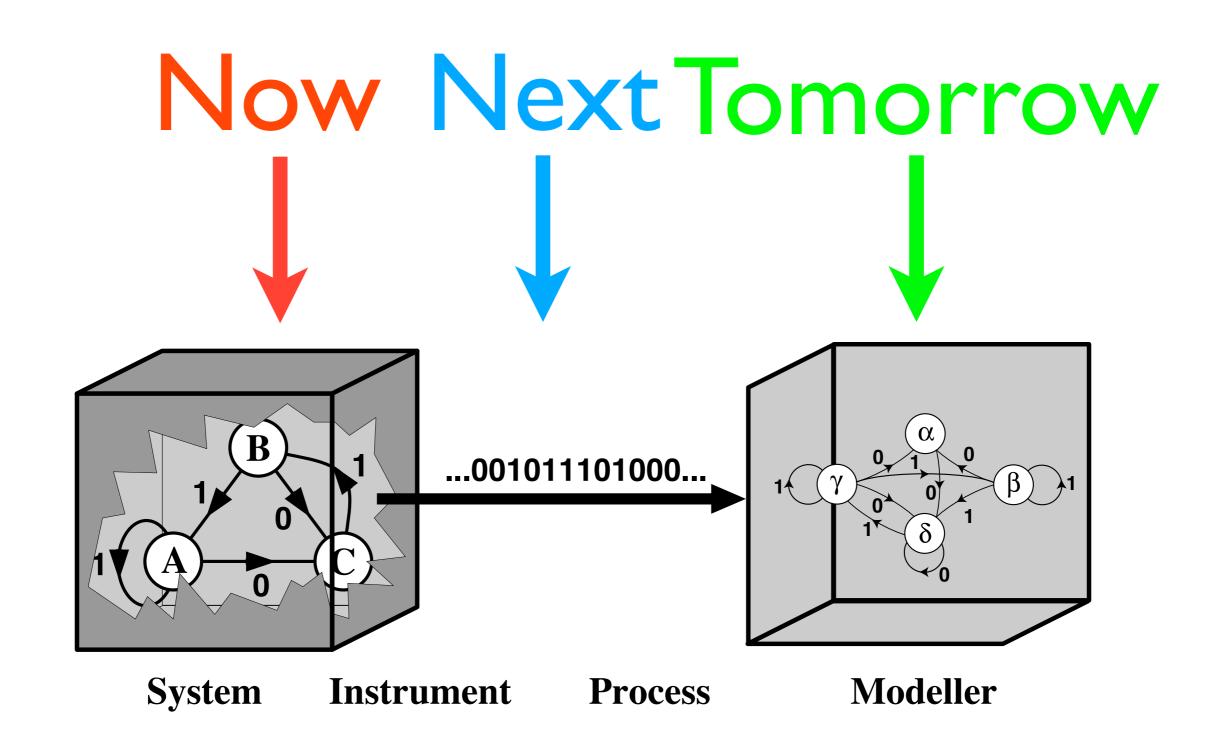
Complexity

Jim Crutchfield
Complexity Sciences Center
Physics Department
University of California at Davis

Complex Systems Summer School Santa Fe Institute St. John's College, Santa Fe, NM 19 June 2017

Main Question

Randomness versus Structure?



The Learning Channel

Complexity

Today:

Information Theory for Complex Systems

I. Information Theory

Algorithmic Basis of Probability Information Theory Information Measures

Tomorrow:

II. Information & Memory in Processes

Intrinsic Computation
Measuring Structure
Intrinsic Computation
Optimal Models
Physics of Information

Complexity

References? For example:

Stanislaw Lem, Chance and Order, New Yorker 59 (1984) 88-98.

- T. Cover and J. Thomas, *Elements of Information Theory*, Wiley, Second Edition (2006) Chapters 1 7.
- M. Li and P.M.B. Vitanyi, An Introduction to Kolmogorov Complexity and its Applications, Springer, New York (1993).
- J. P. Crutchfield and D. P. Feldman,
 - "Regularities Unseen, Randomness Observed: Levels of Entropy Convergence", CHAOS **13**:1 (2003) 25-54.
- J. P. Crutchfield, C. J. Ellison, and J. R. Mahoney, "Time's Barbed Arrow: Irreversibility, Crypticity, and Stored Information", Physical Review Letters 103:9 (2009) 094101.
- R. G. James, C. J. Ellison, and J. P. Crutchfield, "Anatomy of a Bit: Information in a Time Series Observation", CHAOS **21**:1 (2011) 037109.
- J. P. Crutchfield,
 - "Between Order and Chaos", Nature Physics 8 (January 2012) 17-24.

See http://csc.ucdavis.edu/~cmg/

See online course: http://csc.ucdavis.edu/~chaos/courses/ncaso/

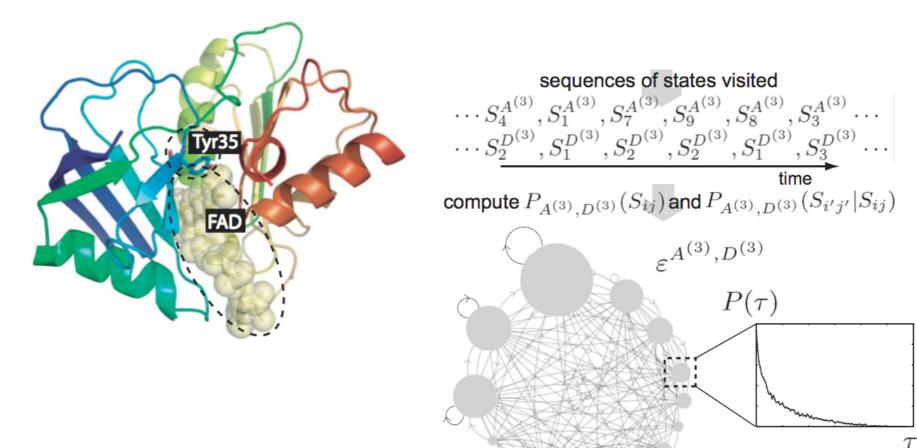
Applications?

Computational Mechanics: Application to Experimental Molecular Dynamics Spectroscopy

Multiscale complex network of protein conformational fluctuations in single-molecule time series

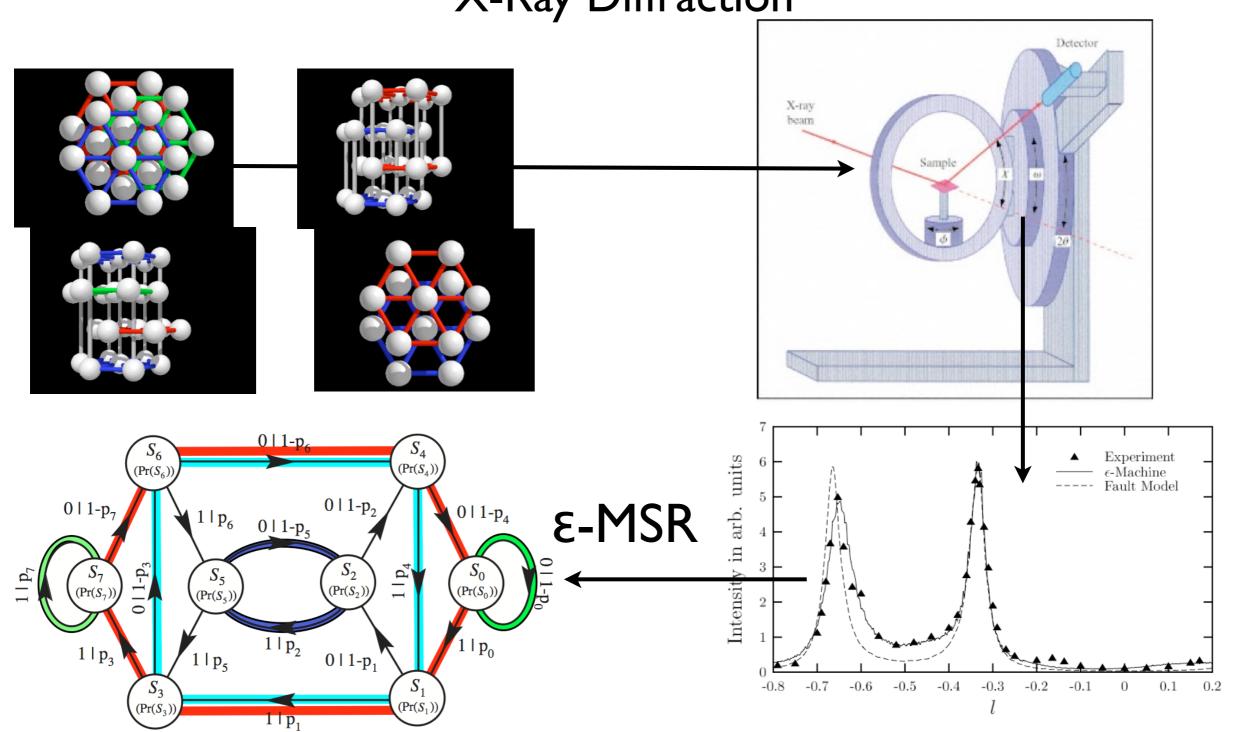
Chun-Biu Li*†‡, Haw Yang§1, and Tamiki Komatsuzaki*†‡

*Nonlinear Sciences Laboratory, Department of Earth and Planetary Sciences, Faculty of Science, Kobe University, Nada, Kobe 657-8501, Japan; †Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan; *Department of Chemistry, University of California, Berkeley, CA 94720; and *Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720



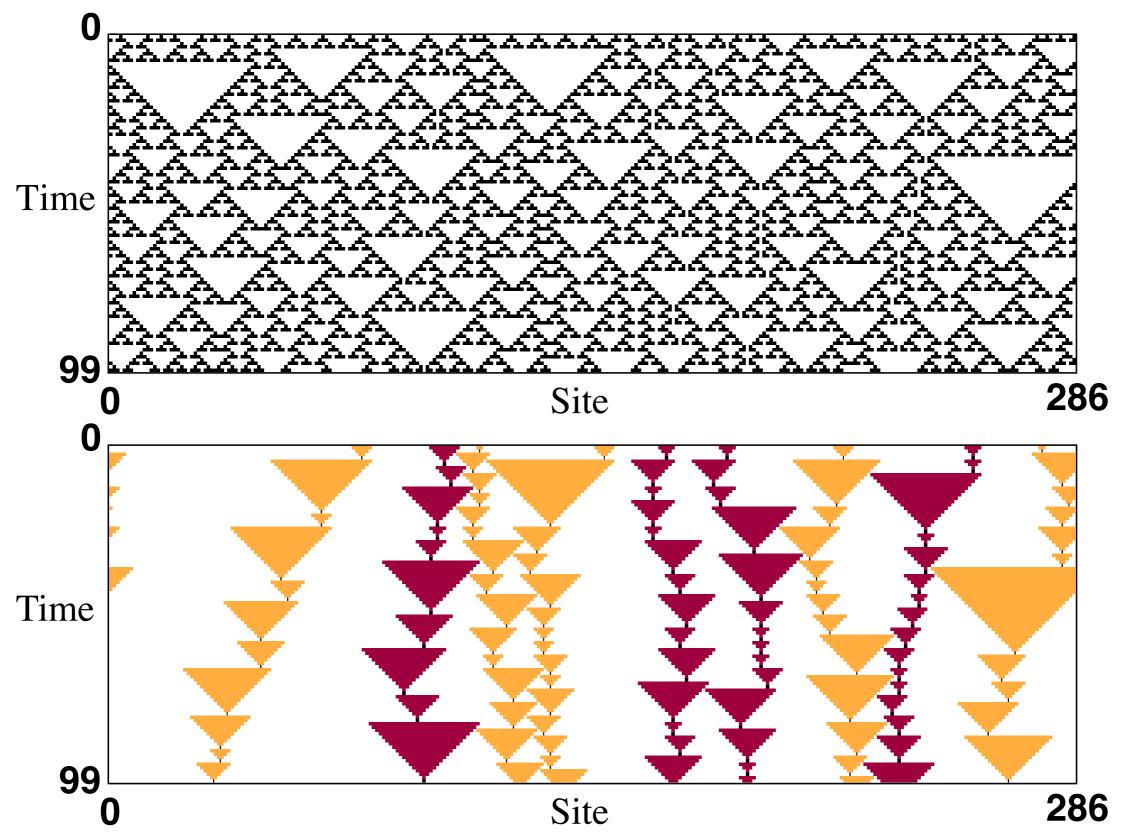
C.-B. Li, H. Yang, & T. Komatsuzaki, Proc. Natl. Acad. Sci USA 105:2 (2008) 536-541.

Computational Mechanics:
Application to Experimental
X-Ray Diffraction

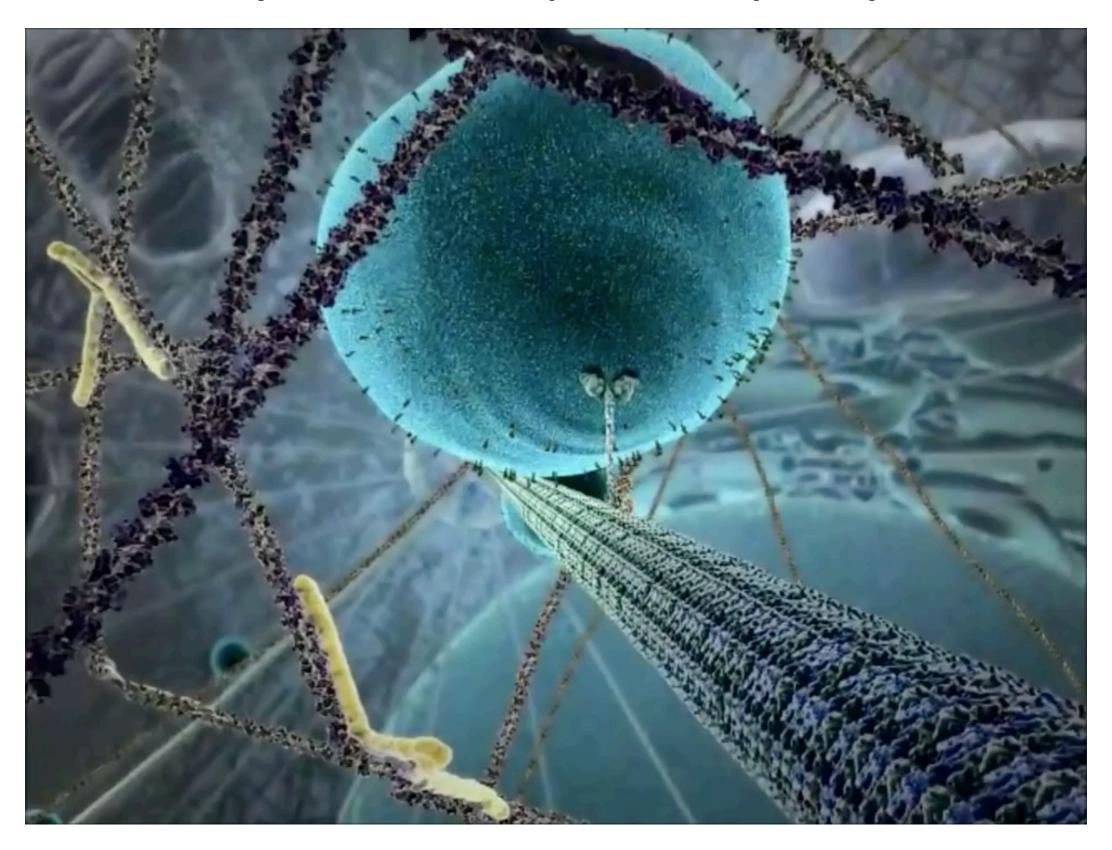


D. P. Varn, G. S. Canright, J. P. Crutchfield, "Discovering Planar Disorder in Close-Packed Structures from X-Ray Diffraction: Beyond the Fault Model", Phys. Rev. B 66: 17 (2002) 174110-2.

Cellular Automata Computational Mechanics

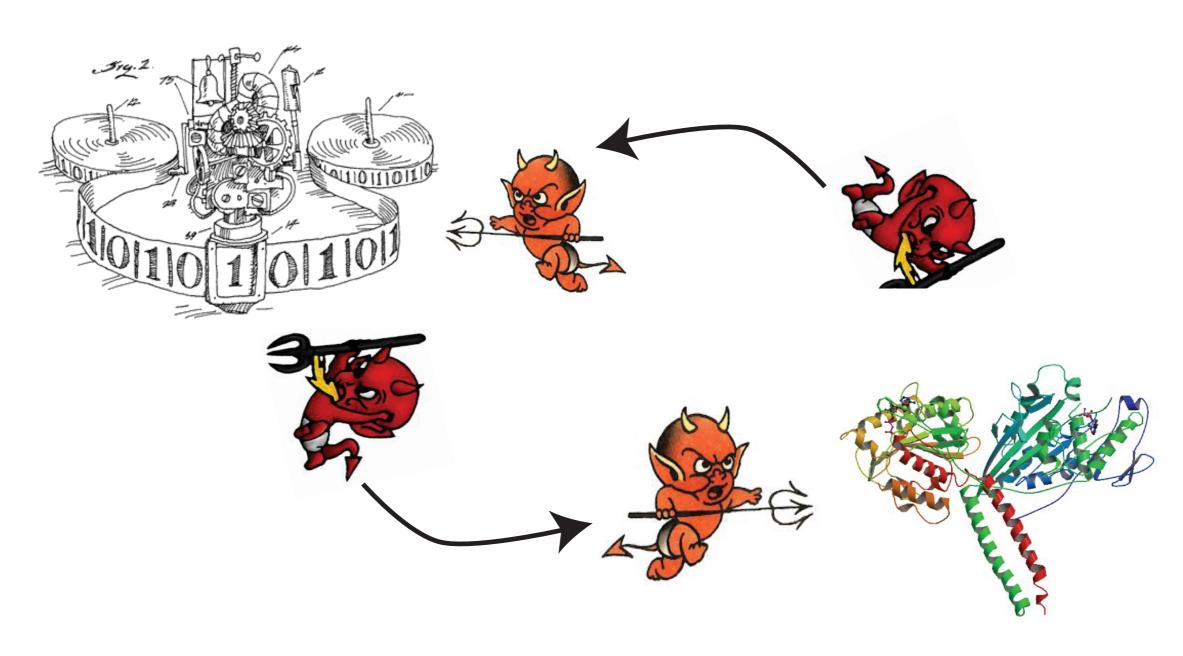


Thermodynamics of Adaptive Complex Systems

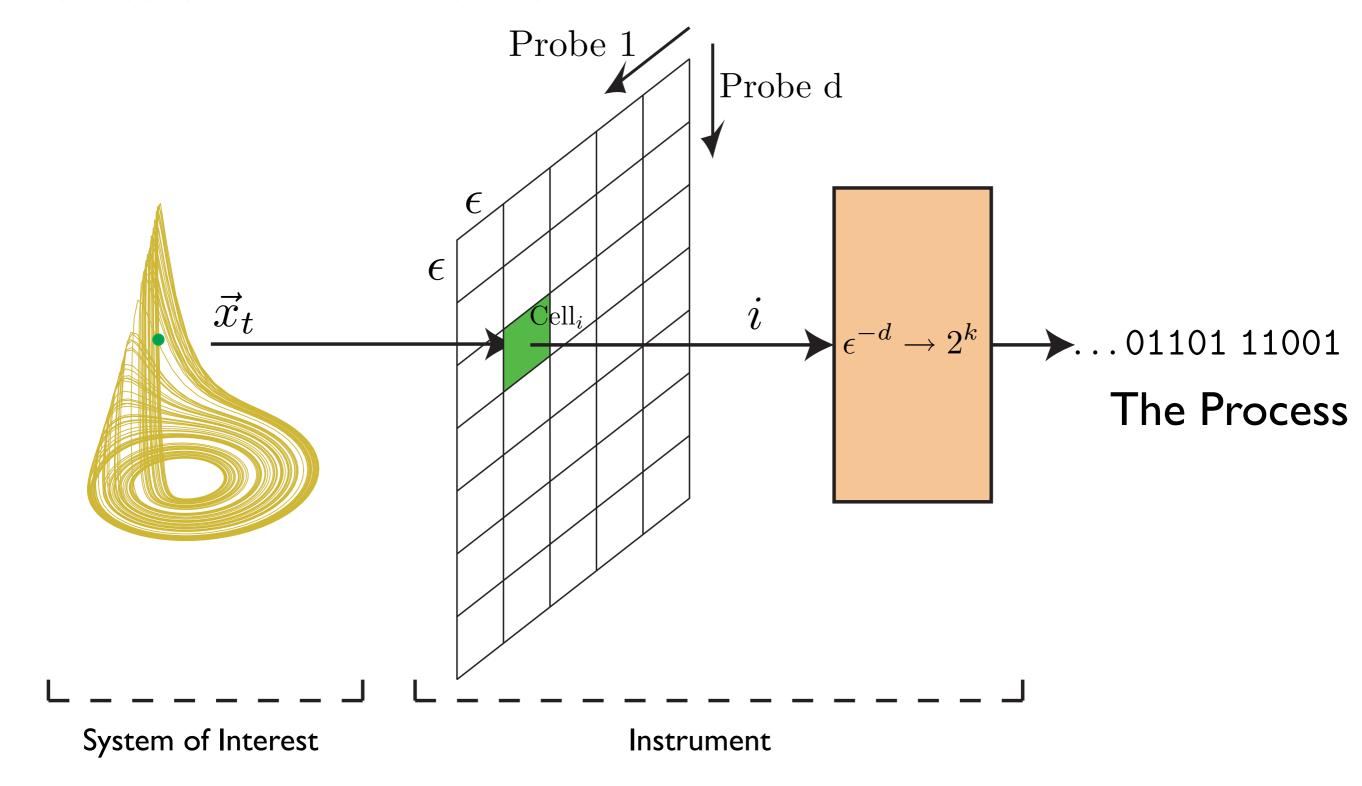


Thermodynamics of Adaptive Complex Systems

Role of "intelligence" in functioning? in overcoming fluctuations?



Processes and Their Models



Measurement Channel

Complexity Lecture 1: Processes and information (CSSS 2017) Jim Crutchfield

Processes and Their Models ...

Main questions now:

How do we characterize the resulting process?

Measure degrees of unpredictability & randomness.

Use probabilities?

What correlational structure is there?

How do we build a model from the process itself?

How much can we reconstruct about the

hidden internal dynamics?

Processes and Their Models ...

What to do with all of this complicatedness?

- I.Algorithmic basis
- 2. Information theory for complex processes
- 3. Measures of complexity
- 4. Optimal models and how to build them

Algorithmic Basis of Probability

Kolmogorov-Chaitin Complexity Theory

The question:

Algorithmic foundation for probability?

```
History:
```

1776: Treatise on probability theory (Laplace)

1920s: Frequency stability (von Mises)

1930s: Foundations of probability theory (Kolmogorov)

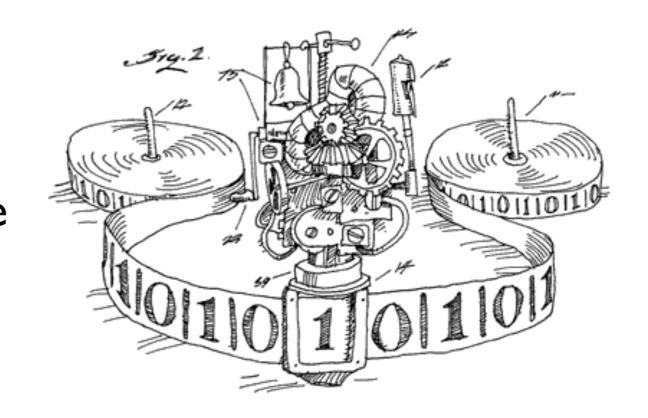
1940s: Information theory (Shannon ... Szilard 1920s!)

1940s: Automata & computing theory (Turing)

1960s: KC Complexity Theory (Kolomogorov, Chaitin, Solomonoff, ...)

Turing's machine (1937):

Finite-state controller + Infinite read-write tape



Machine M:

Device to generate output x = 10101111... from program p:

$$M(p) = x$$

Universal Turing Machine: USufficient states, control logic, and tape alphabet \Rightarrow Calculate any input-output function

UTM programs generate output: U(p) = x

(Python interpreter w/ infinite memory.)

Kolmogorov-Chaitin Complexity: Size of smallest program p that generates object x

$$K(x) = \min\{|p|: U(p) = x\}$$

Consider Python program:

def generate_x():

print x

And so:

$$K(x) \le |x| + \text{constant}$$

For most objects:

$$K(x) \approx |x|$$

Kolmogorov-Chaitin Complexity is not computable.

(Theorem: No program can calculate K(x).)

Exercise! Which has high, which low K(x)?

 π

Algorithm \Rightarrow low K(x)(Bailey-Borwein-Plouffe 1997)

Random High K(x)

Lessons:

A random object is its own shortest description.

K(x) maximized by random objects.

Probability of objects:

$$\Pr(x) \approx 2^{-K(x)}$$

Alternatives?

Computable? Scientifically applicable?

Information!

Information as uncertainty and surprise:

Observe something unexpected: Gain information

Bateson: "A difference that makes a difference"

Sources of Information?

Apparent randomness:
Uncontrolled initial conditions
Actively generated: Deterministic chaos

Hidden regularity:

Ignorance of forces

Limited capacity to model structure

Information as uncertainty and surprise ...

How to formalize?

Shannon's approach:

A measure of surprise.

Connection with Boltzmann's thermodynamic entropy

Self-information of an event $\propto -\log \Pr(\text{event})$.

Predictable: No surprise $-\log 1 = 0$

Completely unpredictable: Maximally surprised

$$-\log \frac{1}{\text{Number of Events}} = \log(\text{Number of Events})$$

Shannon Entropy:
$$X \sim P$$

$$x \in \mathcal{X} = \{1, 2, \dots, k\}$$

 $P = \{\Pr(x = 1), \Pr(x = 2), \dots\}$

$$H(X) = -\sum_{x \in \mathcal{X}} p(x) \log_2 p(x)$$

Note: $0 \log 0 = 0$

Units:

Log base 2: H(X) = [bits]

Natural log: H(X) = [nats]

Properties:

I. Positivity: $H(X) \ge 0$

2. Predictive: $H(X) = 0 \Leftrightarrow p(x) = 1$ for one and only one x

3. Random: $H(X) = \log_2 k \Leftrightarrow p(x) = U(x) = 1/k$

Example: Binary random variable X (Biased Coin)

$$\mathcal{X} = \{0, 1\}$$

$$\mathcal{X} = \{0, 1\}$$
 $\Pr(1) = p \& \Pr(0) = 1 - p$

H(X)?

Binary entropy function:

$$H(p) = -p \log_2 p - (1 - p) \log_2 (1 - p)$$

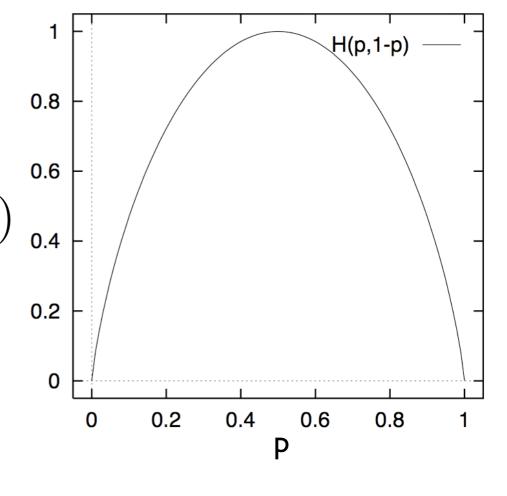
Fair coin: $p = \frac{1}{2}$

$$H(p) = 1$$
 bit

Completely biased coin: p = 0 (or 1)

$$H(p) = 0$$
 bits

Recall: $0 \cdot \log 0 = 0$



Example: Independent, Identically Distributed (IID) Process over four events

$$\mathcal{X} = \{a, b, c, d\}$$
 $\Pr(X) = (\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8})$

Entropy: $H(X) = \frac{7}{4}$ bits

Number of questions to identify the event?

x = a? (must always ask at least one question)

x = b? (this is necessary only half the time)

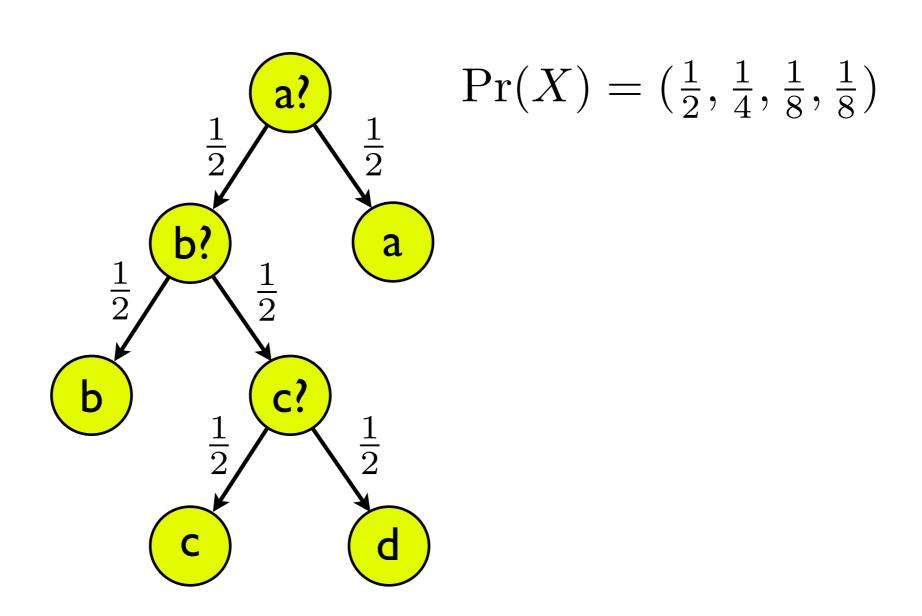
x = c? (only get this far a quarter of the time)

Average number: $1 \cdot 1 + 1 \cdot \frac{1}{2} + 1 \cdot \frac{1}{4} = 1.75$ questions

Interpretation? Optimal way to ask questions.

Example: IID Process over four events ...

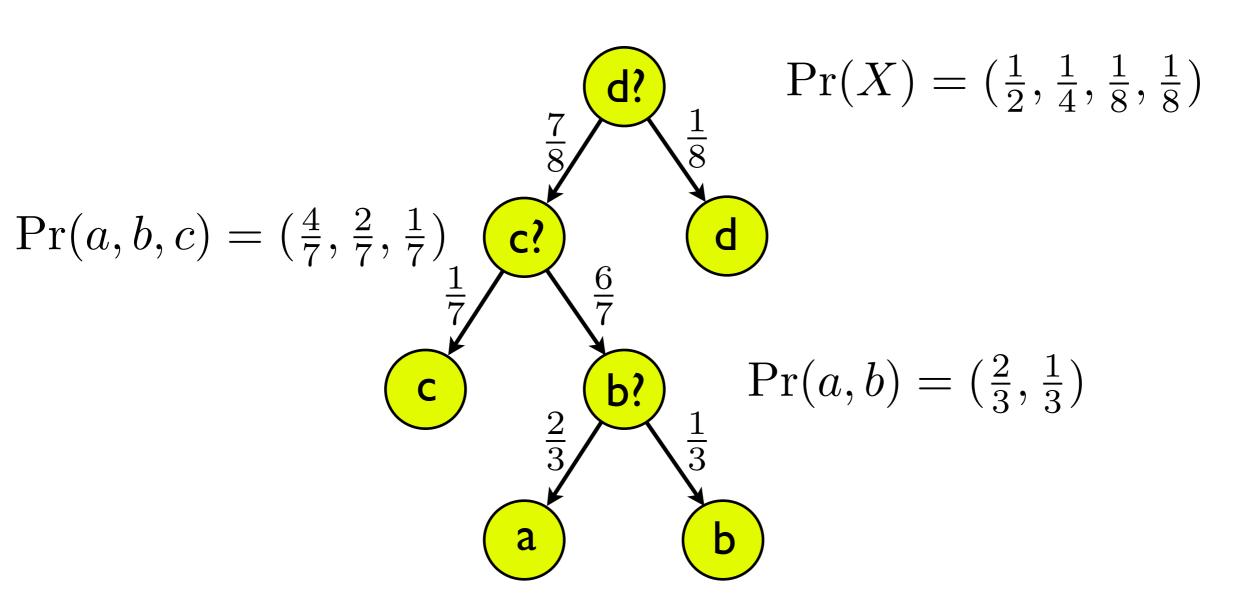
Average number: $1 \cdot 1 + 1 \cdot \frac{1}{2} + 1 \cdot \frac{1}{4} = 1.75$ questions



Example: IID Process over four events ...

Query in a different order:

Average number: $1 \cdot 1 + 1 \cdot \frac{7}{8} + 1 \cdot \frac{6}{7} \approx 2.7$ questions



Example: IID Process over four events

Entropy: $H(X) = \frac{7}{4}$ bits

At each stage, ask questions that are most informative.

Choose partitions of event space that give "most random" measurements.

Theorem:

Entropy gives the smallest number of questions to identify an event, on average.

Interpretations of Shannon Entropy:

Observer's degree of surprise in outcome of a random variable

Uncertainty in random variable

Information required to describe random variable

A measure of *flatness* of a distribution

Two random variables: $(X,Y) \sim p(x,y)$

Joint Entropy: Average uncertainty in X and Y occurring

$$H(X,Y) = -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log_2 p(x,y)$$

Independent:

$$X \perp Y \Rightarrow H(X,Y) = H(X) + H(Y)$$

Conditional Entropy: Average uncertainty in X, knowing Y

$$H(X|Y) = -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log_2 p(x|y)$$

$$H(X|Y) = H(X,Y) - H(Y)$$

Not symmetric: $H(X|Y) \neq H(Y|X)$

Common Information Between Two Random Variables:

$$X \sim p(x) & Y \sim p(y)$$
$$(X, Y) \sim p(x, y)$$

Mutual Information:

$$I(X;Y) = \sum_{(x,y)\in\mathcal{X}\times\mathcal{Y}} p(x,y) \log_2 \frac{p(x,y)}{p(x)p(y)}$$

Mutual Information ...

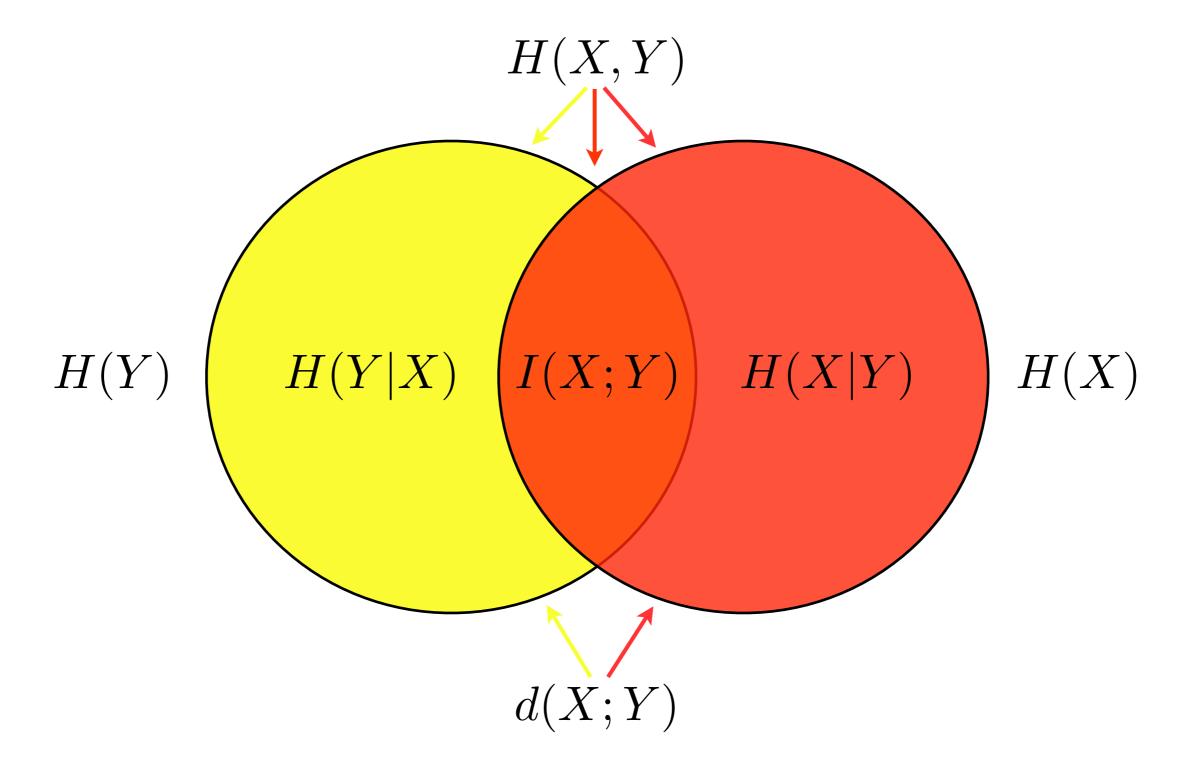
Properties:

- (I) $I(X;Y) \ge 0$
- (2) I(X;Y) = I(Y;X)
- (3) I(X;Y) = H(X) H(X|Y)
- (4) I(X;Y) = H(X) + H(Y) H(X,Y)
- (5) I(X;X) = H(X)
- **(6)** $X \perp Y \Rightarrow I(X;Y) = 0$

Interpretations:

Information one variable has about another Information shared between two variables Measure of dependence between two variables

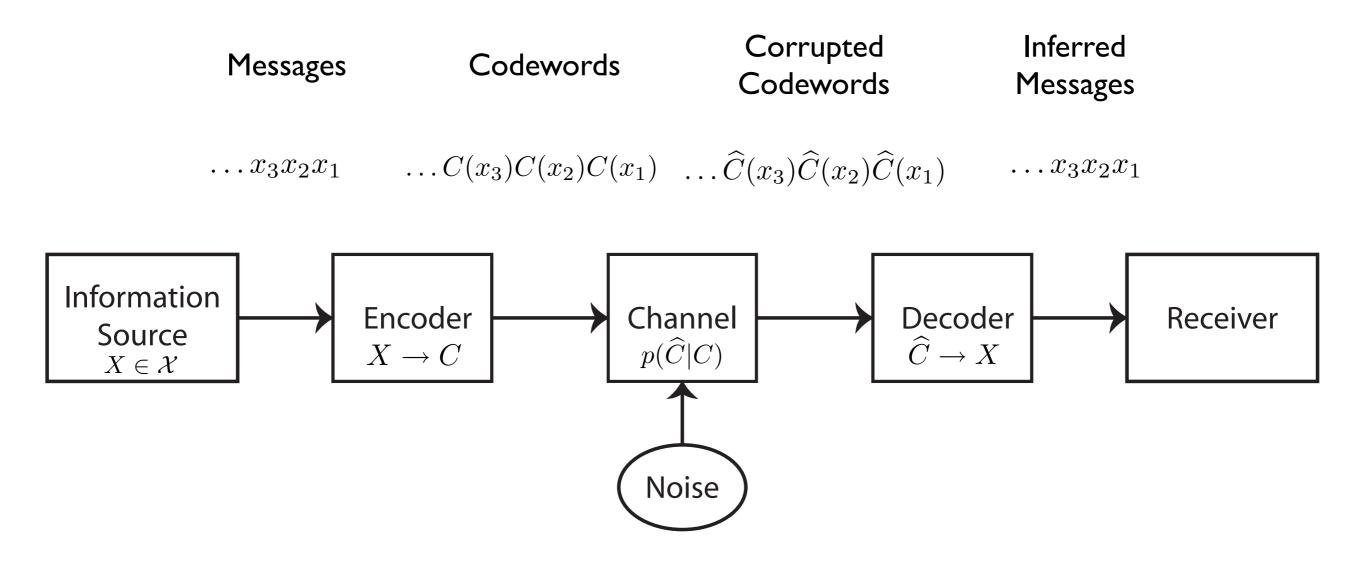
Event Space Relationships of Information Quantifiers:



Why information?

- I. Accounts for any type of co-relation
 - Statistical correlation ~ linear only
 - Information measures nonlinear correlation
- 2. Broadly applicable:
 - Many systems don't have "energy", physical modeling precluded
 - Information defined: social, biological, engineering, ... systems
- 3. Comparable units across different systems:
 - Correlation: Meters v. volts v. dollars v. ergs v. ...
 - Information: bits.
- 4. Probability theory ~ Statistics ~ Information
- 5. Complex systems:
 - Emergent patterns!
 - We don't know these ahead of time

Information in Processes ... Communication channel:



Information in Processes ...

Real Information Theory:
How to compress a process:
Can't do better than H(X)(Shannon's First Theorem)

How to communicate a process's data: $H(X) \leq \mathcal{C}$ Can transmit error-free at rates up to channel capacity (Shannon's Second Theorem)

Both results give operational meaning to entropy. Previously, entropy motivated as a measure of surprise.

Complexity

Information Theory for Complex Systems Today:

Complex Processes
Information Measures

Tomorrow:

Information & Memory in Processes
Intrinsic Computation
Measuring Structure
Optimal Models
Structure = Computation

See online course: http://csc.ucdavis.edu/~chaos/courses/ncaso/