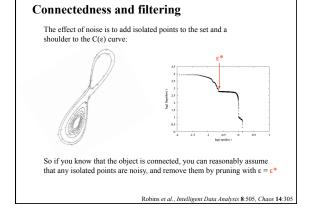
- use the stable and unstable manifold structure on a chaotic attractor
- use the *topology* of the attractor...

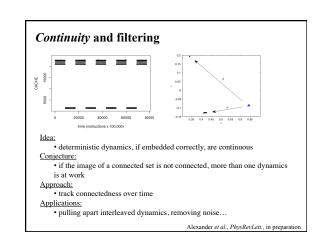
Computational Topology Why: this is the fundamental mathematics of shape. complements geometry. What: compute topological properties from finite data How: introduce resolution parameter count components and holes at different resolutions deduce topology from patterns therein V. Robins Ph.D. thesis, UColorado, 1999

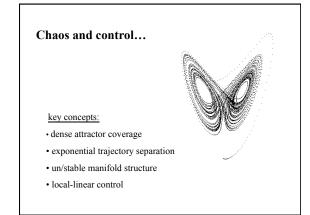


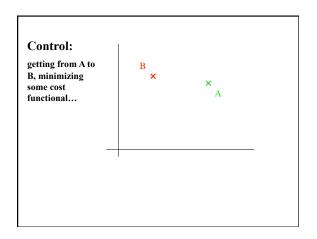


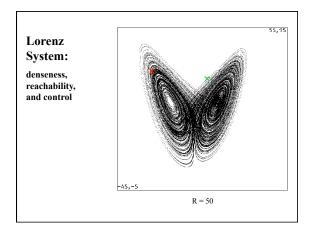


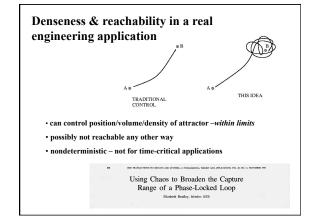










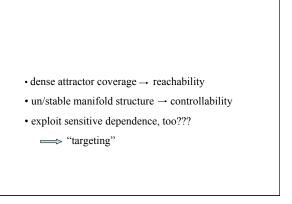


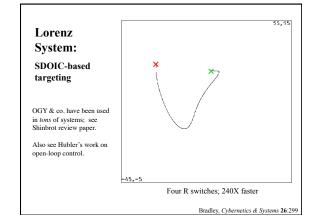
OGY control: taking advantage of the unique properties of chaos

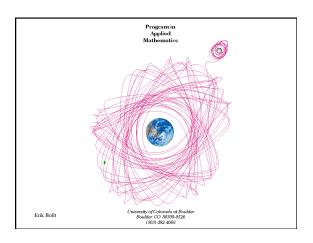
- dense attractor coverage → reachability (*)
- un/stable manifold structure → controllability

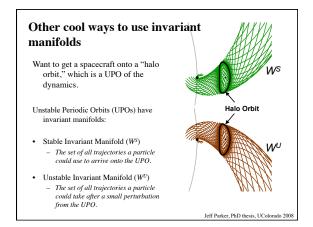
* eventually...

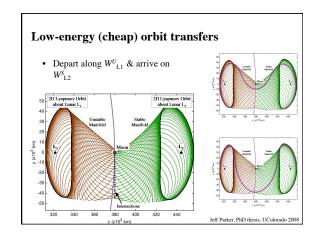
Ott et al., PRL 64:1196

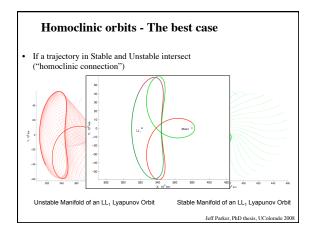








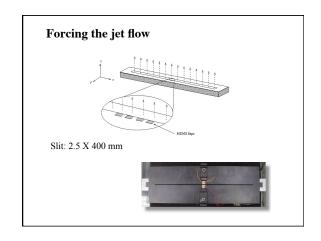


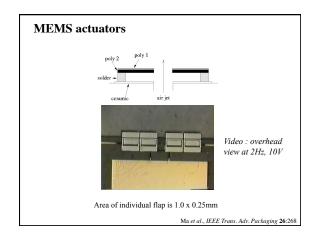


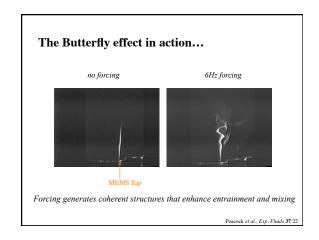
Can we do any of that in spatially extended systems? (i.e. harness the butterfly effect, exploit un/stable manifold geometry?)

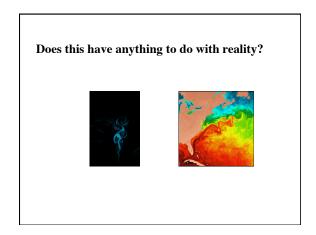
Sensitive flames (1856 – 1930s) I repeat a passage from Spenser: "Her ivory forehead fall of bounty brave, Like a broad table did itself dispread; For love his lofty triumphs to engrave, And write the battles of his great godhead. All truth and goodness might therein be read, For there their dwelling was, and when she spake, Sweet words, like dropping honey she did shed; And through the pearls and rubies softly brake A silver sound, which heavenly music seemed to make." The flame selects from the sounds those to which it can respond. It notices some by the slightest nod, to others it bows more distinctly, to some its obecisance is very profound, while to many sounds it turns an entirely deaf ear.

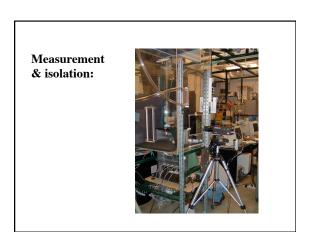












Communication and chaos:

- Two coupled Lorenz systems will synchronize
- Robust w.r.t. a small amount of noise
- Use this to transmit & receive information

```
x' = a(y-x)

y' = rx - y - xz

z' = xy - bz

x' = a(y-x)

y' = r(x+\varepsilon x) - y - xz

z' = xy - bz
```

Chaotic carrier wave, so hard to intercept or jam

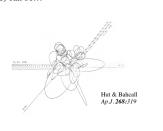
Pecora & Carroll Phys. Rev. Lett 64:821

Another interesting application: chaos in the solar system

- orbits of Pluto, Mars
- Kirkwood gaps
- rotation of Hyperion & other satellites
- ...

Solar system stability:

- recall: two-body problem not chaotic
- but three (or more) can be...



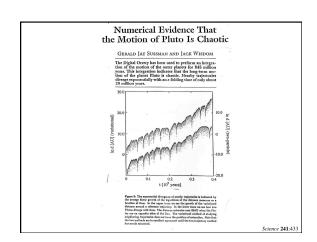
Exploring that issue, circa 1880:

• an orrery

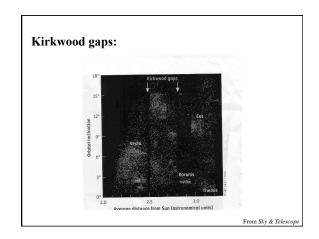
Exploring that issue, circa 1980:

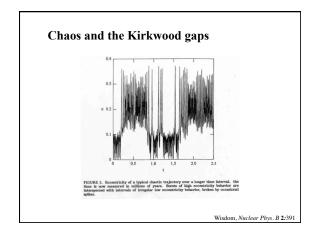
- \bullet write the *n*-body equations for the solar system
- solve them on a special-purpose computer

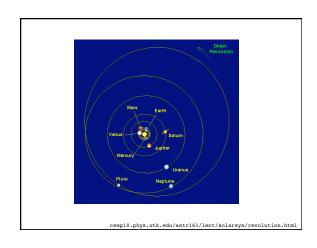
The digital orrery (Wisdom & Sussman)

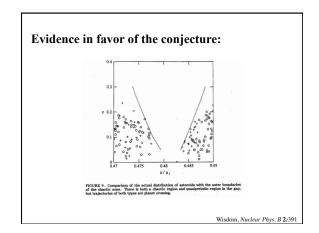


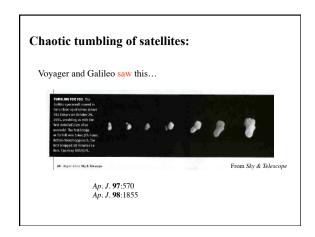
Should we worry? • No.

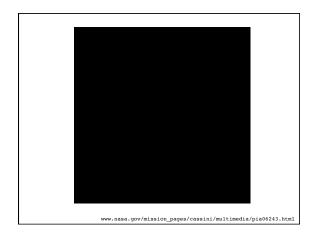












This happens for all satellites at some point in their history, unless they are perfectly spherical and in perfectly circular orbits (pf: KAM theorem; see Wisdom paper on syllabus) Some of them are still tumbling chaotically because of their geometry, but most (like the earth and its moon) have settled down into equilibria

