Monte Carlo Methods for Rough Energy Landscapes

Jon Machta University of Massachusetts Amherst, Santa Fe Institute

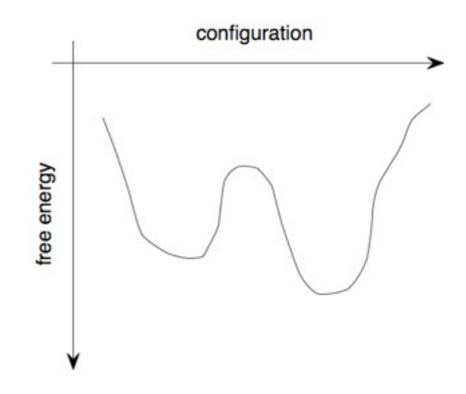
SFI, August 9, 2013

Collaborators

- Stephan Burkhardt
- Chris Pond
- Jingran Li
- Richard Ellis

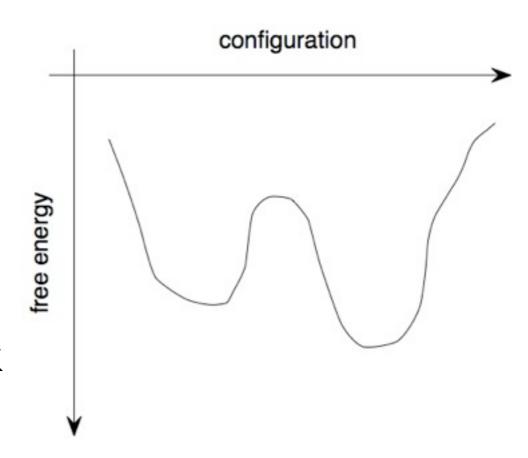
Motivation

 How to sample equilibrium states of systems with rugged free energy landscapes, e.g. spin glasses, configurational glasses, proteins, combinatorial optimization problems.



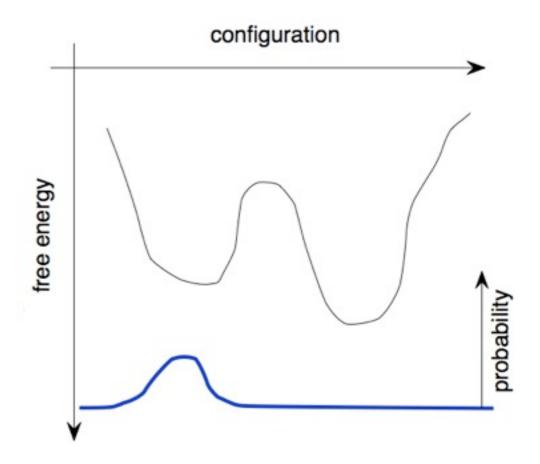
Problem

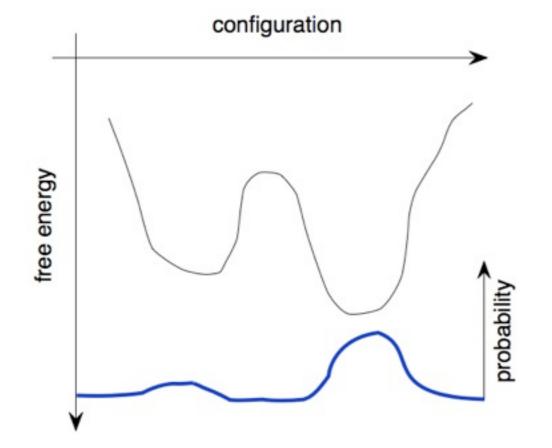
 Markov chain Monte Carlo (MCMC) at a single temperature such as the Metropolis algorithm gets stuck in local minima.

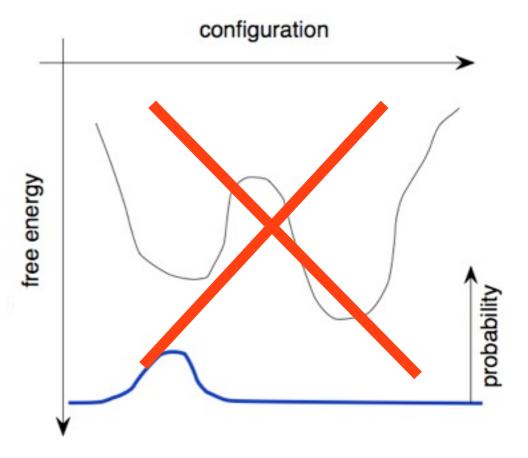


Problem

 Markov chain Monte Carlo (MCMC) at a single temperature such as the Metropolis algorithm gets stuck in local minima.







Outline

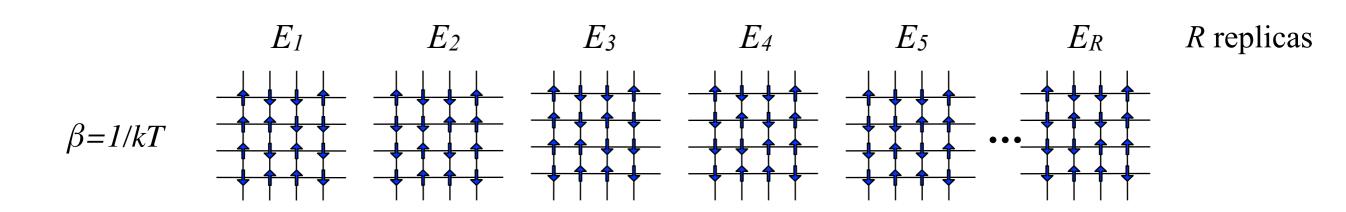
- Population Annealing
- Parallel Tempering
- PA vs PT
- Conclusions

Population Annealing

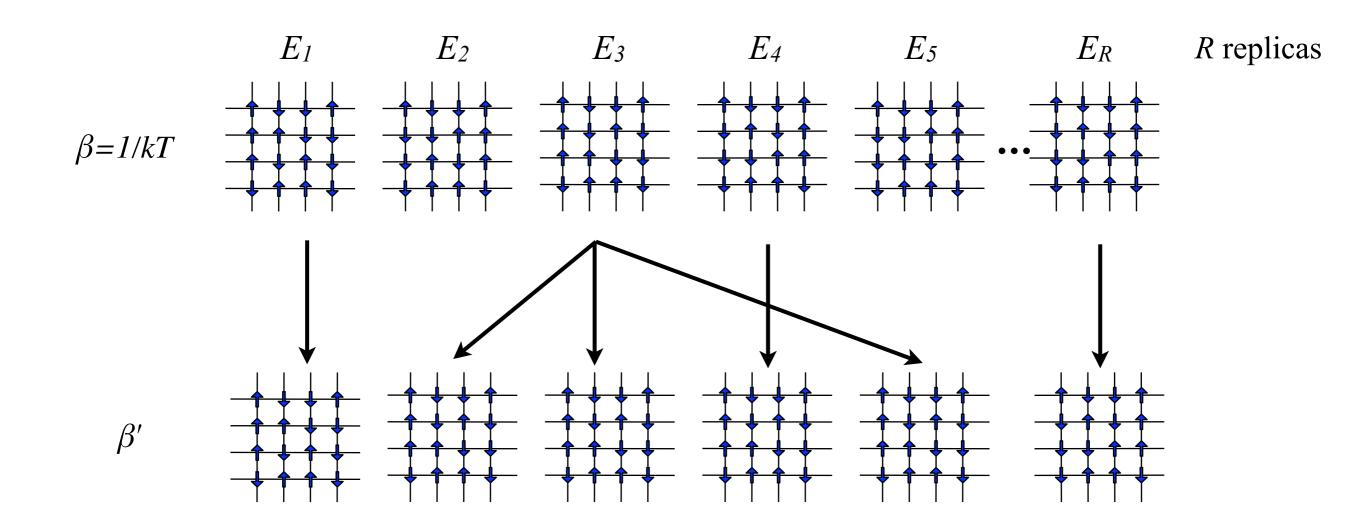
K. Hukushima and Y. Iba, in *THE MONTE CARLO METHOD IN THE PHYSICAL SCIENCES: Celebrating the 50th Anniversary of the Metropolis Algorithm*, edited by J. E. Gubernatis (AIP, 2003), vol. 690, pp. 200–206.

- Modification of simulated annealing for equilibrium sampling.
- A population of replicas is cooled according to an annealing schedule. Each replica is acted on by a MCMC (e.g. Metropolis) at the current temperature.
- During each temperature step, the population is differentially resampled according to Boltzmann weights to maintain equilibrium.

Population Annealing

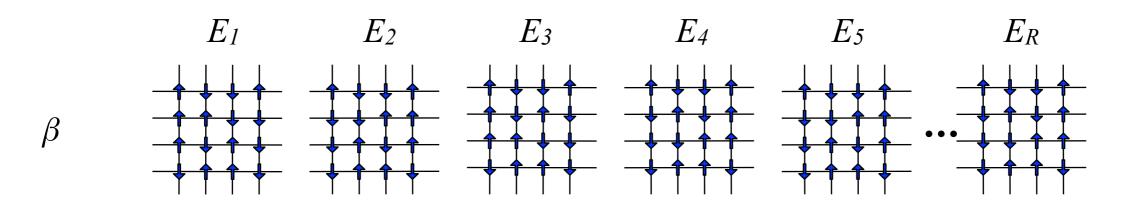


Population Annealing



Population annealing = simulated annealing with differential reproduction (resampling) of replicas

Temperature Step

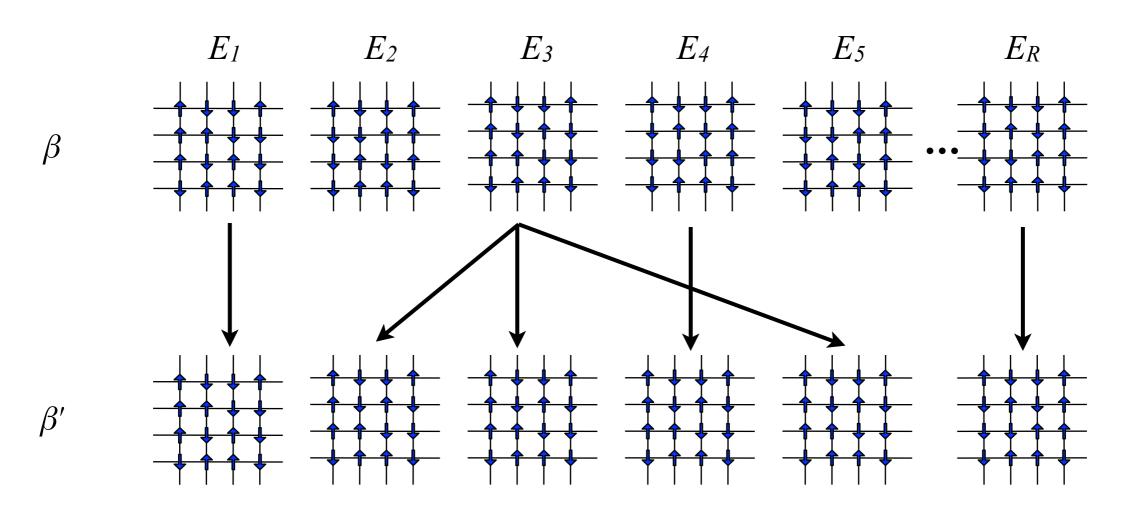


$$\tau_j(\beta, \beta') = \frac{\exp\left[-(\beta' - \beta)E_j\right]}{Q(\beta, \beta')}$$

$$Q(\beta, \beta') = \frac{\sum_{j=1}^{R} \exp\left[-(\beta' - \beta)E_j\right]}{R}$$

Replica j is reproduced n_j times where n_j is an integer random variate with mean τ_j .

Temperature Step



$$\tau_j(\beta, \beta') = \frac{\exp\left[-(\beta' - \beta)E_j\right]}{Q(\beta, \beta')}$$

$$Q(\beta, \beta') = \frac{\sum_{j=1}^{R} \exp\left[-(\beta' - \beta)E_j\right]}{R}$$

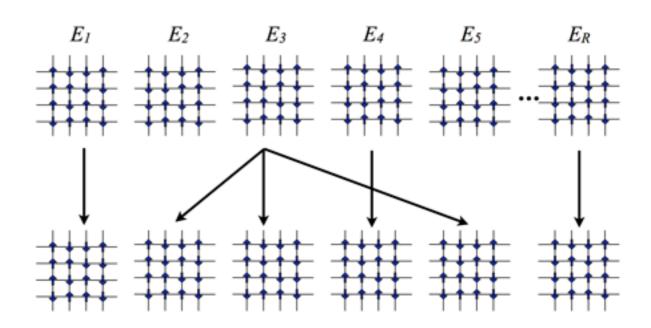
Replica j is reproduced n_j times where n_j is an integer random variate with mean τ_j .

Resampling

e.g.
$$n_1 = 1$$
, $n_2 = 0$, $n_3 = 3$, $n_4 = 1$

$$\tau_j(\beta, \beta') = \frac{\exp\left[-(\beta' - \beta)E_j\right]}{Q(\beta, \beta')}$$

$$Q(\beta, \beta') = \frac{\sum_{j=1}^{R} \exp\left[-(\beta' - \beta)E_j\right]}{R}$$



Replica j is reproduced n_j times where n_j is an integer random variate with mean τ_j .

Nearest integer resampling

$$Prob(n = \lfloor \tau \rfloor) = \tau - \lceil \tau \rceil$$

$$\operatorname{Prob}(n = \lceil \tau \rceil) = \tau - \lfloor \tau \rfloor$$

$$Prob(n - \tau > 1) = 0$$

Minimizes variance of n_j .

Maximizes number of ancestors with descendants.

Population size fluctuates.

Population Annealing is related to...

- Simulated annealing
- Sequential Monte Carlo
 - See e.g. "Sequential Monte Carlo Methods in Practice", A. Doucet, et. al. (2001)
 - aka Particle Filters
 - Nested Sampling, Skilling
- Go with the Winners, Grassberger (2002)
- Diffusion (quantum) Monte Carlo
- Nonequilibrium Equality for Free Energy Differences, Jarzynski (1997)
- Histogram Re-weighting, Swendsen and Ferrenberg (1988)

$$Y_i = \exp\left[-(\beta' - \beta)E_i + \lambda A_i\right]$$

$$Y_i = \exp\left[-(\beta' - \beta)E_i + \lambda A_i\right]$$

$$I(\beta, \beta', \lambda) = \mathbf{E} \log(\frac{1}{R} \sum_{j=1}^{R} Y_j)$$

$$Y_i = \exp\left[-(\beta' - \beta)E_i + \lambda A_i\right]$$

$$I(\beta, \beta', \lambda) = \mathbf{E} \log(\frac{1}{R} \sum_{j=1}^{R} Y_j)$$

$$\langle A \rangle_R' = \left. \frac{dI(\beta, \beta', \lambda)}{d\lambda} \right|_{\lambda=0}$$

$$Y_i = \exp\left[-(\beta' - \beta)E_i + \lambda A_i\right]$$

$$I(\beta, \beta', \lambda) = \mathbf{E}\log(\frac{1}{R}\sum_{j=1}^{R} Y_j) = \log(\mathbf{E}Y) - \frac{1}{2R}\frac{\mathbf{Var}Y}{(\mathbf{E}Y)^2} + O\left(\frac{1}{R^{3/2}}\right)$$

$$\langle A \rangle_R' = \left. \frac{dI(\beta, \beta', \lambda)}{d\lambda} \right|_{\lambda=0}$$

$$Y_i = \exp\left[-(\beta' - \beta)E_i + \lambda A_i\right]$$

$$I(\beta, \beta', \lambda) = \mathbf{E}\log(\frac{1}{R}\sum_{j=1}^{R} Y_j) = \log(\mathbf{E}Y) - \frac{1}{2R}\frac{\mathbf{Var}Y}{(\mathbf{E}Y)^2} + O\left(\frac{1}{R^{3/2}}\right)$$

$$\langle A \rangle_R' = \frac{dI(\beta, \beta', \lambda)}{d\lambda} \bigg|_{\lambda=0} = \mathbf{E}' A + O\left(\frac{1}{R}\right)$$

Suppose the population at β is a correct, iid sample:

$$Y_i = \exp\left[-(\beta' - \beta)E_i + \lambda A_i\right]$$

$$I(\beta, \beta', \lambda) = \mathbf{E}\log(\frac{1}{R}\sum_{j=1}^{R} Y_j) = \log(\mathbf{E}Y) - \frac{1}{2R}\frac{\mathbf{Var}Y}{(\mathbf{E}Y)^2} + O\left(\frac{1}{R^{3/2}}\right)$$

$$\langle A \rangle_R' = \frac{dI(\beta, \beta', \lambda)}{d\lambda} \bigg|_{\lambda=0} = \mathbf{E}' A + O\left(\frac{1}{R}\right)$$

A bias inversely proportional to the population size results from the re-weighting to β'

Resampling complicates the analysis...

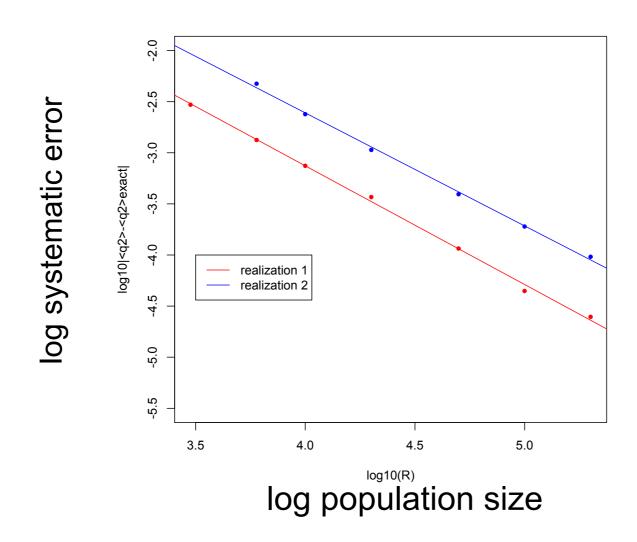
Conjecture: Fixing other parameters of population annealing, observable converge to their equilibrium values inversely in population size.

Quantifying Convergence to Equilibrium

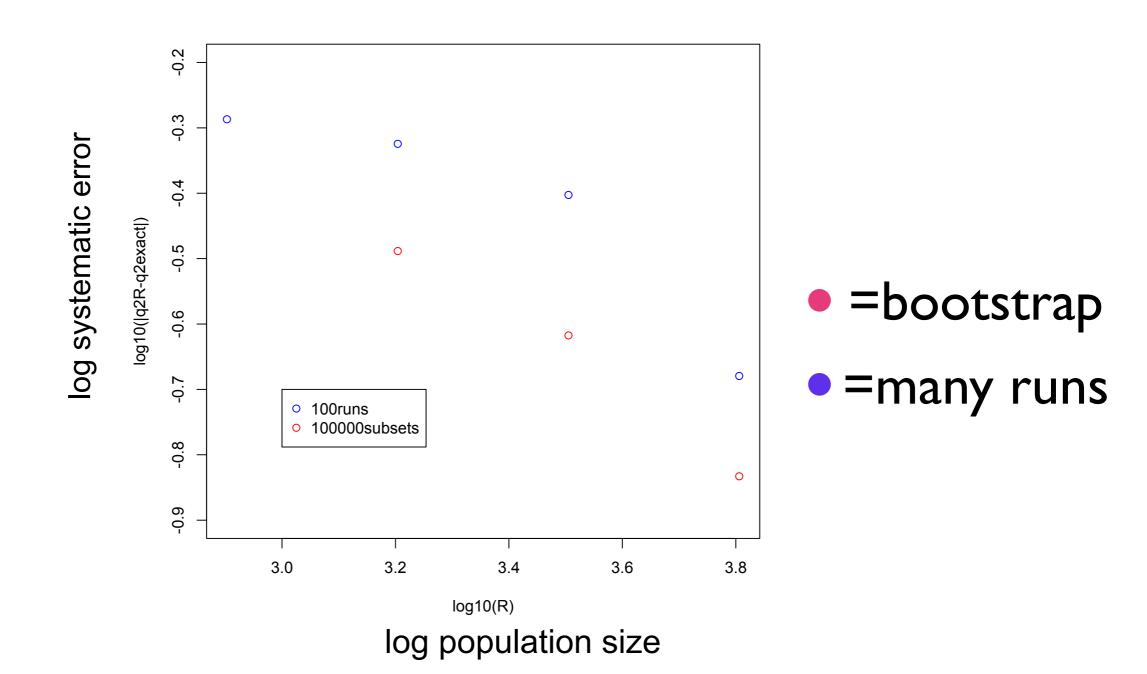
- Do many runs for each of many population sizes. Expensive.
- Is there an analog to the autocorrelation function and the exponential autocorrelation time?

Quantifying Convergence to Equilibrium

- Idea: resample small populations from a single run with a large population (bootstrap).
 - Choose a small population of parents and measure the observable in their descendants.
 - Repeat many times for different populations sizes.



 Problem: A small sample within a large population is not the same as an isolated small population because the sample within the large populations exists in a more competitive environment.



Direct Estimate of Free Energies

$$Q(\beta, \beta') = \frac{\sum_{j=1}^{R} \exp\left[-(\beta' - \beta)E_j\right]}{R}$$

$$-\beta_k F(\beta_k) = \sum_{\ell=k}^K \ln Q(\beta_{\ell+1}, \beta_{\ell}) + \beta_K F(\beta_K)$$

$$\begin{array}{ll} \textbf{Derivation:} & \frac{Z(\beta')}{Z(\beta)} = \frac{\sum_{\gamma} e^{-\beta' E_{\gamma}}}{Z(\beta)} \\ & = \sum_{\gamma} e^{-(\beta' - \beta) E_{\gamma}} (\frac{e^{-\beta E_{\gamma}}}{Z(\beta)}) \\ & = \langle e^{-(\beta' - \beta) E_{\gamma}} \rangle_{\beta} \\ & \approx \frac{1}{R} \sum_{j=1}^{R} e^{-(\beta' - \beta) E_{j}} = Q(\beta, \beta'). \end{array}$$

Weighted Averages

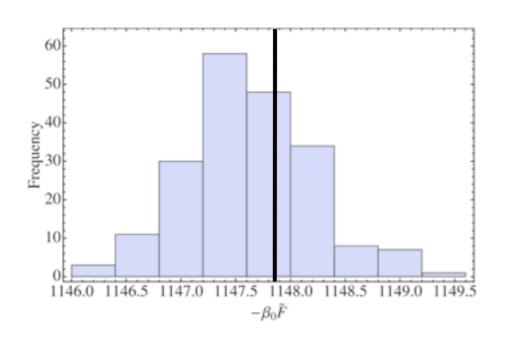
JM, PRE82,26704(2010)

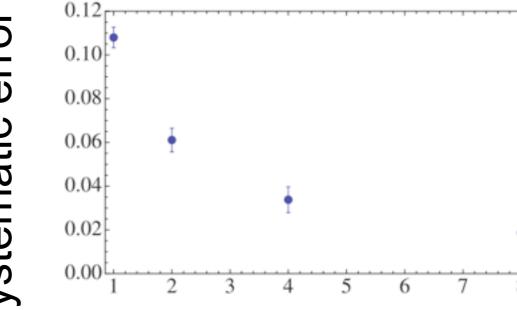
- Results using small population size are biased.
- Results from independent runs can be combined and biases reduced using weighted averages.
- Observables from each run weighted by the exponential of the free energy estimator for that run.

$$\overline{A}(\beta) = \sum_{m=1}^{M} \widetilde{A}_m(\beta)\omega_m(\beta) \qquad \omega_m(\beta) = \frac{e^{-\beta \widetilde{F}_m(\beta)}}{\sum_{i=1}^{M} e^{-\beta \widetilde{F}_i(\beta)}}$$

Weighted Averages

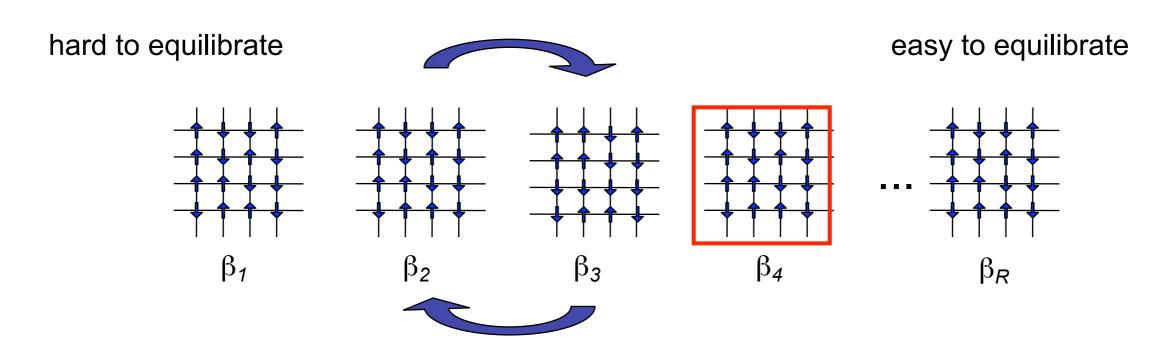
Number of runs needed for unbiased results determined by the width of the distribution of the free energy estimator--an intrinsic measure of equilibration.





number of runs

Parallel Tempering

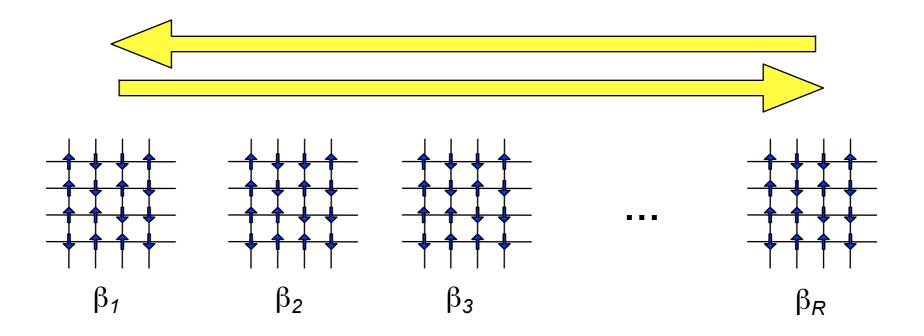


- •*R* replicas at inverse temperatures $\beta_1 > \beta_2 > ... > \beta_R$ (each with the same couplings).
- •MCMC (e.g. Metropolis) on each replica
- •Exchange replicas with energies E and E' and temperatures β and β' , with probability:

$$p_{\text{swap}} = \min \left[1, e^{(\beta - \beta')(E - E')} \right]$$

Intuition

 Mixing is accelerated by "round trips" from low to high temperature and back.

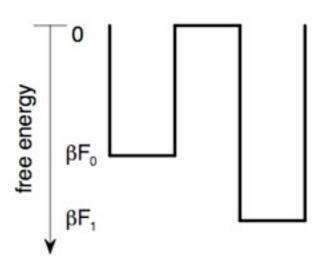


Population Annealing	Parallel Tempering
Sequential Monte Carlo	Markov Chain Monte Carlo
# Replicas (R>>1) space	#Sweeps $(t>>1)$ parallel time
#Temperature steps (T) parallel time	#Replicas (R) space
work=RT	work=Rt
$(A(R)-A_{eq}) \sim R_0/R$	$(A(t)-A_{eq}) \sim e^{(-t/\tau)}$

Two-Well landscape

 Consider a toy free energy landscape with two free energy minima separated by a high barrier.

- JM, PRE **80**, 056706 (2009)

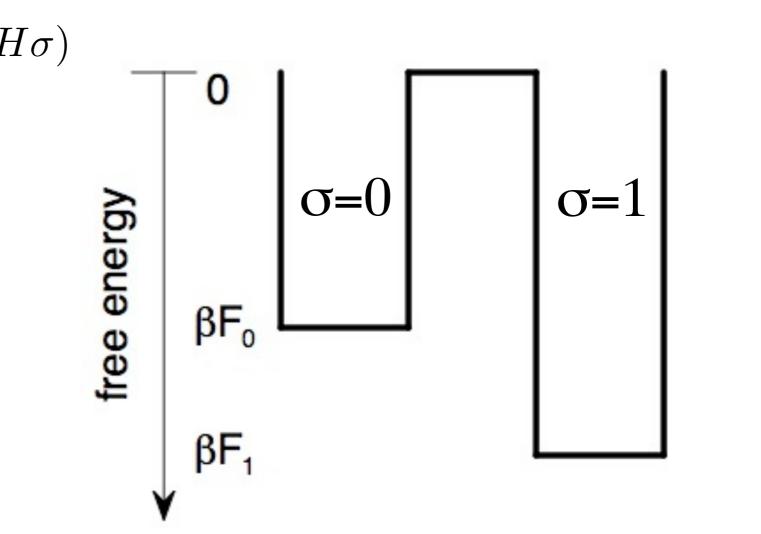


Two-Well Landscape

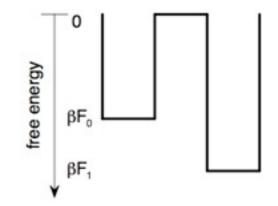
$$\beta F_{\sigma}(\beta) = -\frac{1}{2}(\beta - \beta_c)^2 (K + H\sigma)$$

$$\beta \delta F = -\frac{1}{2}(\beta - \beta_c)^2 H$$

$$\operatorname{Prob}\left[\sigma = +1\right] = \frac{1}{1 + e^{-\beta \delta F}}$$



Dynamics of the two-well model

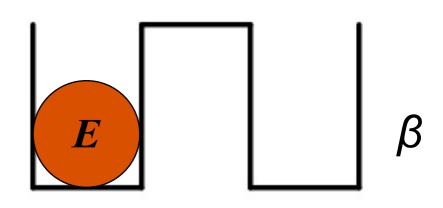


- Assumptions:
 - -Fast equilibration within each well.
 - –No transitions between wells except at β_c where each well is equally probable.
 - –Energy is normally distributed in each well; from thermodynamics:

$$\langle E \rangle = -(\beta - \beta_c)(K + H\sigma)$$
 $\mathbf{Var}(E) = (K + H\sigma)$

Replica exchange probabilities

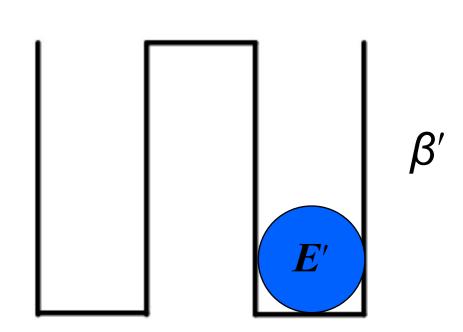
• For the two-well model, replica exchange transition probabilities can be computed exactly. For symmetric wells (H=0):



$$p_{\text{swap}} = \min \left[1, e^{(\beta - \beta')(E - E')} \right]$$

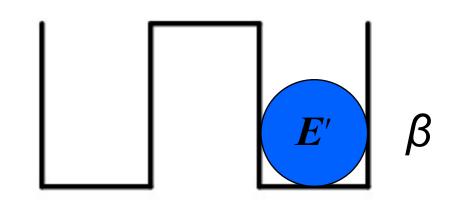
$$\langle E \rangle = -(\beta - \beta_c) K \text{, } \mathbf{Var}(E) = K$$

$$p_{\text{swap}} = \frac{1}{2} \text{Erfc} \left((\beta - \beta') \sqrt{K} \right)$$



Replica exchange probabilities

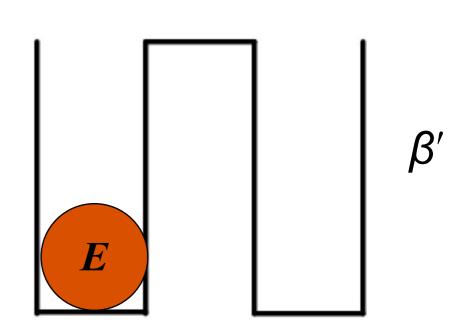
• For the two-well model, replica exchange transition probabilities can be computed exactly. For symmetric wells (H=0):



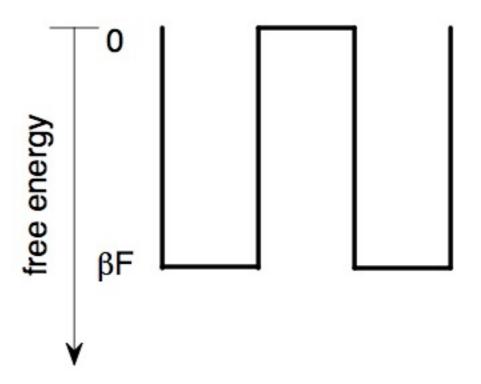
$$p_{\text{swap}} = \min \left[1, e^{(\beta - \beta')(E - E')} \right]$$

$$\langle E \rangle = -(\beta - \beta_c) K \text{, } \mathbf{Var}(E) = K$$

$$p_{\text{swap}} = \frac{1}{2} \text{Erfc} \left((\beta - \beta') \sqrt{K} \right)$$

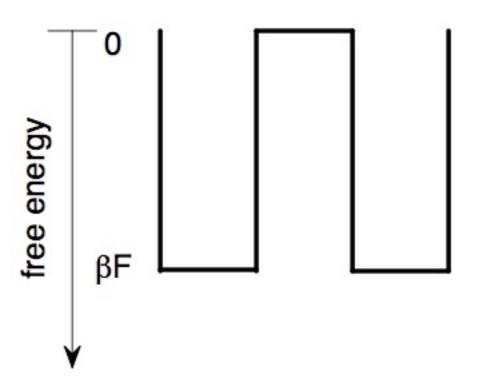


$$p_{\text{swap}} = \frac{1}{2} \text{Erfc} \left((\beta - \beta') \sqrt{K} \right)$$



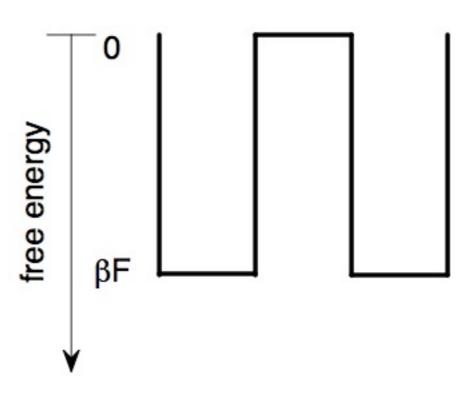
Diffusion of replicas

$$p_{\text{swap}} = \frac{1}{2} \text{Erfc} \left((\beta - \beta') \sqrt{K} \right)$$



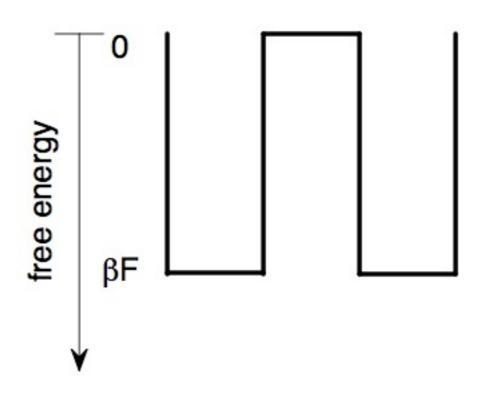
- Diffusion of replicas
- Equilibration time τ is proportional to the mean first passage time for diffusion from β_0 to β_c with R equally spaced replicas

$$p_{\text{swap}} = \frac{1}{2} \text{Erfc} \left((\beta - \beta') \sqrt{K} \right)$$



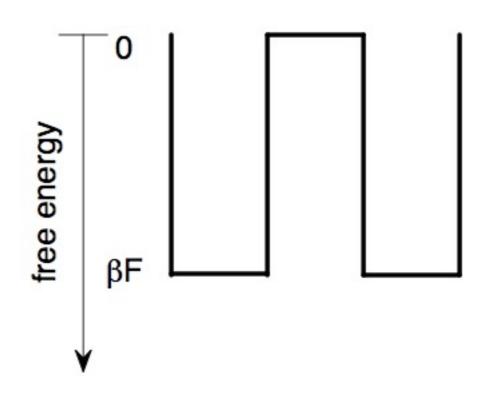
- Diffusion of replicas
- Equilibration time τ is proportional to the mean first passage time for diffusion from β_0 to β_c with R equally spaced replicas
- Optimum number of replicas balances diffusion time and replica exchange acceptance fraction.

$$p_{\text{swap}} = \frac{1}{2} \text{Erfc} \left((\beta - \beta') \sqrt{K} \right)$$



- Diffusion of replicas
- Equilibration time τ is proportional to the mean first passage time for diffusion from β_0 to β_c with R equally spaced replicas
- Optimum number of replicas balances diffusion time and replica exchange acceptance fraction.

$$p_{\text{swap}} = \frac{1}{2} \text{Erfc} \left((\beta - \beta') \sqrt{K} \right)$$

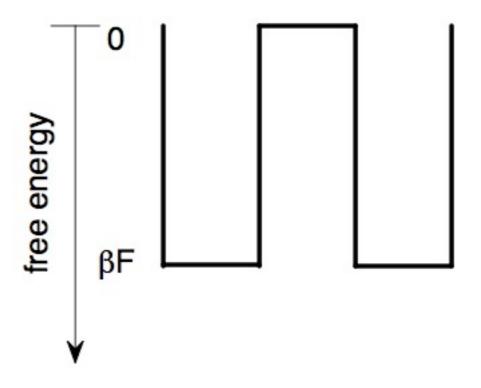


$$R_{\text{opt}} = 1 + 0.594(\beta_0 - \beta_c)\sqrt{K} \sim \sqrt{-\beta F}$$

- Diffusion of replicas
- Equilibration time τ is proportional to the mean first passage time for diffusion from β_0 to β_c with R equally spaced replicas
- Optimum number of replicas balances diffusion time and replica exchange acceptance fraction.

$$p_{\text{swap}} = \frac{1}{2} \text{Erfc} \left((\beta - \beta') \sqrt{K} \right)$$

$$\tau \sim R^2 \sim \beta F$$

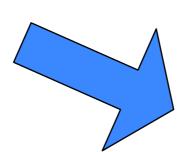


$$R_{\text{opt}} = 1 + 0.594(\beta_0 - \beta_c)\sqrt{K} \sim \sqrt{-\beta F}$$

$$Y_i = \exp\left[-(\beta' - \beta)E_i + \lambda A_i\right]$$

$$I(\beta, \beta', \lambda) = \mathbf{E}\log(\frac{1}{R}\sum_{j=1}^{R}Y_j) = \log(\mathbf{E}Y) - \frac{1}{2R}\frac{\mathbf{Var}Y}{(\mathbf{E}Y)^2} + O\left(\frac{1}{R^{3/2}}\right)$$

$$\langle A \rangle_R' = \frac{dI(\beta, \beta', \lambda)}{d\lambda} \bigg|_{\lambda=0} = \mathbf{E}' A + \mathcal{O}\left(\frac{1}{R}\right)$$



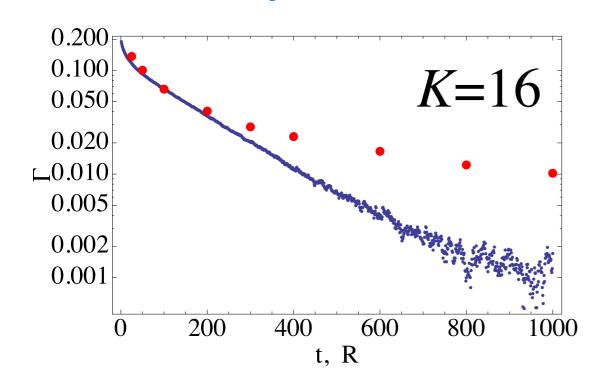
$$(A(R)-A_{eq}) \sim R_0/R$$

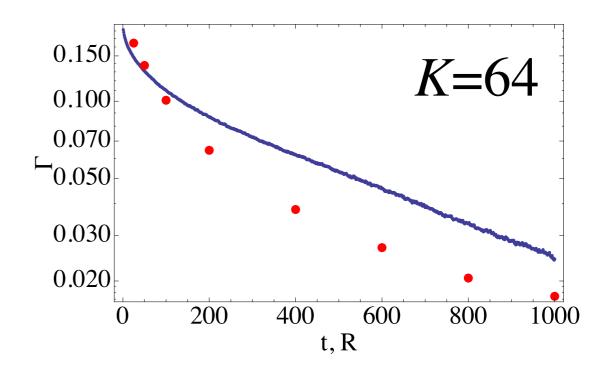
$$T \sim K^{1/2}$$

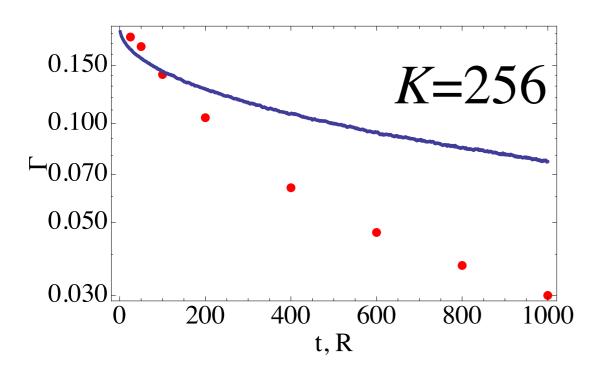
$$R_0 \sim T^a$$
 $a=1$?

Population Annealing	Parallel Tempering
# Replicas (R) space	#Sweeps (t) parallel time
#Temperature steps (T) parallel time	#Replicas (R) space
$(A(R)-A_{eq}) \sim R_0/R$	$(A(t)-A_{eq}) \sim e^{(-t/\tau)}$
$R_0 \sim T$ $T \sim K^{1/2}$	$\tau \sim K R \sim K^{1/2}$
work to eq $\sim R_0 T \sim K$	work to eq $\sim \tau R \sim K^{3/2}$

Compare PA and PT for the Two-Well Model





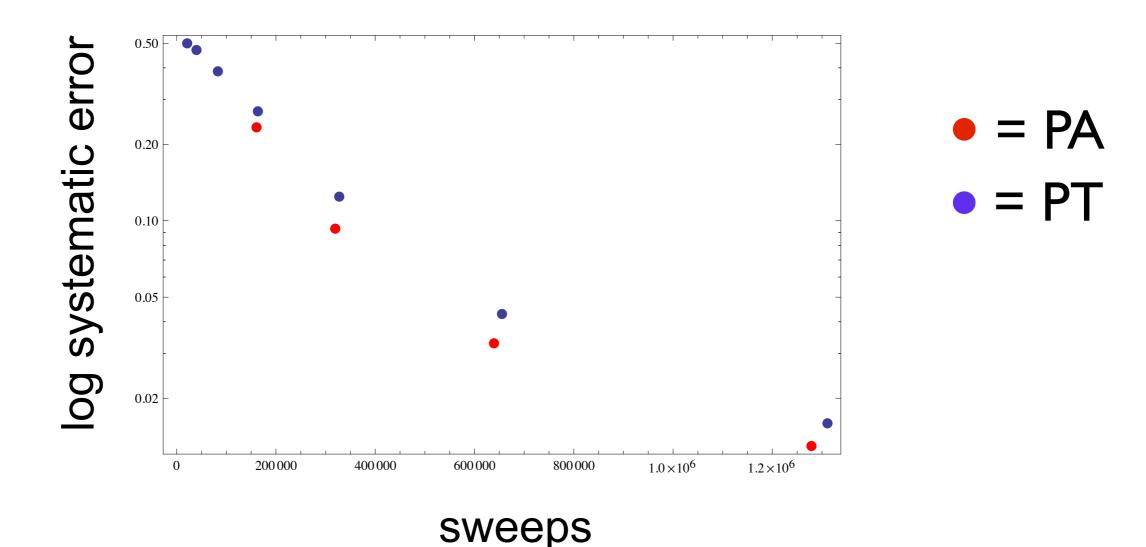


$$H=0.1$$

$$\Gamma = \langle \operatorname{Prob} \left[\sigma = +1 \right] \rangle - \langle \operatorname{Prob} \left[\sigma = +1 \right] \rangle_{eq}$$

PA vs PT for 3D Spin Glass

 For a small handful of disorder realizations, doing many runs for different population sizes (for PA) or run lengths (for PT), the convergence to equilibrium is comparable as measured in sweeps.



Conclusions

- Both parallel tempering and population annealing overcome the exponential slowing associated with large free energy barriers.
- Population annealing is comparably efficient to parallel tempering and has several features to recommend it:
 - Massively parallel
 - Direct measurement of free energies
 - Perhaps more efficient?