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A Preamble

The power of symmetry

Symmetry as a natural language for structure:

Symmetries <> groups/algebra’s
Symmetries of things
Symmetries of spaces (and time)
Symmetries of (sets of) equations

Symmetry as guiding principle in the search for
hidden order

Symmetry breaking and its generic features
Symmetry breaking and phase transitions.

Symmetrie

Symmetry, as wide or as narrow as you
may define it, is one idea by which man
through the ages has tried to
comprehend and create order, beauty
and perfection

Hermann Weyl

Splendid (im)perfection / e / path dependence
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Ice-eight  ordered Tetragonal

Ice-nine ordered Tetragonal

Ice-eleven ordered Orthorhombic
Ice-eleven symmetric Hexagonal

Ice-twelve disordered Tetragonal
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Optimal solutions often have the highest symmetry

Phase transitions

The quest for universals in biology

Membrane domain P granule P granule
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Maxwell theory Weak interactions Newton's gravity theory

Electromagnetism Gravity

V—‘—Y

Electricity Magnetism
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Electroweak theory _ Newton's gravity theory

Quantum electrodynamics Fermi theory Strong interactions. General relativity Quantum electrodynamics Fermi theory Strong interactions Gravity

Maxwell theory Weak interactions Newton's gravity theory ety Weak interactions

Electromagnetisn Opiics Gravity Electromagnetism Optics

V—‘—Y

Electricity Magnetism Electricity Magnetism

M - theory

Super string theory
Supergravity models Supergravity models
General relativity — General relativity

Electroweak theory Newton's gavity theory Electroweak theory Newton's gavity theory

Quantum electrodynamics Fermi theory Strong interations Gravity Quantum electrodynamics Fermi theory Strong interations. Gravity

Maxwell Theory Maxwell Theory

— E— Cosmic time

Electromagnetism Optics. Electromagnetism Optics.

V—‘—\ V—‘—\

Electricticity  Magnetism Electricticity  Magnetism

A cascade of gauge symmetry breaking

Multiverse?




Reaction
diffusion

equations

2. Symmetries and groups

Symmetry breaking, which may occur at multiple levels, is a
prevalent process in biology, because organismal survival
depends critically on well-defined structures and patterns at
both microscopic and macroscopic scales — indeed,
patterns like those seen on the fearsome tiger are
consequences of broken symmetry.

P.W. Anderson, speculated that increasing levels of broken sym-
metry in many-body systems (systems of many interacting
components) correlates with increasing complexity and functional
specialization (Anderson 1972). This is certainly true in biology, as
symmetry breaking along well- defined axes is intimately linked to
functional diversification on every scale, from molecular
assemblies, to subcellular structures, to cell types themselves,
tissue architecture, and embryonic body axes.

Li and Bowerman, Cold Spring harbor perspectives in Biology (2010)
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The physics of symmetry

» Systems (building blocks, constituents, cells)

* Interactions => Dynamics => collective
behavior. Conservation laws.

* Geometric perspective
* Algebraic perspective

* Breaking of symmetries and their
characteristics

* Phase transitions and symmetrybreaking

Symmetries of an object

Symmetries of an object for a Group

3 The set of operations (transformations)
G={g;}, that conserve the shape of an obje
(leave the object invariant) forms a group.

Also two successive transformations leave
the object invariant so we have that:

g,-8,=8; ande, g!

Rotations over 60: e,r, r2
Mirror symmetry: s, S;3, S,3

A

The group G of an equilateral triangle
is discrete and consists of 6 element

(123)=> (312)=>(213)=>... This group is Dy or S, the permutation
group of three objects.

Representation of group on a vector space

G ={g} €= {nxn matrices} €=» n-dim vectors

<1>=

r2=

2>

10-06-14



Breaking of the symmetry

G=>H

D;=>7, D;3=>7,

Other objects: today’s Bucky ball special

The Fisher-Griess Monstergroup F or M1

Largest finite group G={g; ; g g; = g}
# of elements g;equals:
=2%.320.59.76.712.133.17-19-23-29-31-41-47-59-71

808.017.424.794.512.875.886.459.904.961.710.757.005.754.368.000.

000.000
= 8x 10%.

Smallest faithful representation: 196882x196882 matrices
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Lattices

(a) A triangular tiling of the plane.

) A square tiing of the plane.

-~

(¢) The plane cannot be filled with pentagons.

(d) A hexagonal tiling of the plane. Adding the centers would

make it a triangular lattice like (a) again.

Lattices (space filling)

0000 0000
o0 9 00
©® 00 oo
lad # . 0 % 90° oy # lag, @ = 90° lay # 2, @ % 90°
1 2 3
0.0 © o 0 o
-9 O "'0-" o
ai/ Za‘ ® O
Ia =laj, ¢ = 120° lad = lad, @ = 90°
4 5

Space groups

In 2 dimensions:
17 space groups
10 point groups

No five fold symmetries!

In 3 dimensions:
240 space groups
32 point groups

10-06-14
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The pentagon

Stacking pentagons

Selfsimilar
Scale invariance
Fractal

Penrose tilings

Penrose tilings
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Regular polygons

{3,3} {4,3} {5,3}

Relation with tilings

Symmetry of a space

* Aninfinite line R:

* what are the symmetries? X
* translations X =>X+a

* scale transformations X=>AX

* reflection in a point X =>-X

* These symmetries are mostly continuous

The slope (derivative) of a function

¢ | Derivative = slope of a curve at a point

Function value

f(x | }
Function is a curve /
A

\ / Af d}(* riable value

=

\-_/ E:;ﬂ‘ga
f(x+8)=f(x)+Af=(1+8£f(x)+... %=0 = Extrema

10-06-14
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Translations and their effect

¢ Transformation x => x’ = x+a

* G=R isacontinous group with T, T,=T_,,,

o f(x) =>f'(x) = f(x') = f(x+a)

* Effect of a small translation a=¢ of a function:
f(x+e) = f(x)+ edf/dx +e2...+...

* The “derivative” p= d/dx “generates” an infinitesimal
translation of the function at x

* Knowing df/dx in a point, tells you something about f in the
neighborhood of that point

* Eigenfunctions f(x) of p=d/dx =>p f, = k f, then f=ek
* The f, form (irreducible) representations of R
* Tensor “multiplication” of irreps f _f, =f,,,
¢ Invariant function requires : k= 0 so f= const.

Scale transformations

X =>AX
Generator is D=x d/dx
Df,=xAPbx>1=bf,
Eigenfunctions: fy(x) = x> =>
(x) = f(Ax) = AP xP =AP f,(x)
* The f, form representations with “scaling dimension” b
¢ Invariant function: f = const

e o o o

Continuous symmetry
Group: Rotations in the plane: SO(2)

G={R,} (0<a<360°)

. Ry - R =R Ry - R

Representations of the group: r, f =e"® n=0,11,..

S

Circle G = S1=R/Z

al * al+a2 = Na2 + Ral

Symmetry of the sphere $? ?
Group: Rotations in R3: SO(3)
G={R;

Generators (operators)
L, =yd/dz-zd/dy

Algebra of commutators
L, Ll=L,

Representations:
r, with1=0,1,2...
dimension 2I+1 also r,s=1/2,3/2,...

10-06-14
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Euclidean space is homogeous en isotropic

Euclidean space R3: {x,y,z}
The empty space looks the same from any point {x,y,z}
and in any direction

= Empty space is invariant under translations and
rotations. This group is the Euclidean group

E3 ~ R? x O(3)

Symmetries of empty space link the reference
(rest) frames of different observers

—

-

Symmetry of space = different observers “see” the samen thing

Equations

The symmetries that are important in
nature, are not the symmetries of things
but the symmetries of equations

Steven Weinberg

3. Symmetries and equations

10-06-14
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Cubic equation

Which values for x solve the following equation?
23 + 8922 + 2638z + 26040 = 0
x=0= 26040 =0 No!
x=1= 28768 =0 No!

= x =7

Solution:
1 =28 9 =30 23 =31

Help!

Cubic equation:

:c3+b1:2+cz+d=0
and

(z —z1)(z —22)(¢—23) =0
This eqn is invariant under permutations of
z1,z en z3, SOthegroupis Dz = S3.

Comparing the coefficients yields
b= ~(z1 + 22 + 3} } Invariante polynomen

¢ = (2172 + 7273 + 7371) Rt o 25
,

d= T1E2T3

Conclusions: - Symmetry group helps solving equation

- Symmetry group transform solutions into each other
- “Space” of solutions is invariant

Energy function H(p,q) and Newton’s equations

Energy of particle in potential depends
on momenta and coordinates only

H(Q7p) = Hyin + Hpot
=p*/2m +V(q)

Newton’s laws

— 9H - P

9= 3p - 9=

— _9oHd _ _ovV _
b= aq | — b= dq F

Time evolution of some dynamical variable f(p,q)

In general we may write %

o, s
N 8qq_|—8pp

of0H O0f0H

We define a Poisson Bracket:

This yields the following equation fot the time derivative of f:

df

10-06-14
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Conserved quantities generate symmetries

H generates time evolution through Poisson bracket implying that:

{p,H} =0= ZZ: 0 p is conserved
df ,
{f,p} = 4 p generates translations
OH
{H,p} =0= 0 0 H is translation invariant

Continuous space symmetries

Symmetry operators: group
Infinitesimal transformations:
Lie algebra of generators:

Translations Gauge

Rotations

Scaling
Physical quantity / \i Conservation laws
Generator Quantum numbers
Operator: G Labeling of states:
Energy Conservation of:
Momentum Energy,
Angular momentum Momentum

Charge

4. Symmetries and their breaking

Symmetry breaking

Symmetry Breaking
Translations => lattice
Rotations => anisotropy

Scale appea@

Phase structure P < Defect
Order parameter \i : efects
Phase transiti in broken phase:

[0}
vise: () Gl @) e v
Magnetisation Inks, walls,

monopoles

Superconductivity "
vortices

Mode analysis

10-06-14
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Ising Model
H(o) =~ Jyoio; —ny_ hjo;
<ij> J

o, = *+1

== =]
= | = [
===
===
=]

Global internal Z, symmetry: o, =>-0;

BH (o)
€
Pplo) = ——

Zs
Partition sum

Zﬁ = Z EisH(U)

Magnetisation

M =< Za,->

. . T>T,
Critical Ising *  Symmetric phase
* Disorder
* Short range

correlations
<o(x)o(y) >~ e vmel/C s

T<T,

* Broken phase

* Order

* Correlations
are constant

<o(z)o(y) >~1

T=T.
* Fluctuations on all scales; scale invariance
* Correlations: powerlaws: < o(z)o(y) >~1/|y — z|* >

2-d Ising; renormalization group
O O
O O
.
O O
. - .

ij-1

Ho= =T (sijsipry +sijsij)

1,J

Ising: Blockspinning

Z = E | | K (sijsit1,i+si58ij+1)

85, ;=%x1 4,j

10-06-14
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Ising: Blockspinning

1.2

Critical point

Conformal algebra in d=2

Symmetry algebra is infinite dimensional:

‘m+n

[L,,L,1=(m-n)L +%cm(m2—l)5m,_n

Fields are organized in representations of conformal algebra
And the lowest weight of such a representation corresponds to the
Critical exponents (powers):

6
c=eMalo———— m=3,45,....
m(m+1)

h

om_ L(m+1)p—mg]*—1 {1<p<m—1
poa dm(m+1) ’

Mean field theory effective
descriptions of phase transitions

Local order parameter ¢(x) = <o(x)> and stability

E= (37)2 +a¢”

a>0

stabiel

10-06-14

18



The symmetric groundstate (vacuum): ¢(x)=0 for all x

Second order transitions

Phase transistions and symmetry breaking

Stable minimum with ¢=0,
Disorder, Z, symmetric state
Correlations decay exponentially

Phase transistions and symmetry breaking

B = (52 + al¢? - by

a=a(T)

- Critical point: correlation length diverges
- long range interactions;

- scale invariance

- power laws

10-06-14
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Symmetry breaking: ¢p>=b

E= (%)2 +ag® + bo!

Vacuum degeneracy:
ordered state
Broken Z,

The topological defect: Kink or Domain wall
¢(x) = 2tanh(5x)

Defects

* Defects are emergent structures

* They are characteristic for phases with broken
symmetries (with groundstate degeneracy)

* They are locally topologically stable

* They play an important role in the dynamics of
the phase transition (duality)

* They can be quite generally classified.

Domain structure in d=2 => network of walls

+

10-06-14
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Domain structure => pattern formation

Three distinct groundstates:

Excitations in broken phase

- Goldstone modes (spin waves)
- Topological defects

Domains in 3 dimensions

Domains are locally stable but not globally

Defect classification

* G breaks to H (subgroup of G)

* Orbit of orderparameter ¢ under G equals G/H

This is the so called vacuum manifold of
degenerate groundstates

* Spatial manifold M with boundary dM
* Study (homotopy) classes of maps dM => G/H

* These classes form a group and label the
topological charges of the defect

10-06-14
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Defect Types

D=1 dM=2Z, m,(G/H) Kinks or walls
* D=2 dM=S! x,(G/H) Particles or line
* D=3 dM=$52 mx,(G/H) = m,(H) Monopoles

* Non-abelian line defects e.g. if G=SO(3) and H
discrete => m, = H

First order transitions

Equation of state: Ideal gas law

PA

Van der Waals equation of state
2

P+ LYV -b)=RT
( +V2)( )

liquid

10-06-14
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1st order transitions: bubble nucleation
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Particle Data Group, LBNL, © 2000. Supported by DOE and NSF

Metastable state persist until transition
through bubble formation

O (O
\ Energy

Condensation
Cristallization
Magnetization
Pions
Superconductivity

Higgsparticle/mass (-> CERN)

Euclidean space is homogeous en isotropic

Euclidean space R3: {x,y,z}
The empty space looks the same from any point {x,y,z}

and in any direction

=> Empty space is invariant under translations and
rotations. This group is the Euclidean group

E3 ~ R3 X 0(3)

10-06-14
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Breaking the Euclidean group

G = Euclidean group of continuous rotations and translations
(E; = 6 parameter goup , E, is three parameter group)

(Ryr ;) (Ry @) = (RRy @y + Ryay)

H = Discrete symmetry group of crystal lattice
(Square lattice ind=2: H=127,X(Zx 2)

Excitations:
1. Goldstone modes - Phonons G/H (fundamental)
2. Solitons (defects) > n,(G/H) = n, (H) = H (topological)

- group H classifies line/point defects

Dislocatie: translational defect

* Defect (1, a)
* Burgersvector a

Disclination

10-06-14
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Disclination: Rotational defect

Defect (R, 0)

R=R(-1/2)

Two non-commuting defects

Braiding of noncommuting defects

T:

(1,a)(R,0) >

9

(1, a)(R,0)
(1,-a)(1, a)

=(R,a-Ra)(1,a)

=(R,a)

Braiding of noncommuting defects

T

(1,2)(R,0) =
—(R,0)(R2,0)(1,2
~ (R,0)(1,R* a)

=(R,a)

10-06-14
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Summary

The notion of symmetry breaking has apotential for many applications.

the notion of symmetry

of objects, spaces and equations
discrete, continuous ; finite infinite

breaking symmetries

order parameter

phase transistions => critical point

scale (conformal invariance at critical point
classification of modes and defects

duality

10-06-14
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