Renormalization Group for Quantum Walks

Stefan Boettcher

www.physics.emory.edu/faculty/boettcher/

Collaborators:

- Stefan Falkner (Emory U)
- Renato Portugal (LNCC, Brazil)

Support:

NSF-Materials Research

Collaborators:

- Stefan Falkner (Emory U)
- Renato Portugal (LNCC, Brazil)

Support:

NSF-Materials Research

Boettcher

EMORY

Renormalization Group for Quantum Walks

Deep Computation Santa Fe

8-10-2013

Overview:

Stefan Boettcher

www.physics.emory.edu/faculty/boettcher/

Overview:

Quantum Algorithms

- Grover's Abstract Algorithm for Quantum Search
- Quantum Walks (QW) on the 1d-Line

Boettcher

Overview:

Quantum Algorithms

- Grover's Abstract Algorithm for Quantum Search
- Quantum Walks (QW) on the 1d-Line

The Renormalization Group (RG)

- Motivation: What is Universality in QW?
- RG for 1d-Walks, classical and quantum
- Results for Mean-Square Displacement
- Problems and Challenges
- QW on the Dual Sierpinski Gasket (DSG)

Renormalization Group for Quantum Walks

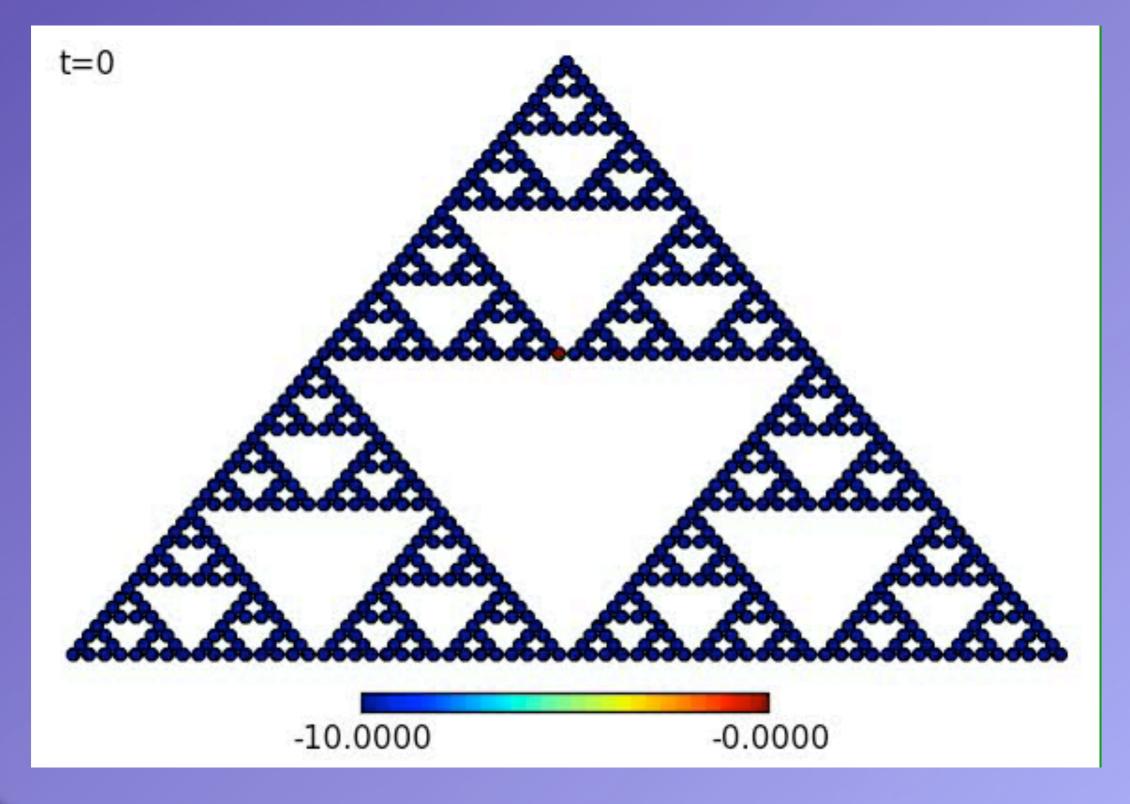
Deep Computation

Santa Fe 8-10-2013

QW on the Dual Sierpinski Gasket (DSG)

Boettcher

QW on the Dual Sierpinski Gasket (DSG)



Boettcher

Renormalization Group for Quantum Walks

Deep Computation Santa Fe

8-10-2013

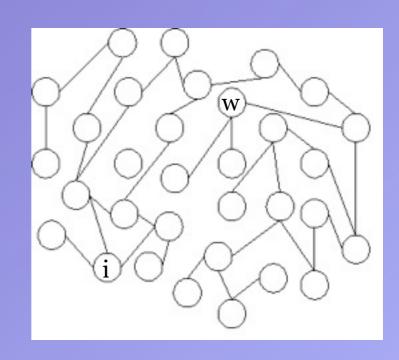
Classical Search:

Stefan Boettcher

www.physics.emory.edu/faculty/boettcher/

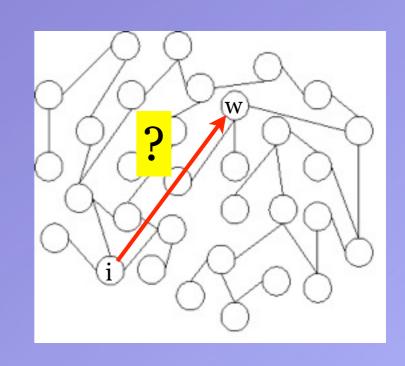
Classical Search:

Problem ("First-Passage Time"):
Within any Structure of *N* sites,
Design an algorithm,
To find an arbitrary site <u>w</u>,
From <u>any</u> initial site <u>i</u>.



Classical Search:

Problem ("First-Passage Time"):
Within any Structure of *N* sites,
Design an algorithm,
To find an arbitrary site <u>w</u>,
From <u>any</u> initial site <u>i</u>.

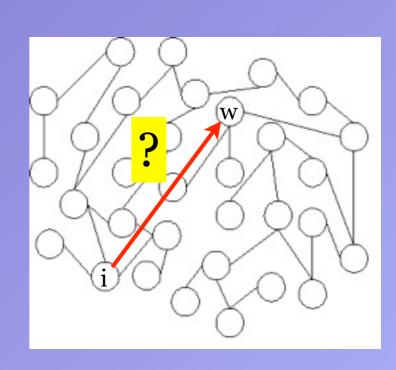


Classical Search:

Problem ("First-Passage Time"):
Within any Structure of *N* sites,
Design an algorithm,
To find an arbitrary site <u>w</u>,
From <u>any</u> initial site <u>i</u>.

In general:

 $T_{min} \sim O(N)$



Quantum Search:

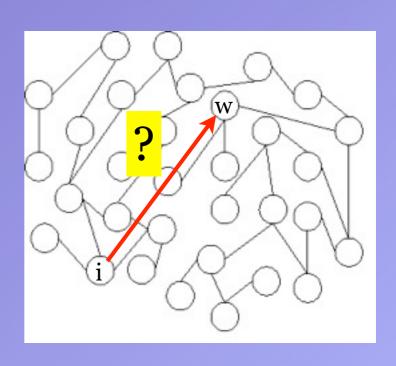
Problem ("First-Passage Time"):

Within any *N*-dim. Hilbert Space (site-basis $\{|i\rangle\}$),

Design a propagator U,

To concentrate on an arbitrary site-state $|w\rangle$,

From a uniform initial state $|\Psi(0)\rangle = |s\rangle = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} |i\rangle$.



Quantum Search:

Problem ("First-Passage Time"):

Within any N-dim. Hilbert Space (site-basis $\{|i\rangle\}$),

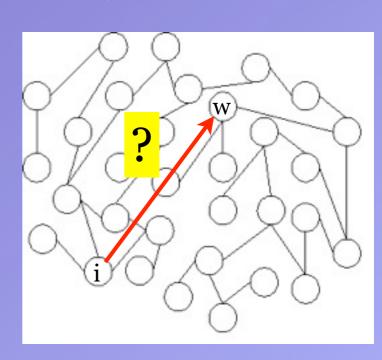
Design a propagator U,

To concentrate on an arbitrary site-state $|w\rangle$,

From a uniform initial state $|\Psi(0)\rangle = |s\rangle = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} |i\rangle$.

Grover (PRL1997):

$$T_{min} \sim O(\sqrt{N})$$



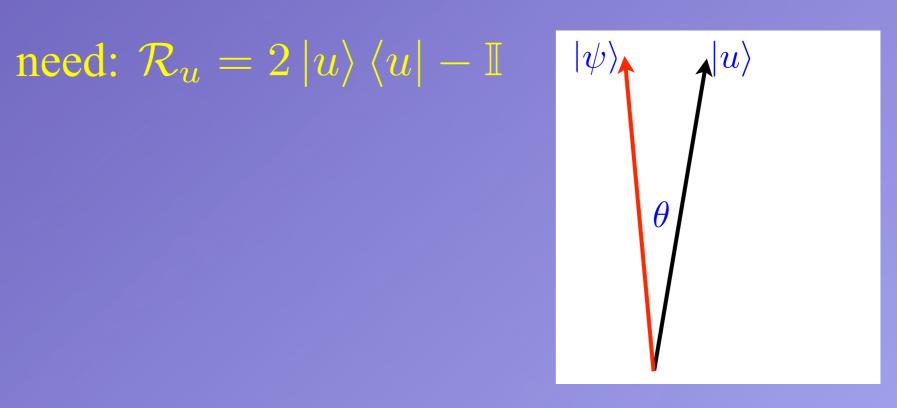
$$|\Psi(0)\rangle = |s\rangle = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} |i\rangle$$
, goal: $T_{min} = \min_t \{|\langle \Psi(t)|w\rangle| \sim 1\}$

$$|\Psi(0)\rangle = |s\rangle = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} |i\rangle$$
, goal: $T_{min} = \min_t \{|\langle \Psi(t)|w\rangle| \sim 1\}$

need:
$$\mathcal{R}_u = 2|u\rangle\langle u| - \mathbb{I}$$

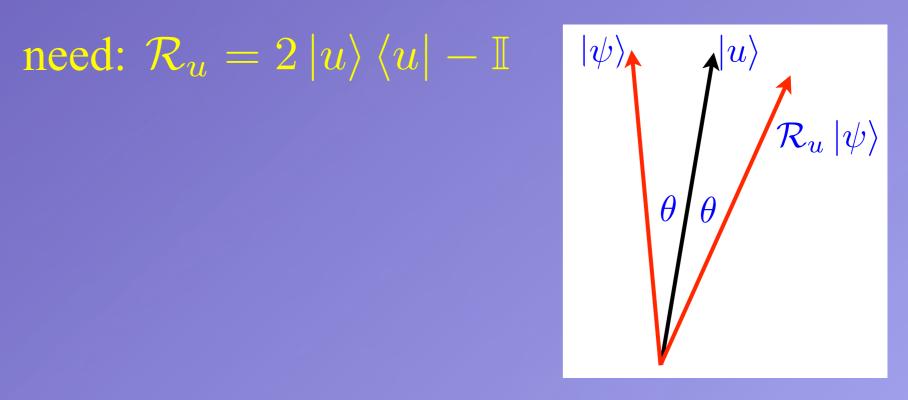
$$|\Psi(0)\rangle = |s\rangle = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} |i\rangle$$
, goal: $T_{min} = \min_t \{|\langle \Psi(t)|w\rangle| \sim 1\}$

need:
$$\mathcal{R}_u = 2 |u\rangle \langle u| - \mathbb{I}$$



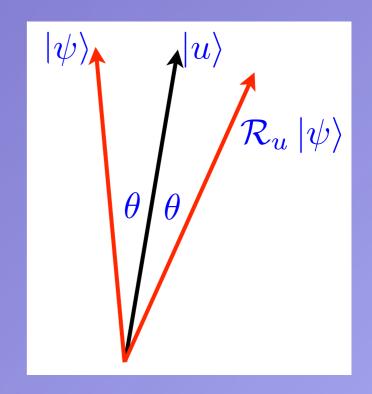
$$|\Psi(0)\rangle = |s\rangle = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} |i\rangle$$
, goal: $T_{min} = \min_t \{|\langle \Psi(t)|w\rangle| \sim 1\}$

need:
$$\mathcal{R}_u = 2 |u\rangle \langle u| - \mathbb{I}$$



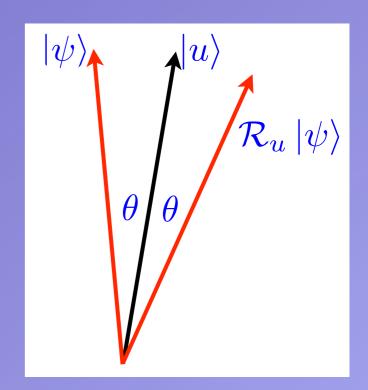
$$|\Psi(0)\rangle = |s\rangle = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} |i\rangle$$
, goal: $T_{min} = \min_t \{|\langle \Psi(t)|w\rangle| \sim 1\}$

need:
$$\mathcal{R}_u = 2|u\rangle\langle u| - \mathbb{I}$$
 $|\psi\rangle$



$$|\Psi(0)\rangle = |s\rangle = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} |i\rangle$$
, goal: $T_{min} = \min_t \{|\langle \Psi(t)|w\rangle| \sim 1\}$

need:
$$\mathcal{R}_u = 2|u\rangle\langle u| - \mathbb{I}$$

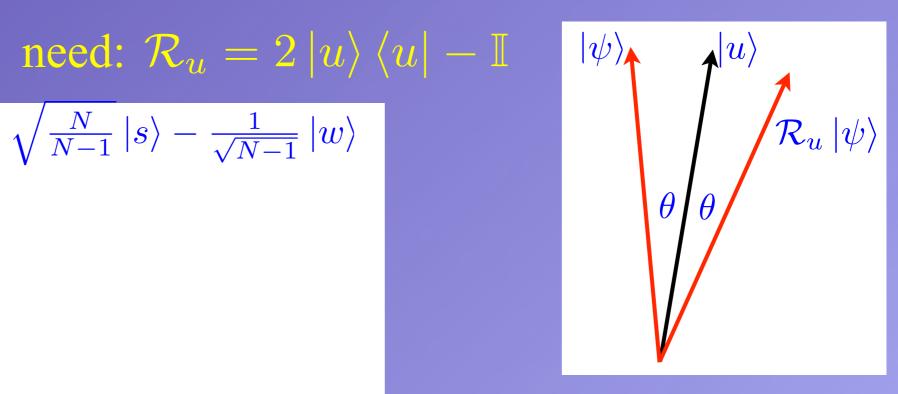


 $|w\rangle$

$$|\Psi(0)\rangle = |s\rangle = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} |i\rangle$$
, goal: $T_{min} = \min_t \{|\langle \Psi(t)|w\rangle| \sim 1\}$

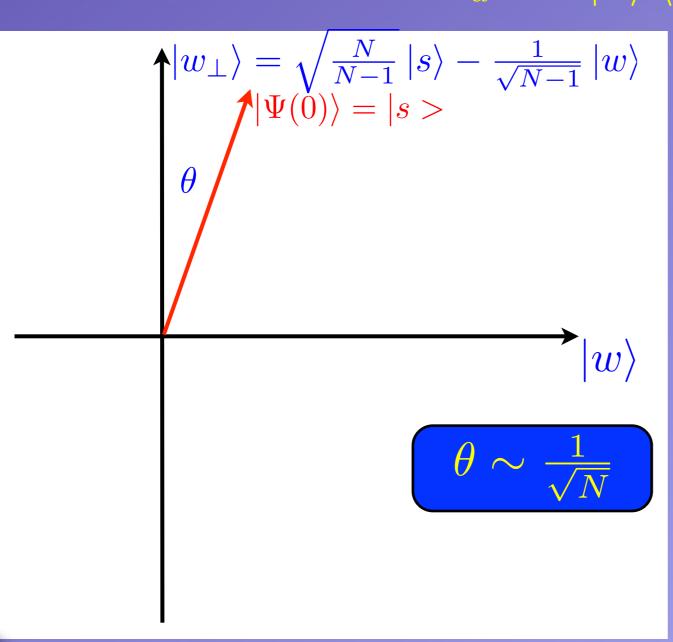
need:
$$\mathcal{R}_u = 2 |u\rangle \langle u| - \mathbb{I}$$

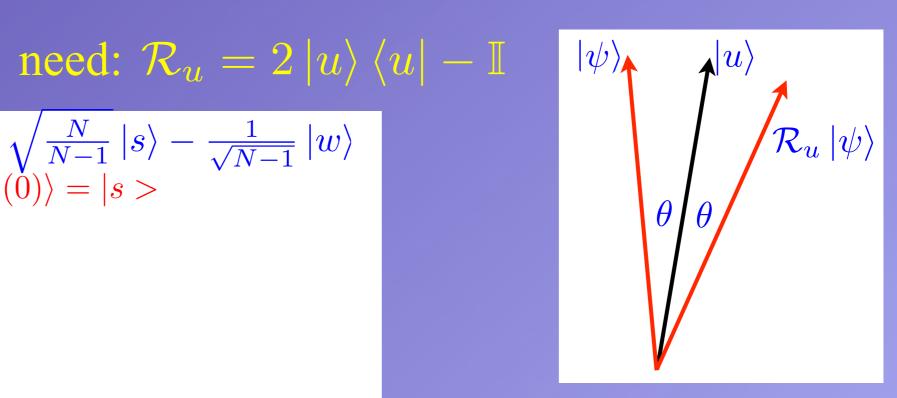
$$|w_{\perp}\rangle = \sqrt{\frac{N}{N-1}} |s\rangle - \frac{1}{\sqrt{N-1}} |w\rangle$$

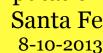


$$|\Psi(0)\rangle = |s\rangle = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} |i\rangle$$
, goal: $T_{min} = \min_t \{|\langle \Psi(t)|w\rangle| \sim 1\}$

need:
$$\mathcal{R}_u = 2 |u\rangle \langle u| - \mathbb{I}$$

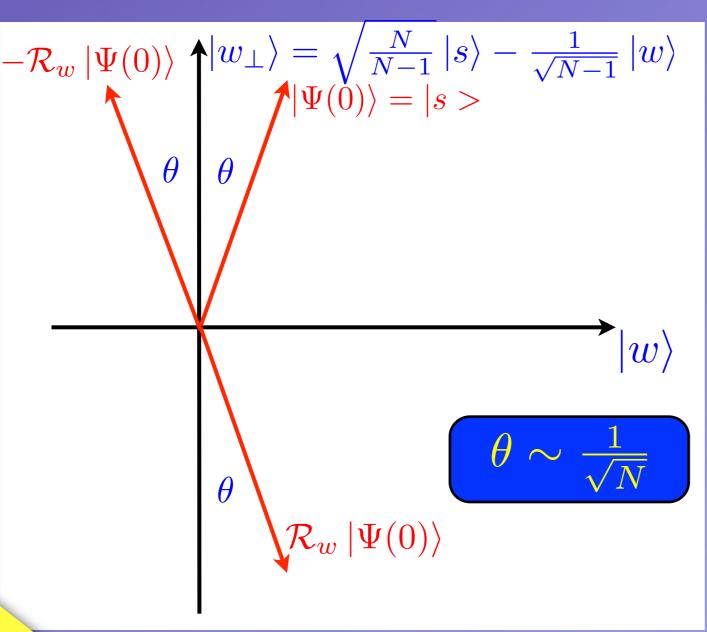


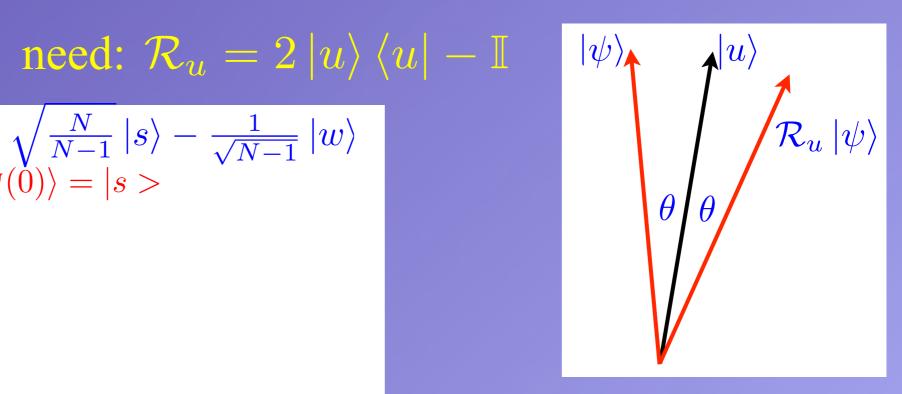


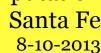


$$|\Psi(0)\rangle = |s\rangle = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} |i\rangle$$
, goal: $T_{min} = \min_t \{|\langle \Psi(t)|w\rangle| \sim 1\}$

need:
$$\mathcal{R}_u = 2 |u\rangle \langle u| - \mathbb{I}$$

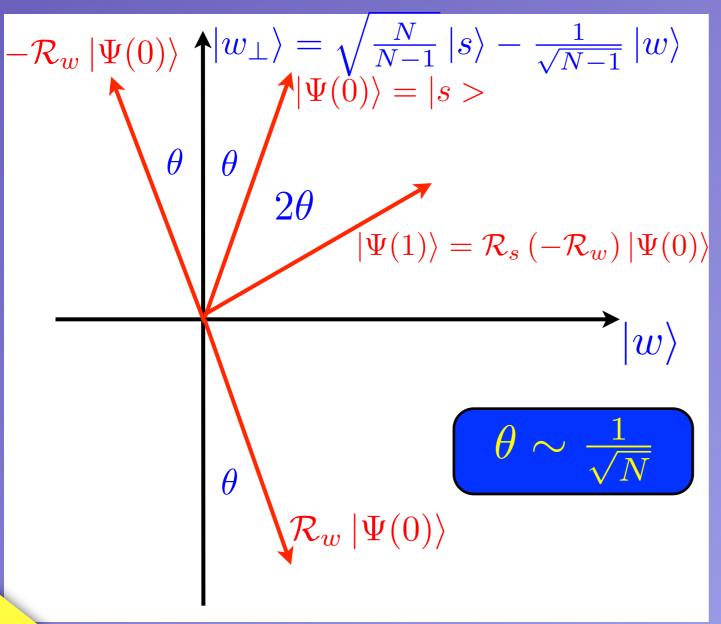


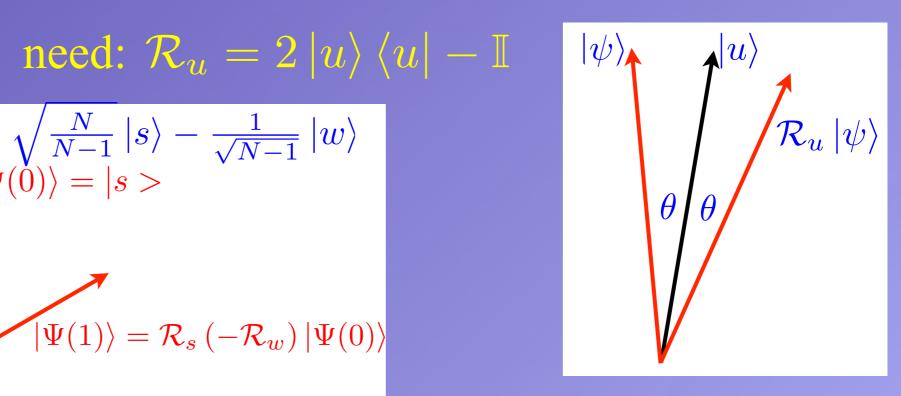




$$|\Psi(0)\rangle = |s\rangle = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} |i\rangle$$
, goal: $T_{min} = \min_t \{|\langle \Psi(t)|w\rangle| \sim 1\}$

need:
$$\mathcal{R}_u = 2 |u\rangle \langle u| - \mathbb{I}$$

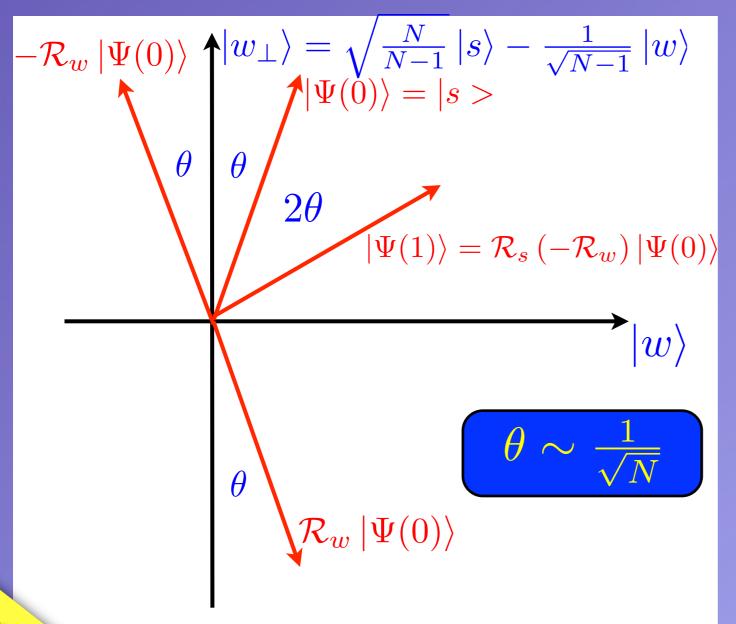




Grover's Algorithm:

$$|\Psi(0)\rangle = |s\rangle = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} |i\rangle$$
, goal: $T_{min} = \min_t \{|\langle \Psi(t)|w\rangle| \sim 1\}$

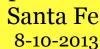
need:
$$\mathcal{R}_u = 2 |u\rangle \langle u| - \mathbb{I}$$



Set:

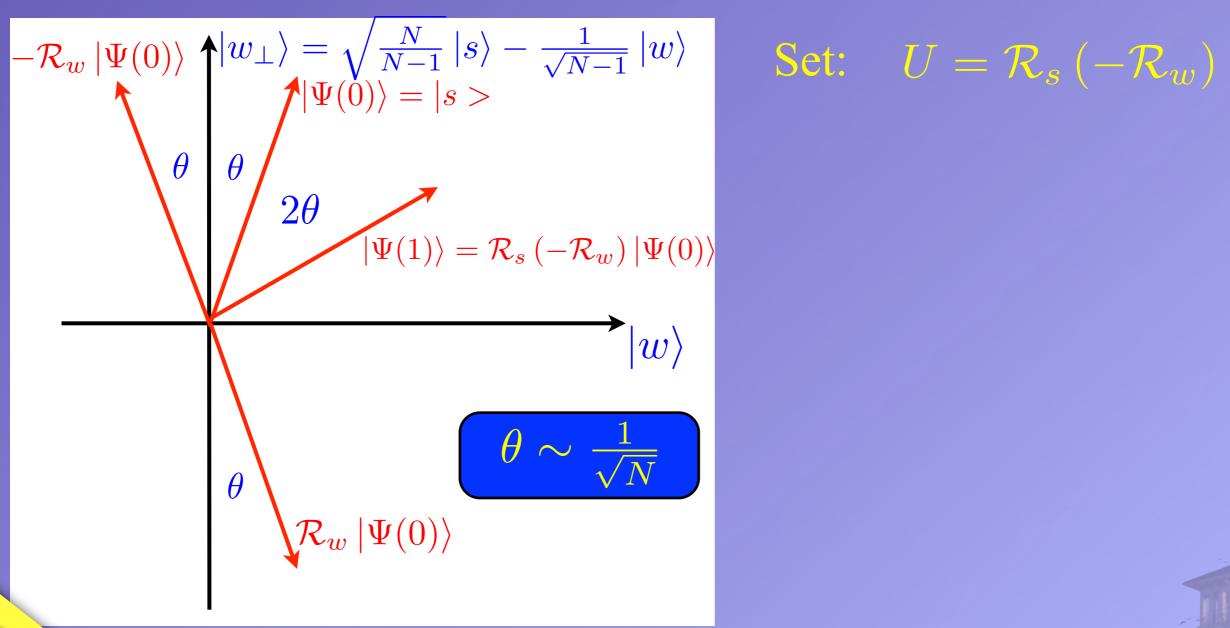
<u>Stefan</u>

Boettcher

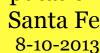


$$|\Psi(0)\rangle = |s\rangle = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} |i\rangle$$
, goal: $T_{min} = \min_t \{|\langle \Psi(t)|w\rangle| \sim 1\}$

need:
$$\mathcal{R}_u = 2 |u\rangle \langle u| - \mathbb{I}$$

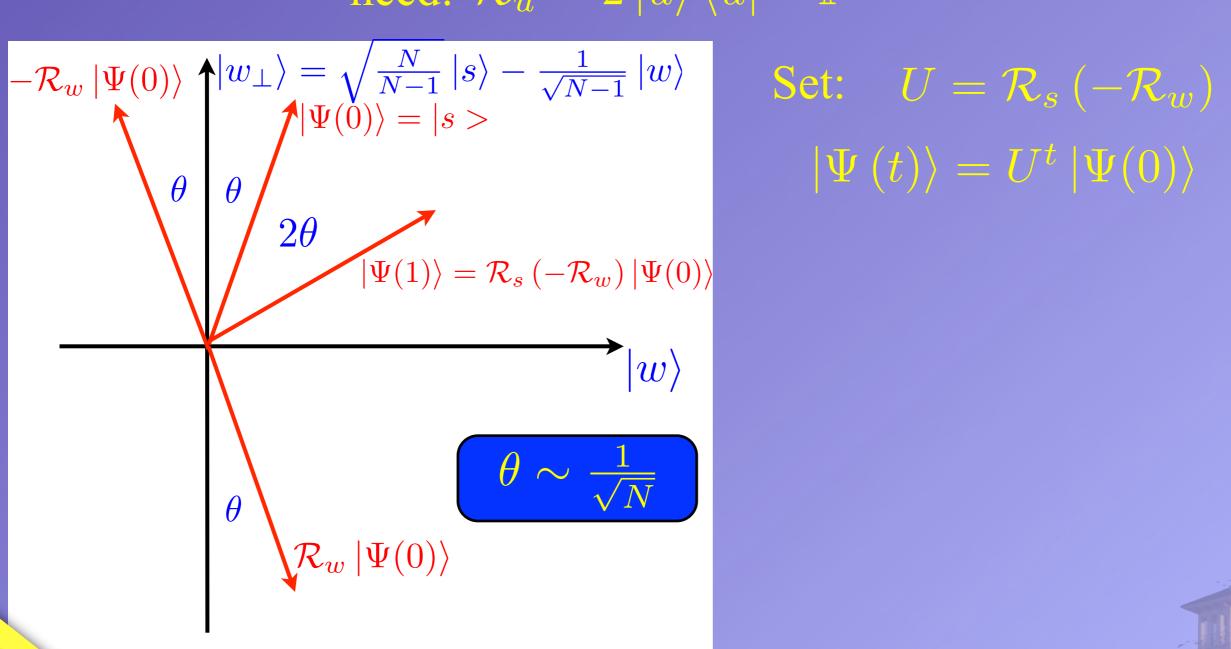


Set:
$$U = \mathcal{R}_s \left(-\mathcal{R}_w \right)$$



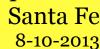
$$|\Psi(0)\rangle = |s\rangle = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} |i\rangle$$
, goal: $T_{min} = \min_t \{|\langle \Psi(t)|w\rangle| \sim 1\}$

need:
$$\mathcal{R}_u = 2|u\rangle\langle u| - \mathbb{I}$$



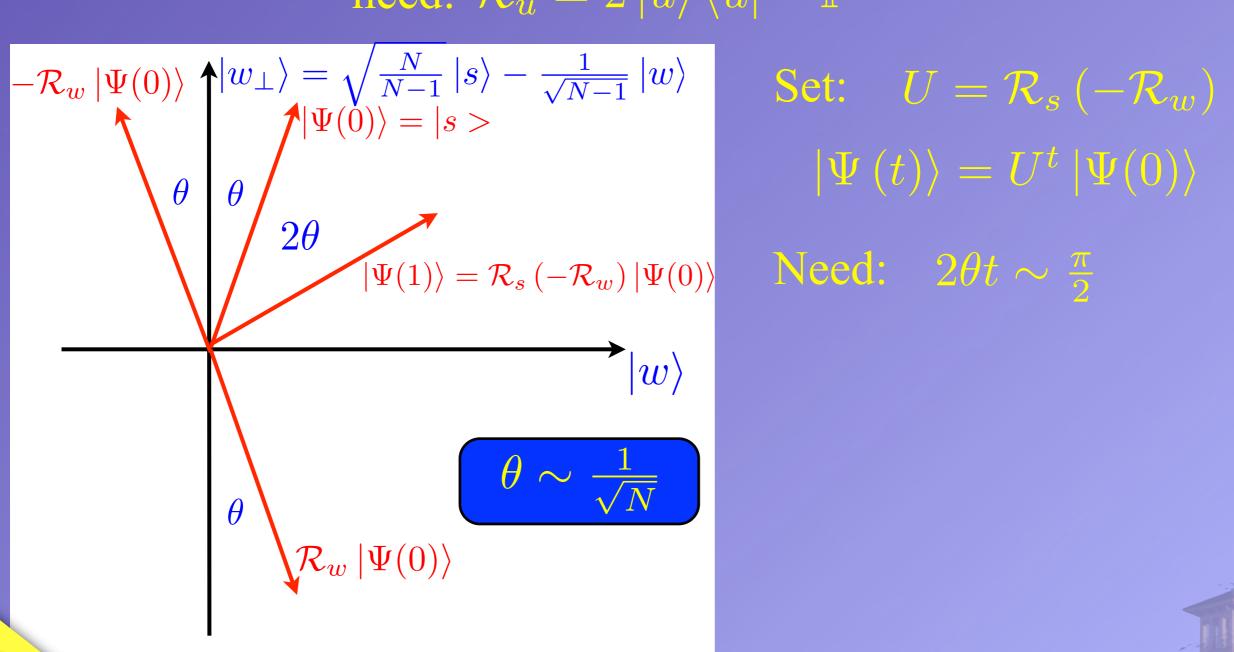
Set:
$$U = \mathcal{R}_s \left(-\mathcal{R}_w \right)$$

 $|\Psi \left(t \right) \rangle = U^t |\Psi \left(0 \right) \rangle$



$$|\Psi(0)\rangle = |s\rangle = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} |i\rangle$$
, goal: $T_{min} = \min_t \{|\langle \Psi(t)|w\rangle| \sim 1\}$

need:
$$\mathcal{R}_u = 2 |u\rangle \langle u| - \mathbb{I}$$



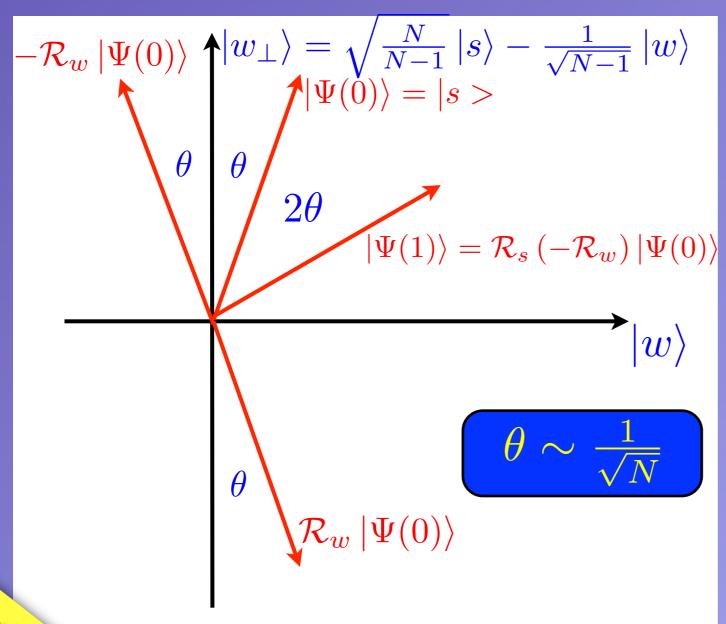
Set:
$$U = \mathcal{R}_s \left(-\mathcal{R}_w \right)$$

 $|\Psi \left(t \right) \rangle = U^t |\Psi \left(0 \right) \rangle$

Need: $2\theta t \sim \frac{\pi}{2}$

$$|\Psi(0)\rangle = |s\rangle = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} |i\rangle$$
, goal: $T_{min} = \min_t \{|\langle \Psi(t)|w\rangle| \sim 1\}$

need:
$$\mathcal{R}_u = 2|u\rangle\langle u| - \mathbb{I}$$



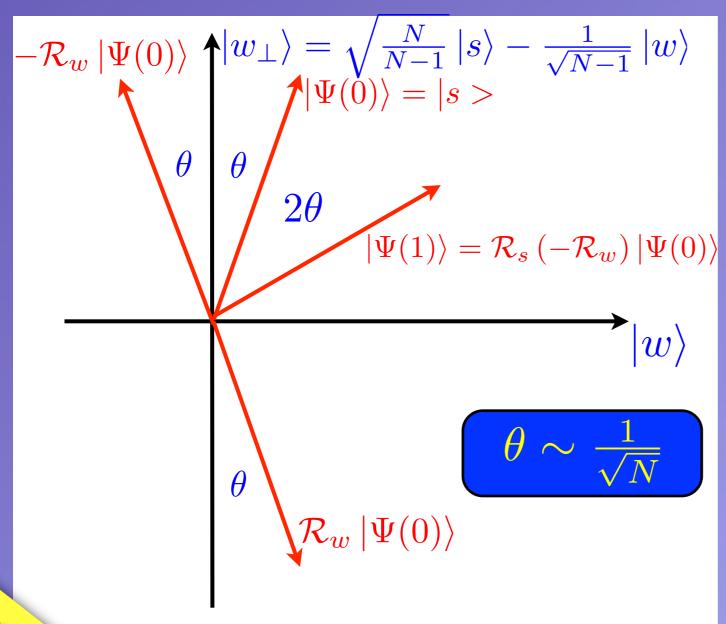
Set:
$$U = \mathcal{R}_s \left(-\mathcal{R}_w \right)$$

 $|\Psi \left(t \right) \rangle = U^t |\Psi \left(0 \right) \rangle$

Need:
$$2\theta t \sim \frac{\pi}{2}$$
 $T_{min} \sim \sqrt{N}$

$$|\Psi(0)\rangle = |s\rangle = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} |i\rangle$$
, goal: $T_{min} = \min_t \{|\langle \Psi(t)|w\rangle| \sim 1\}$

need:
$$\mathcal{R}_u = 2|u\rangle\langle u| - \mathbb{I}$$



Set:
$$U = \mathcal{R}_s \left(-\mathcal{R}_w \right)$$

 $|\Psi \left(t \right) \rangle = U^t |\Psi \left(0 \right) \rangle$

Need:
$$2\theta t \sim \frac{\pi}{2}$$

$$T_{min} \sim \sqrt{N}$$

$$\mathcal{R}_s = rac{2}{N} egin{bmatrix} 1 & \dots & 1 \ dots & \ddots & dots \ 1 & \dots & 1 \end{bmatrix}$$

Renormalization Group for Quantum Walks

Deep Computation
Santa Fe

8-10-2013

Discrete-Time Q-Walk in a Geometry:

www.physics.emory.edu/faculty/boettcher/

Discrete-Time Q-Walk in a Geometry:

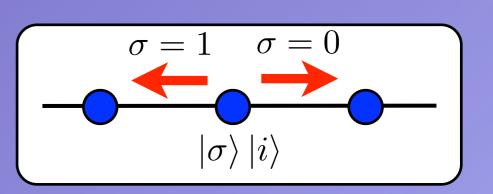
Master Eq.:
$$|\Psi_{t+1}\rangle = \mathcal{U} |\Psi_t\rangle$$

Discrete-Time Q-Walk in a Geometry:

Master Eq.:
$$|\Psi_{t+1}\rangle = \mathcal{U} |\Psi_t\rangle$$

Propagator:
$$\mathcal{U} = S(\mathcal{C} \otimes \mathcal{I})$$

[Ambainis et al ('01)]

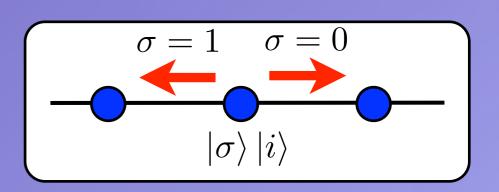


Discrete-Time Q-Walk in a Geometry:

Master Eq.: $|\Psi_{t+1}\rangle = \mathcal{U} |\Psi_t\rangle$

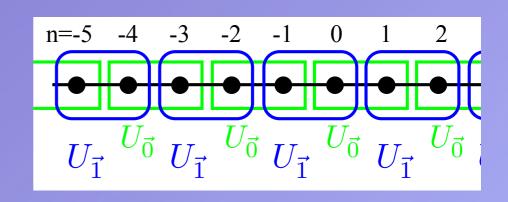
Propagator: $\mathcal{U} = S(\mathcal{C} \otimes \mathcal{I})$

[Ambainis et al ('01)]



$$\mathcal{U} = U_{\vec{1}}U_{\vec{0}}$$

[Patel et al ('05), Falk ('13)]



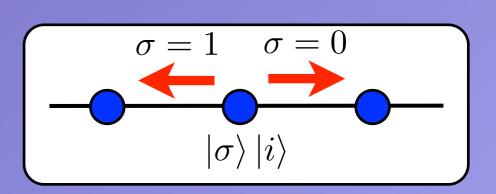
$$U_{\vec{0},\vec{1}} = 2 \sum_{n} \Pi_{n}^{\vec{0},\vec{1}} - \mathcal{I}$$

Coined Quantum Walk on a Line

Master Eq.:
$$|\Psi_{t+1}\rangle = \mathcal{U} |\Psi_t\rangle$$

Propagator:
$$\mathcal{U} = S(\mathcal{C} \otimes \mathcal{I})$$

[Ambainis et al ('01)]

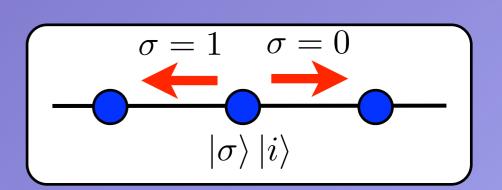


Coined Quantum Walk on a Line

Master Eq.:
$$|\Psi_{t+1}\rangle = \mathcal{U} |\Psi_t\rangle$$

Propagator:
$$\mathcal{U} = S(\mathcal{C} \otimes \mathcal{I})$$

[Ambainis et al ('01)]



$$\mathcal{U} = \sum_{n} \sum_{m} \mathcal{P}_{n,m} \Delta_{n,m} |n\rangle \langle m|$$

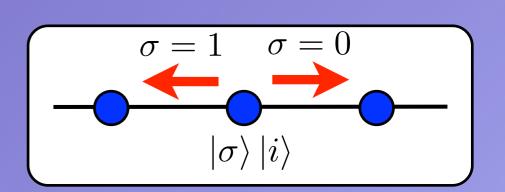
Boettcher

Coined Quantum Walk on a Line

Master Eq.:
$$|\Psi_{t+1}\rangle = \mathcal{U} |\Psi_t\rangle$$

Propagator:
$$\mathcal{U} = S(\mathcal{C} \otimes \mathcal{I})$$

[Ambainis et al ('01)]



$$\mathcal{U} = \sum_{n} \sum_{m} \mathcal{P}_{n,m} \Delta_{n,m} |n\rangle \langle m|$$

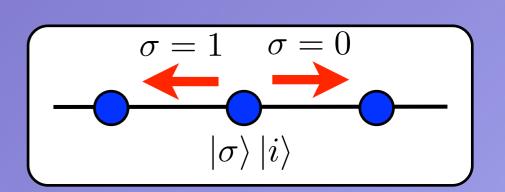
Laplacian:
$$\Delta_{n,m}$$

Coined Quantum Walk on a Line

Master Eq.:
$$|\Psi_{t+1}\rangle = \mathcal{U} |\Psi_t\rangle$$

Propagator:
$$\mathcal{U} = S(\mathcal{C} \otimes \mathcal{I})$$

[Ambainis et al ('01)]



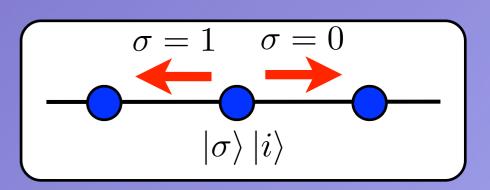
$$\mathcal{U} = \sum_{n} \sum_{m} \mathcal{P}_{n,m} \Delta_{n,m} |n\rangle \langle m|$$

Laplacian:
$$\Delta_{n,m}$$

Hopping Parameters:
$$\mathcal{P}_{n,m}$$

Master Eq.:
$$|\Psi_{t+1}\rangle = \mathcal{U} |\Psi_t\rangle$$

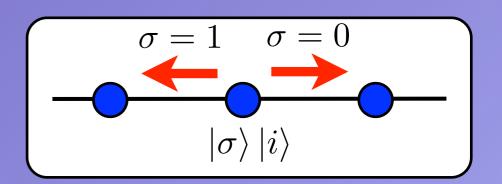
Propagator:
$$\mathcal{U} = S(\mathcal{C} \otimes \mathcal{I})$$



Coined Quantum Walk on a Line

Master Eq.: $|\Psi_{t+1}\rangle = \mathcal{U} |\Psi_t\rangle$

Propagator:
$$\mathcal{U} = S(\mathcal{C} \otimes \mathcal{I})$$

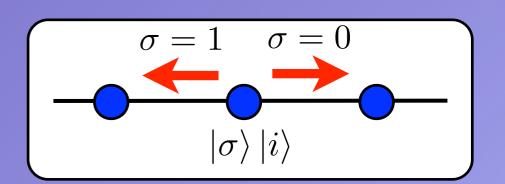


$$\mathcal{U} = \sum_{n} \left\{ A \left| n + 1 \right\rangle \left\langle n \right| + B \left| n - 1 \right\rangle \left\langle n \right| + M \left| n \right\rangle \left\langle n \right| \right\}$$

Coined Quantum Walk on a Line

Master Eq.:
$$|\Psi_{t+1}\rangle = \mathcal{U} |\Psi_t\rangle$$

Propagator:
$$\mathcal{U} = S(\mathcal{C} \otimes \mathcal{I})$$



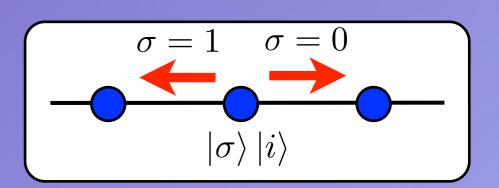
$$\mathcal{U} = \sum_{n} \left\{ A \left| n + 1 \right\rangle \left\langle n \right| + B \left| n - 1 \right\rangle \left\langle n \right| + M \left| n \right\rangle \left\langle n \right| \right\}$$

Unitarity:
$$\mathcal{U}^{\dagger}\mathcal{U}=\mathcal{I}$$

Coined Quantum Walk on a Line

Master Eq.:
$$|\Psi_{t+1}\rangle = \mathcal{U} |\Psi_t\rangle$$

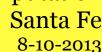
Propagator:
$$\mathcal{U} = S(\mathcal{C} \otimes \mathcal{I})$$



$$\mathcal{U} = \sum_{n} \left\{ A \left| n + 1 \right\rangle \left\langle n \right| + B \left| n - 1 \right\rangle \left\langle n \right| + M \left| n \right\rangle \left\langle n \right| \right\}$$

Unitarity:
$$\mathcal{U}^\dagger\mathcal{U}=\mathcal{I} \implies \mathcal{I}_d=A^\dagger A+B^\dagger B+M^\dagger M$$
 $0=A^\dagger M+M^\dagger B,$

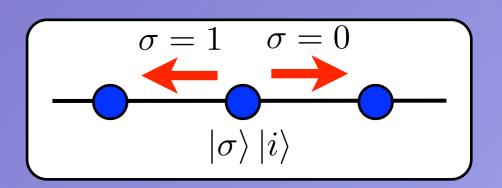
$$0 = A^{\dagger}B$$



Coined Quantum Walk on a Line

Master Eq.:
$$|\Psi_{t+1}\rangle = \mathcal{U} |\Psi_t\rangle$$

Propagator:
$$\mathcal{U} = S(\mathcal{C} \otimes \mathcal{I})$$



1d-line:

$$\mathcal{U} = \sum_{n} \left\{ A \left| n + 1 \right\rangle \left\langle n \right| + B \left| n - 1 \right\rangle \left\langle n \right| + M \left| n \right\rangle \left\langle n \right| \right\}$$

Unitarity:
$$\mathcal{U}^{\dagger}\mathcal{U} = \mathcal{I} \implies \mathcal{I}_d = A^{\dagger}A + B^{\dagger}B + M^{\dagger}M$$

$$0 = A^{\dagger}M + M^{\dagger}B,$$

Can **not** be scalar!

$$0 = A^{\dagger}B$$

<u>Stefan</u>

Coined Quantum Walk on a Line

Master Eq.: $|\Psi_{t+1}\rangle = \mathcal{U} |\Psi_t\rangle$

Propagator:
$$\mathcal{U} = S(\mathcal{C} \otimes \mathcal{I})$$

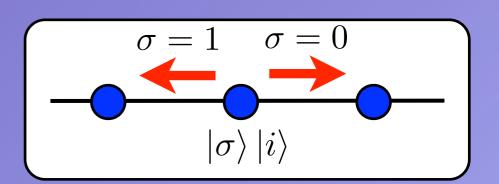


$$\mathcal{U} = \sum_{n} \left\{ A \left| n + 1 \right\rangle \left\langle n \right| + B \left| n - 1 \right\rangle \left\langle n \right| + M \left| n \right\rangle \left\langle n \right| \right\}$$

Coined Quantum Walk on a Line

Master Eq.:
$$|\Psi_{t+1}\rangle = \mathcal{U} |\Psi_t\rangle$$

Propagator:
$$\mathcal{U} = S(\mathcal{C} \otimes \mathcal{I})$$



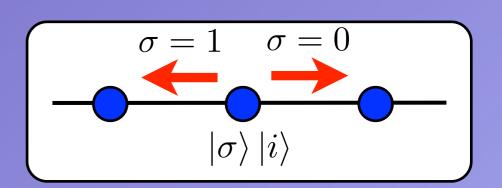
$$\mathcal{U} = \sum_{n} \left\{ A \left| n + 1 \right\rangle \left\langle n \right| + B \left| n - 1 \right\rangle \left\langle n \right| + M \left| n \right\rangle \left\langle n \right| \right\}$$

Hopping:
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \mathcal{C}$$
 $B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathcal{C}$ $M = 0$

Coined Quantum Walk on a Line

Master Eq.: $|\Psi_{t+1}\rangle = \mathcal{U} |\Psi_t\rangle$

Propagator: $\mathcal{U} = S(\mathcal{C} \otimes \mathcal{I})$



1d-line:

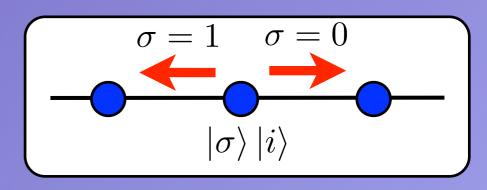
$$\mathcal{U} = \sum_{n} \left\{ A \left| n + 1 \right\rangle \left\langle n \right| + B \left| n - 1 \right\rangle \left\langle n \right| + M \left| n \right\rangle \left\langle n \right| \right\}$$

Hopping:
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \mathcal{C}$$
 $B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathcal{C}$ $M = 0$

Q-Coin:
$$\mathcal{C} = \begin{pmatrix} \cos \rho & e^{i\phi} \sin \rho \\ e^{i\theta} \sin \rho & -e^{i(\phi+\theta)} \cos \rho \end{pmatrix}$$

<u>Stefan</u>

Master Eq.:
$$|\Psi_{t+1}\rangle = \mathcal{U} |\Psi_t\rangle$$



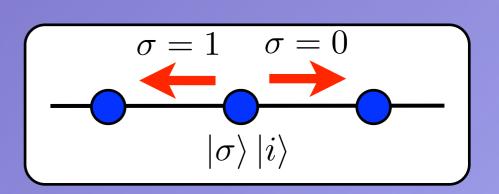
Coined Quantum Walk on a Line

Master Eq.:
$$|\Psi_{t+1}\rangle = \mathcal{U} |\Psi_t\rangle$$

Real-Space:

$$\langle n|\Psi_{t+1}\rangle = \sum_{m} \langle n|\mathcal{U}|m\rangle \langle m|\Psi_{t}\rangle$$

$$\psi_{n,t+1} = \sum_{m} U_{n,m} \psi_{m,t}$$



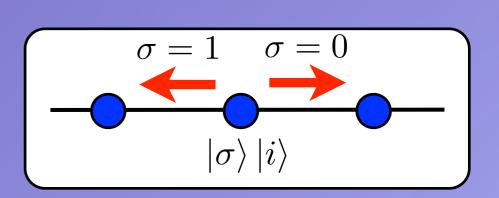
Coined Quantum Walk on a Line

Master Eq.:
$$|\Psi_{t+1}\rangle = \mathcal{U} |\Psi_t\rangle$$

Real-Space:

$$\langle n|\Psi_{t+1}\rangle = \sum_{m} \langle n|\mathcal{U}|m\rangle \langle m|\Psi_{t}\rangle$$

$$\psi_{n,t+1} = \sum_{m} U_{n,m} \psi_{m,t}$$



$$\psi_{n,t+1} = A \psi_{n-1,t} + B \psi_{n+1,t} + M \psi_{n,t}$$

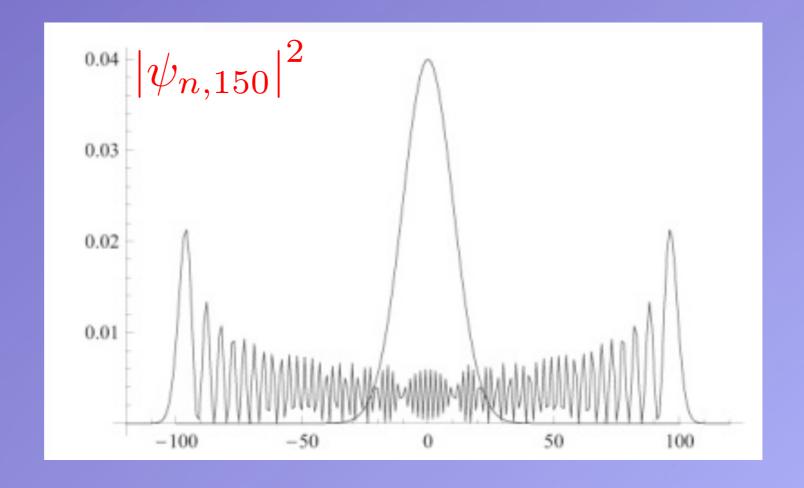
Master Eq.:
$$|\Psi_{t+1}\rangle = \mathcal{U} |\Psi_t\rangle$$

Master Eq.:
$$|\Psi_{t+1}\rangle = \mathcal{U} |\Psi_t\rangle$$

Real-Space:
$$\psi_{n,t+1} = A \psi_{n-1,t} + B \psi_{n+1,t} + M \psi_{n,t}$$

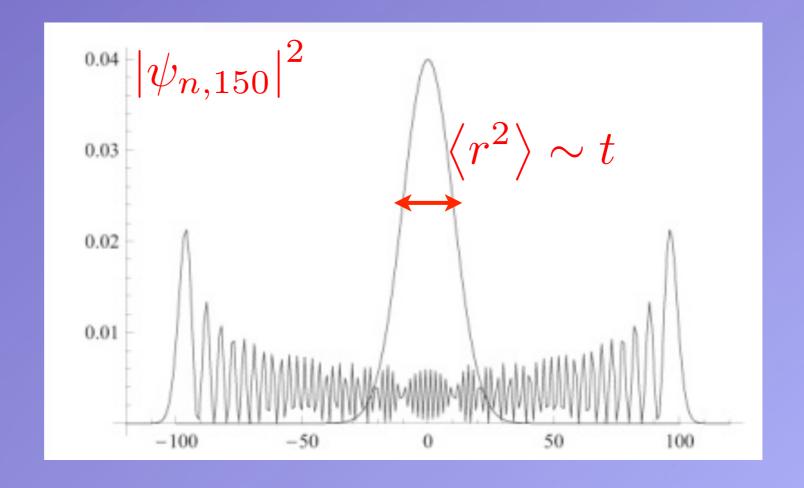
Master Eq.:
$$|\Psi_{t+1}\rangle = \mathcal{U} |\Psi_t\rangle$$

Real-Space:
$$\psi_{n,t+1} = A \psi_{n-1,t} + B \psi_{n+1,t} + M \psi_{n,t}$$



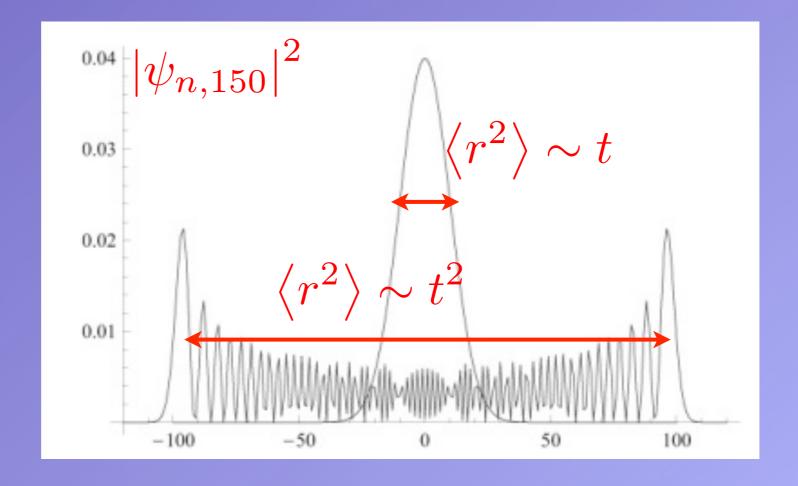
Master Eq.:
$$|\Psi_{t+1}\rangle = \mathcal{U} |\Psi_t\rangle$$

Real-Space:
$$\psi_{n,t+1} = A \psi_{n-1,t} + B \psi_{n+1,t} + M \psi_{n,t}$$



Master Eq.:
$$|\Psi_{t+1}\rangle = \mathcal{U} |\Psi_t\rangle$$

Real-Space:
$$\psi_{n,t+1} = A \psi_{n-1,t} + B \psi_{n+1,t} + M \psi_{n,t}$$



Master Eq.:
$$|\Psi_{t+1}\rangle = \mathcal{U} |\Psi_t\rangle$$

Real-Space:
$$\psi_{n,t+1} = A \psi_{n-1,t} + B \psi_{n+1,t} + M \psi_{n,t}$$

Coined Quantum Walk on a Line

Master Eq.: $|\Psi_{t+1}\rangle = \mathcal{U} |\Psi_t\rangle$

Real-Space: $\psi_{n,t+1} = A \psi_{n-1,t} + B \psi_{n+1,t} + M \psi_{n,t}$

$$\psi_{n,t} \sim \sum_{\mu} \int_{0}^{2\pi} \frac{dk}{2\pi} f_{\mu}(k) e^{-it\mathcal{H}_{\mu}(k)}$$

$$\mathcal{H}_{\mu}\left(k\right) = -vk + \omega_{\mu}\left(k\right)$$

$$v = \frac{n}{t}, \qquad \tilde{\mathcal{U}}(k) |\omega_{\mu}\rangle = e^{-i\omega_{\mu}(k)} |\omega_{\mu}\rangle$$

Coined Quantum Walk on a Line

Master Eq.:
$$|\Psi_{t+1}\rangle = \mathcal{U} |\Psi_t\rangle$$

Real-Space:
$$\psi_{n,t+1} = A \psi_{n-1,t} + B \psi_{n+1,t} + M \psi_{n,t}$$

Santa Fe 8-10-2013

Coined Quantum Walk on a Line

Master Eq.:
$$|\Psi_{t+1}\rangle = \mathcal{U} |\Psi_t\rangle$$

Real-Space:
$$\psi_{n,t+1} = A \psi_{n-1,t} + B \psi_{n+1,t} + M \psi_{n,t}$$

Fourier:

$$\psi_{n,t} \sim \sum_{\mu} \int_{0}^{2\pi} \frac{dk}{2\pi} f_{\mu}(k) e^{-it\mathcal{H}_{\mu}(k)}$$

$$\mathcal{H}_{\mu}\left(k\right) = -vk + \omega_{\mu}\left(k\right)$$

Saddle Points:

$$k_{\pm} = \arccos\left(\frac{v \tan \rho}{\sqrt{1 - v^2}}\right), \qquad v < v_{\text{max}} = |\cos \rho|$$

Coined Quantum Walk on a Line

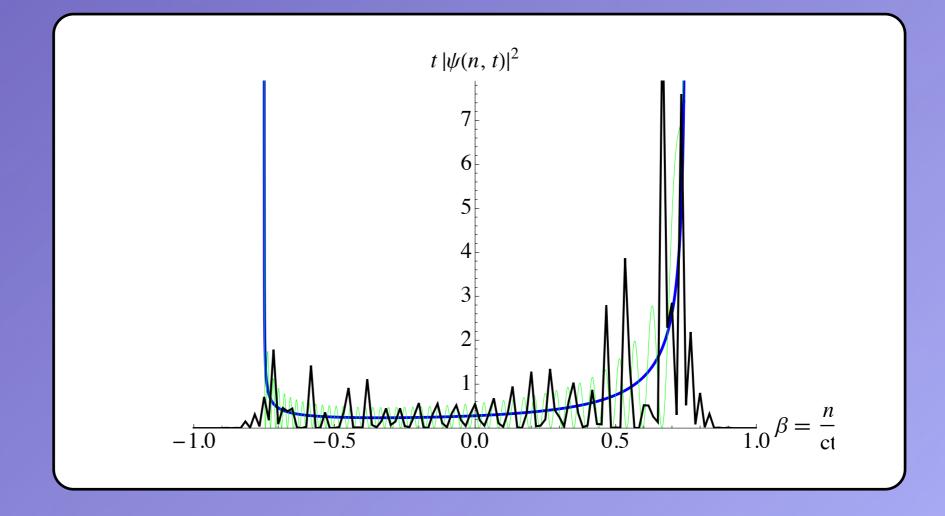
Master Eq.:
$$|\Psi_{t+1}\rangle = \mathcal{U} |\Psi_t\rangle$$

Real-Space:
$$\psi_{n,t+1} = A \psi_{n-1,t} + B \psi_{n+1,t} + M \psi_{n,t}$$

Coined Quantum Walk on a Line

Master Eq.: $|\Psi_{t+1}\rangle = \mathcal{U} |\Psi_t\rangle$

Real-Space: $\psi_{n,t+1} = A \psi_{n-1,t} + B \psi_{n+1,t} + M \psi_{n,t}$

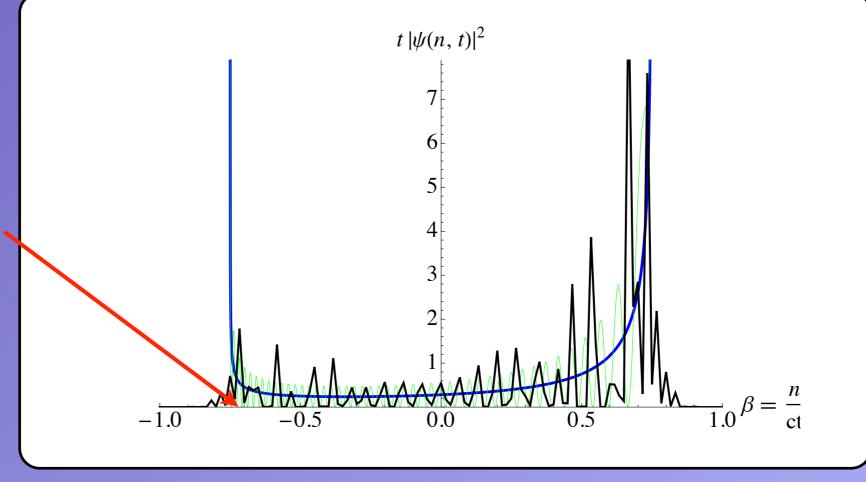


Coined Quantum Walk on a Line

Master Eq.:
$$|\Psi_{t+1}\rangle = \mathcal{U} |\Psi_t\rangle$$

Real-Space:
$$\psi_{n,t+1} = A \psi_{n-1,t} + B \psi_{n+1,t} + M \psi_{n,t}$$

$$v_{\text{max}} = |\cos \rho| = \frac{3}{4}$$



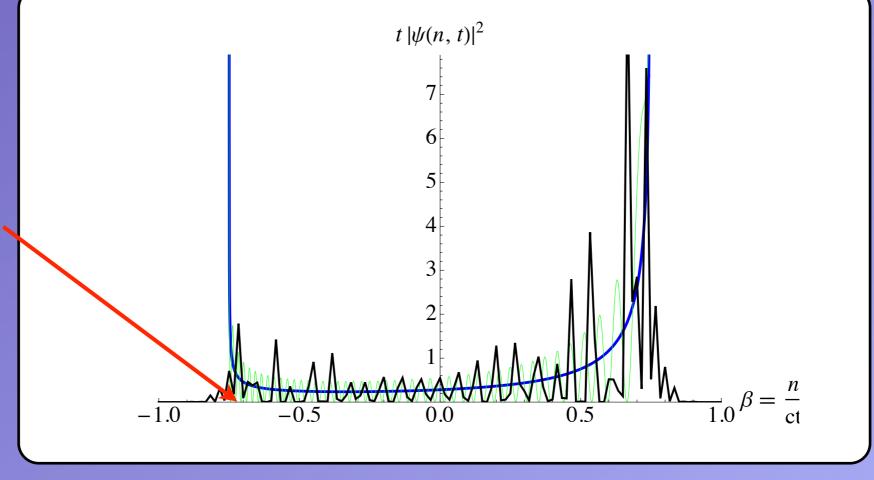
Coined Quantum Walk on a Line

Master Eq.:
$$|\Psi_{t+1}\rangle = \mathcal{U} |\Psi_t\rangle$$

Real-Space:
$$\psi_{n,t+1} = A \psi_{n-1,t} + B \psi_{n+1,t} + M \psi_{n,t}$$

Fourier:

$$v_{\text{max}} = |\cos \rho| = \frac{3}{4}$$



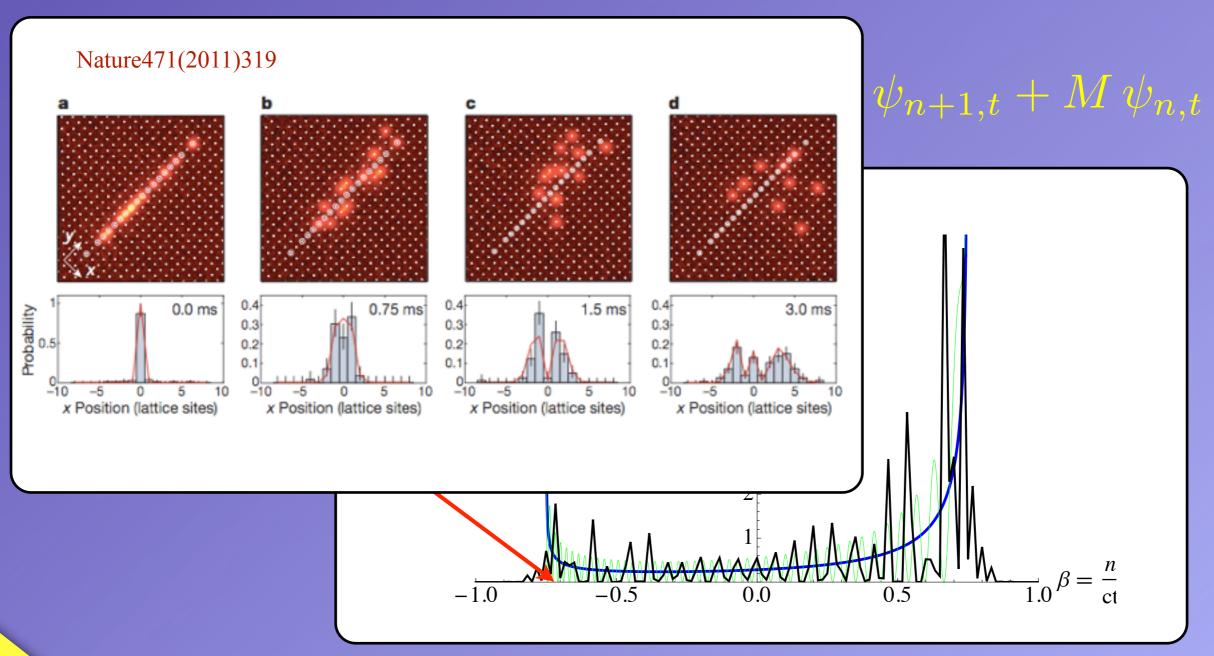
$$\sigma \sim \langle v \rangle_{\rho} t$$
, $\langle v \rangle_{\rho} = \sqrt{(1 - \sin \rho) \sin \rho}$

<u>Stefan</u>

Boettcher

Coined Quantum Walk on a Line

Master Eq.: $|\Psi_{t+1}\rangle = \mathcal{U} |\Psi_t\rangle$



Stefan

Boettcher

 $\sigma \sim \langle v \rangle_{\rho} t$, $\langle v \rangle_{\rho} = \sqrt{(1 - \sin \rho) \sin \rho}$

Renormalization Group for Quantum Walks

Deep Computation
Santa Fe

8-10-2013

RG for Quantum Algorithms

RG for Quantum Algorithms

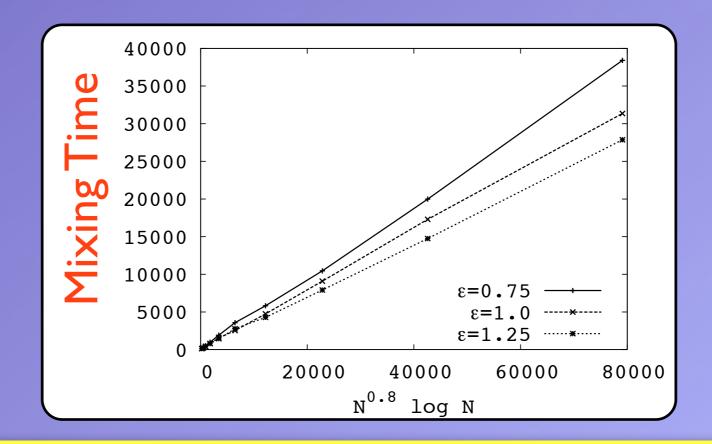
Motivation

- Is $\langle r^2 \rangle \sim t^2$ on all translation-invariant Lattices?
- Is that true for all propagators/coins?
- Connection to Continuum QW?
- How sensitive is Universality to broken trans.-inv.?
- How sensitive is Universality to Disorder?
- Generally: What constitutes a Universality Class?

RG for Quantum Algorithms

Motivation

- Is $\langle r^2 \rangle \sim t^2$ on all translation-invariant Lattices?
- Is that true for all propagators/coins?
- Connection to Continuum QW?
- How sensitive is Universality to broken trans.-inv.?
- How sensitive is Universality to Disorder?
- Generally: What constitutes a Universality Class?



RG for Quantum Walks on a Line

Master Eq.:
$$|\Psi_{t+1}\rangle = \mathcal{U} |\Psi_t\rangle$$

Real-Space:
$$\psi_{n,t+1} = A \psi_{n-1,t} + B \psi_{n+1,t} + M \psi_{n,t}$$

Santa Fe 8-10-2013

RG for Quantum Walks on a Line

Master Eq.:
$$|\Psi_{t+1}\rangle = \mathcal{U} |\Psi_t\rangle$$

Real-Space:
$$\psi_{n,t+1} = A \psi_{n-1,t} + B \psi_{n+1,t} + M \psi_{n,t}$$

Laplace:
$$\tilde{\psi}_n = \sum_{t=0}^{\infty} z^t \, \psi_{n,t}$$

$$\tilde{\psi}_n = zA\,\tilde{\psi}_{n-1} + zB\,\tilde{\psi}_{n+1} + zM\,\tilde{\psi}_n + \psi_{IC}\delta_{n,0}$$

RG for Quantum Walks on a Line

Master Eq.:
$$|\Psi_{t+1}\rangle = \mathcal{U} |\Psi_t\rangle$$

Real-Space:
$$\psi_{n,t+1} = A \psi_{n-1,t} + B \psi_{n+1,t} + M \psi_{n,t}$$

Laplace:
$$\tilde{\psi}_n = \sum_{t=0}^{\infty} z^t \, \psi_{n,t}$$

$$\tilde{\psi}_n = zA\,\tilde{\psi}_{n-1} + zB\,\tilde{\psi}_{n+1} + zM\,\tilde{\psi}_n + \psi_{IC}\delta_{n,0}$$

Wanted:

$$\langle r^2 \rangle \sim t^{\frac{2}{d_w}}$$

Renormalization Group for Quantum Walks

Deep Computation

Santa Fe 8-10-2013

RG for Quantum Walks on a Line

www.physics.emory.edu/faculty/boettcher/

RG for Quantum Walks on a Line

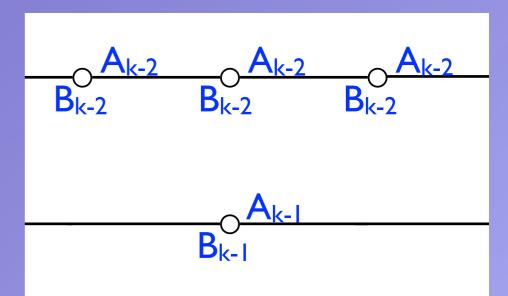
Hierarchy of Algebraic Eq.:

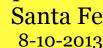
$$\tilde{\psi}_{n-1} = A_k \, \tilde{\psi}_{n-2} + B_k \, \tilde{\psi}_n + M_k \, \tilde{\psi}_{n-1}$$

$$\tilde{\psi}_n = A_k \, \tilde{\psi}_{n-1} + B_k \, \tilde{\psi}_{n+1} + M_k \, \tilde{\psi}_n$$

$$\tilde{\psi}_{n+1} = A_k \, \tilde{\psi}_n + B_k \, \tilde{\psi}_{n+2} + M_k \, \tilde{\psi}_{n+1}$$

$$A_0 = zA, \qquad B_0 = zB, \qquad M_0 = zM$$





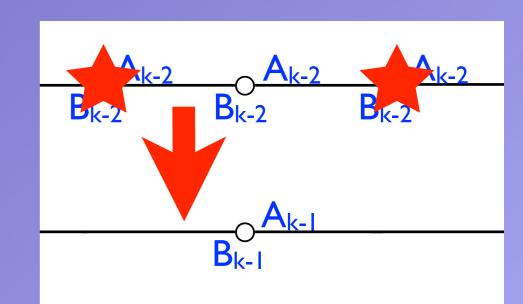
RG for Quantum Walks on a Line

Hierarchy of Algebraic Eq.:

$$\tilde{\psi}_{n-1} = A_k \, \tilde{\psi}_{n-2} + B_k \, \tilde{\psi}_n + M_k \, \tilde{\psi}_{n-1}$$

$$\tilde{\psi}_n = A_k \, \tilde{\psi}_{n-1} + B_k \, \tilde{\psi}_{n+1} + M_k \, \tilde{\psi}_n$$

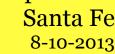
$$\tilde{\psi}_{n+1} = A_k \, \tilde{\psi}_n + B_k \, \tilde{\psi}_{n+2} + M_k \, \tilde{\psi}_{n+1}$$



$$\tilde{\psi}_n = A_{k+1} \, \tilde{\psi}_{n-2} + B_{k+1} \, \tilde{\psi}_{n+2} + M_{k+1} \, \tilde{\psi}_n$$

$$A_{k+1} = A_k (I - M_k)^{-1} A_k, \quad B_{k+1} = B_k (I - M_k)^{-1} B_k,$$

 $M_{k+1} = M_k + A_k (I - M_k)^{-1} B_k + B_k (I - M_k)^{-1} A_k$



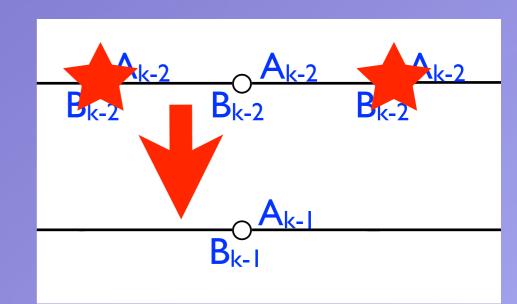
RG for Quantum Walks on a Line

Hierarchy of Algebraic Eq.:

$$\tilde{\psi}_{n-1} = A_k \, \tilde{\psi}_{n-2} + B_k \, \tilde{\psi}_n + M_k \, \tilde{\psi}_{n-1}$$

$$\tilde{\psi}_n = A_k \, \tilde{\psi}_{n-1} + B_k \, \tilde{\psi}_{n+1} + M_k \, \tilde{\psi}_n$$

$$\tilde{\psi}_{n+1} = A_k \, \tilde{\psi}_n + B_k \, \tilde{\psi}_{n+2} + M_k \, \tilde{\psi}_{n+1}$$



$$\tilde{\psi}_n = A_{k+1} \, \tilde{\psi}_{n-2} + B_{k+1} \, \tilde{\psi}_{n+2} + M_{k+1} \, \tilde{\psi}_n$$

RG-Flow:

$$A_{k+1} = A_k (I - M_k)^{-1} A_k, \quad B_{k+1} = B_k (I - M_k)^{-1} B_k,$$

 $M_{k+1} = M_k + A_k (I - M_k)^{-1} B_k + B_k (I - M_k)^{-1} A_k$

Renormalization Group for Quantum Walks

Deep Computation

Santa Fe 8-10-2013

RG for Quantum Walks on a Line

www.physics.emory.edu/faculty/boettcher/

RG for Quantum Walks on a Line

Example: RG for Classical Random Walk

$$a_{k+1} = \frac{a_k^2}{1 - m_k}, \quad b_{k+1} = \frac{b_k^2}{1 - m_k}, \quad m_{k+1} = m_k + \frac{2a_k b_k}{1 - m_k}$$

$$a_0 = zp,$$
 $b_0 = z(1-p),$ $m_0 = 0$

RG for Quantum Walks on a Line

Example: RG for Classical Random Walk

$$a_{k+1} = \frac{a_k^2}{1 - m_k}, \quad b_{k+1} = \frac{b_k^2}{1 - m_k}, \quad m_{k+1} = m_k + \frac{2a_k b_k}{1 - m_k}$$

$$J_k = \det \left[\frac{\partial (a_{k+1}, b_{k+1}, \dots)}{\partial (a_k, b_k, \dots)} \right], \qquad \lambda = \max_{\text{EV}} \{J_\infty\}, \quad d_w = \log_2 \lambda$$

$$a_{\infty} = b_{\infty} = m_{\infty} = 0$$

$$a_{\infty} = 0$$
, $b_{\infty} = 1 - m_{\infty}$, or $a_{\infty} = 1 - m_{\infty}$, $b_{\infty} = 0$

$$a_{\infty} \sim b_{\infty} \sim \alpha_k \, \epsilon^k \to 0, \quad m_{\infty} \sim 1 - \mu_k \, \epsilon^k, \quad (\epsilon < 1)$$

RG for Quantum Walks on a Line

Example: RG for Classical Random Walk

$$a_{k+1} = \frac{a_k^2}{1 - m_k}, \quad b_{k+1} = \frac{b_k^2}{1 - m_k}, \quad m_{k+1} = m_k + \frac{2a_k b_k}{1 - m_k}$$

Jacobian:

$$J_k = \det \left[\frac{\partial (a_{k+1}, b_{k+1}, \dots)}{\partial (a_k, b_k, \dots)} \right], \qquad \lambda = \max_{\text{EV}} \{J_\infty\}, \quad d_w = \log_2 \lambda$$

Fixed Point 1:

$$a_{\infty} = b_{\infty} = m_{\infty} = 0$$
 \Longrightarrow $d_{w} = \infty$

$$a_{\infty} = 0$$
, $b_{\infty} = 1 - m_{\infty}$, or $a_{\infty} = 1 - m_{\infty}$, $b_{\infty} = 0$

$$a_{\infty} \sim b_{\infty} \sim \alpha_k \, \epsilon^k \to 0, \quad m_{\infty} \sim 1 - \mu_k \, \epsilon^k, \quad (\epsilon < 1)$$

RG for Quantum Walks on a Line

Example: RG for Classical Random Walk

$$a_{k+1} = \frac{a_k^2}{1 - m_k}, \quad b_{k+1} = \frac{b_k^2}{1 - m_k}, \quad m_{k+1} = m_k + \frac{2a_k b_k}{1 - m_k}$$

Jacobian:

$$J_k = \det \left[\frac{\partial (a_{k+1}, b_{k+1}, \dots)}{\partial (a_k, b_k, \dots)} \right], \qquad \lambda = \max_{\text{EV}} \{J_\infty\}, \quad d_w = \log_2 \lambda$$

Fixed Point 1:

$$a_{\infty} = b_{\infty} = m_{\infty} = 0$$
 \Longrightarrow $d_{w} = \infty$

Fixed Point 2:

$$a_{\infty}^{12} = 0$$
, $b_{\infty} = 1 - m_{\infty}$, or $a_{\infty} = 1 - m_{\infty}$, $b_{\infty} = 0$ \Longrightarrow $d_{w}=1$

$$a_{\infty} \sim b_{\infty} \sim \alpha_k \, \epsilon^k \to 0, \quad m_{\infty} \sim 1 - \mu_k \, \epsilon^k, \quad (\epsilon < 1)$$

RG for Quantum Walks on a Line

Example: RG for Classical Random Walk

$$a_{k+1} = \frac{a_k^2}{1 - m_k}, \quad b_{k+1} = \frac{b_k^2}{1 - m_k}, \quad m_{k+1} = m_k + \frac{2a_k b_k}{1 - m_k}$$

Jacobian:

$$J_k = \det \left[\frac{\partial (a_{k+1}, b_{k+1}, \dots)}{\partial (a_k, b_k, \dots)} \right], \qquad \lambda = \max_{\text{EV}} \{J_\infty\}, \quad d_w = \log_2 \lambda$$

Fixed Point 1:

$$a_{\infty} = b_{\infty} = m_{\infty} = 0$$
 \Longrightarrow $d_{w} = \infty$

$$\implies d_w = \infty$$

Fixed Point 2:

$$a_{\infty}^{12} = 0, \quad b_{\infty} = 1 - m_{\infty}, \quad \text{or} \quad a_{\infty} = 1 - m_{\infty}, \quad b_{\infty} = 0 \implies d_{w} = 1$$

Fixed Point 3:

$$a_{\infty} \sim b_{\infty} \sim \alpha_k \, \epsilon^k \to 0, \quad m_{\infty} \sim 1 - \mu_k \, \epsilon^k, \quad (\epsilon < 1) \implies d_{w}=2$$

RG for Quantum Walks on a Line

RG-Flow?

$$A_{k+1} = A_k (I - M_k)^{-1} A_k, \quad B_{k+1} = B_k (I - M_k)^{-1} B_k,$$

$$M_{k+1} = M_k + A_k (I - M_k)^{-1} B_k + B_k (I - M_k)^{-1} A_k$$

RG for Quantum Walks on a Line

RG-Flow?

$$A_{k+1} = A_k (I - M_k)^{-1} A_k, \quad B_{k+1} = B_k (I - M_k)^{-1} B_k,$$

 $M_{k+1} = M_k + A_k (I - M_k)^{-1} B_k + B_k (I - M_k)^{-1} A_k$

1) Guess
$$P_k = \begin{pmatrix} a_k & 0 \\ 0 & 0 \end{pmatrix}$$
, $Q_k = \begin{pmatrix} 0 & 0 \\ 0 & -a_k \end{pmatrix}$, $R_k = \begin{pmatrix} 0 & b_k \\ b_k & 0 \end{pmatrix}$

RG for Quantum Walks on a Line

RG-Flow?

$$A_{k+1} = A_k (I - M_k)^{-1} A_k, \quad B_{k+1} = B_k (I - M_k)^{-1} B_k,$$

$$M_{k+1} = M_k + A_k (I - M_k)^{-1} B_k + B_k (I - M_k)^{-1} A_k$$

1) Guess
$$P_k = \begin{pmatrix} a_k & 0 \\ 0 & 0 \end{pmatrix}$$
, $Q_k = \begin{pmatrix} 0 & 0 \\ 0 & -a_k \end{pmatrix}$, $R_k = \begin{pmatrix} 0 & b_k \\ b_k & 0 \end{pmatrix}$

2) Insert Coin
$$A_k = P_k \mathcal{C}, \quad B_k = Q_k \mathcal{C}, \quad M_k = R_k \mathcal{C},$$

RG for Quantum Walks on a Line

RG-Flow?

$$A_{k+1} = A_k (I - M_k)^{-1} A_k, \quad B_{k+1} = B_k (I - M_k)^{-1} B_k,$$

 $M_{k+1} = M_k + A_k (I - M_k)^{-1} B_k + B_k (I - M_k)^{-1} A_k$

1) Guess
$$P_k = \begin{pmatrix} a_k & 0 \\ 0 & 0 \end{pmatrix}$$
, $Q_k = \begin{pmatrix} 0 & 0 \\ 0 & -a_k \end{pmatrix}$, $R_k = \begin{pmatrix} 0 & b_k \\ b_k & 0 \end{pmatrix}$

2) Insert Coin
$$A_k = P_k \mathcal{C}, \quad B_k = Q_k \mathcal{C}, \quad M_k = R_k \mathcal{C}.$$

3) Renormalize
$$\{A_{k+1}, B_{k+1}, \ldots\} = \mathcal{RG}(\{A_k, B_k, \ldots\})$$

RG for Quantum Walks on a Line

RG-Flow?

$$A_{k+1} = A_k (I - M_k)^{-1} A_k, \quad B_{k+1} = B_k (I - M_k)^{-1} B_k,$$

$$M_{k+1} = M_k + A_k (I - M_k)^{-1} B_k + B_k (I - M_k)^{-1} A_k$$

1) Guess
$$P_k = \begin{pmatrix} a_k & 0 \\ 0 & 0 \end{pmatrix}$$
, $Q_k = \begin{pmatrix} 0 & 0 \\ 0 & -a_k \end{pmatrix}$, $R_k = \begin{pmatrix} 0 & b_k \\ b_k & 0 \end{pmatrix}$

2) Insert Coin
$$A_k = P_k \mathcal{C}, \quad B_k = Q_k \mathcal{C}, \quad M_k = R_k \mathcal{C},$$

3) Renormalize
$$\{A_{k+1}, B_{k+1}, \ldots\} = \mathcal{RG}(\{A_k, B_k, \ldots\})$$

4) Withdraw Coin
$$P_{k+1} = A_{k+1}C^{-1}$$
, $Q_{k+1} = B_{k+1}C^{-1}$, $R_{k+1} = M_{k+1}C^{-1}$

RG for Quantum Walks on a Line

RG-Flow?

$$A_{k+1} = A_k (I - M_k)^{-1} A_k, \quad B_{k+1} = B_k (I - M_k)^{-1} B_k,$$

$$M_{k+1} = M_k + A_k (I - M_k)^{-1} B_k + B_k (I - M_k)^{-1} A_k$$

How to Parametrize? (Must satisfy Unitarity Condition!)

1) Guess
$$P_k = \begin{pmatrix} a_k & 0 \\ 0 & 0 \end{pmatrix}$$
, $Q_k = \begin{pmatrix} 0 & 0 \\ 0 & -a_k \end{pmatrix}$, $R_k = \begin{pmatrix} 0 & b_k \\ b_k & 0 \end{pmatrix}$

2) Insert Coin
$$A_k = P_k \mathcal{C}, \quad B_k = Q_k \mathcal{C}, \quad M_k = R_k \mathcal{C}.$$

3) Renormalize
$$\{A_{k+1}, B_{k+1}, \ldots\} = \mathcal{RG}(\{A_k, B_k, \ldots\})$$

4) Withdraw Coin
$$P_{k+1} = A_{k+1}C^{-1}$$
, $Q_{k+1} = B_{k+1}C^{-1}$, $R_{k+1} = M_{k+1}C^{-1}$

5) Identify
$$\{a_{k+1}, b_{k+1}, \ldots\} = \mathcal{RG}(\{a_k, b_k, \ldots\})$$

<u>Stefan</u>

RG for Quantum Walks on a Line

RG-Flow?

$$A_{k+1} = A_k (I - M_k)^{-1} A_k, \quad B_{k+1} = B_k (I - M_k)^{-1} B_k,$$

$$M_{k+1} = M_k + A_k (I - M_k)^{-1} B_k + B_k (I - M_k)^{-1} A_k$$

How to Parametrize? (Must satisfy Unitarity Condition!)

1) Guess
$$P_k = \begin{pmatrix} a_k & 0 \\ 0 & 0 \end{pmatrix}$$
, $Q_k = \begin{pmatrix} 0 & 0 \\ 0 & -a_k \end{pmatrix}$, $R_k = \begin{pmatrix} 0 & b_k \\ b_k & 0 \end{pmatrix}$

2) Insert Coin
$$A_k = P_k \mathcal{C}, \quad B_k = Q_k \mathcal{C}, \quad M_k = R_k \mathcal{C}.$$

3) Renormalize
$$\{A_{k+1}, B_{k+1}, \ldots\} = \mathcal{RG}(\{A_k, B_k, \ldots\})$$

4) Withdraw Coin
$$P_{k+1} = A_{k+1}C^{-1}$$
, $Q_{k+1} = B_{k+1}C^{-1}$, $R_{k+1} = M_{k+1}C^{-1}$

RG-Flow!

$$\{a_{k+1}, b_{k+1}, \ldots\} = \mathcal{RG}\left(\{a_k, b_k, \ldots\}\right)$$

RG for Quantum Walks on a Line

RG-Flow:

$$a_{k+1} = \frac{a_k^2 \cos \rho}{1 - 2b_k \sin \rho + b_k^2}, \quad b_{k+1} = b_k + \frac{a_k^2 (b_k - \sin \rho)}{1 - 2b_k \sin \rho + b_k^2}$$

RG for Quantum Walks on a Line

RG-Flow:

$$a_{k+1} = \frac{a_k^2 \cos \rho}{1 - 2b_k \sin \rho + b_k^2}, \quad b_{k+1} = b_k + \frac{a_k^2 (b_k - \sin \rho)}{1 - 2b_k \sin \rho + b_k^2}$$

$$J_k = \det \left[\frac{\partial (a_{k+1}, b_{k+1}, \dots)}{\partial (a_k, b_k, \dots)} \right], \qquad \lambda = \max_{\text{EV}} \{J_\infty\}, \quad d_w = \log_2 \lambda$$

RG for Quantum Walks on a Line

RG-Flow:

$$a_{k+1} = \frac{a_k^2 \cos \rho}{1 - 2b_k \sin \rho + b_k^2}, \quad b_{k+1} = b_k + \frac{a_k^2 (b_k - \sin \rho)}{1 - 2b_k \sin \rho + b_k^2}$$

$$J_k = \det \left[\frac{\partial (a_{k+1}, b_{k+1}, \dots)}{\partial (a_k, b_k, \dots)} \right], \qquad \lambda = \max_{\text{EV}} \{J_\infty\}, \quad d_w = \log_2 \lambda$$

Trivial FP:
$$a_{\infty} = b_{\infty} = 0$$
 $\Longrightarrow d_{\mathrm{w}} = \infty$

$$\implies d_w = \infty$$

RG for Quantum Walks on a Line

RG-Flow:

$$a_{k+1} = \frac{a_k^2 \cos \rho}{1 - 2b_k \sin \rho + b_k^2}, \quad b_{k+1} = b_k + \frac{a_k^2 (b_k - \sin \rho)}{1 - 2b_k \sin \rho + b_k^2}$$

$$J_k = \det \left[\frac{\partial (a_{k+1}, b_{k+1}, \dots)}{\partial (a_k, b_k, \dots)} \right], \qquad \lambda = \max_{\text{EV}} \{J_\infty\}, \quad d_w = \log_2 \lambda$$

Trivial FP:
$$a_{\infty} = b_{\infty} = 0$$
 \Longrightarrow $d_{\mathrm{w}} = \infty$

$$\implies d_w = \infty$$

Nontrivial FP:
$$a_{\infty} = \cos
ho, \qquad b_{\infty} = \sin
ho \qquad \Longrightarrow \ \mathrm{d_w} = 1$$

$$b_{\infty} = \sin \rho$$

$$\implies$$
 d_w=1

RG for Quantum Walks on a Line

RG-Flow:

$$a_{k+1} = \frac{a_k^2 \cos \rho}{1 - 2b_k \sin \rho + b_k^2}, \quad b_{k+1} = b_k + \frac{a_k^2 (b_k - \sin \rho)}{1 - 2b_k \sin \rho + b_k^2}$$

Jacobian:

$$J_k = \det \left[\frac{\partial (a_{k+1}, b_{k+1}, \dots)}{\partial (a_k, b_k, \dots)} \right], \qquad \lambda = \max_{\text{EV}} \{J_\infty\}, \quad d_w = \log_2 \lambda$$

Trivial FP:
$$a_{\infty} = b_{\infty} = 0$$
 $\Longrightarrow d_{w} = \infty$

Nontrivial FP:
$$a_{\infty} = \cos \rho$$
, $b_{\infty} = \sin \rho$ $\Longrightarrow d_{w}=1$

Same as Exact!

<u>Stefan</u>

Deep Computation
Santa Fe

8-10-2013

Problems for Quantum Walk RG

Problem 1:

Stefan Boettcher

www.physics.emory.edu/faculty/boettcher/

Problems for Quantum Walk RG

Problem 1:

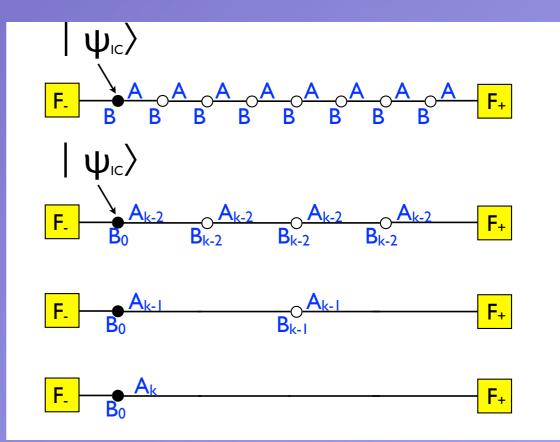
$$P_{i} = \sum_{t=0}^{\infty} |\psi_{i,t}|^{2} = \oint \frac{dz}{2\pi i z} |\tilde{\psi}_{i}(z)|^{2}$$

Problem 1:

$$P_{i} = \sum_{t=0}^{\infty} |\psi_{i,t}|^{2} = \oint \frac{dz}{2\pi iz} \left| \tilde{\psi}_{i} \left(z \right) \right|^{2}$$

$$\downarrow_{i=0}^{\text{F.}} \left| \tilde{\psi}_{i,t} \right|^{2} = \underbrace{\int \frac{dz}{2\pi iz}}_{\text{F.}} \left| \tilde{\psi}_{i} \left(z \right) \right|^{2}$$

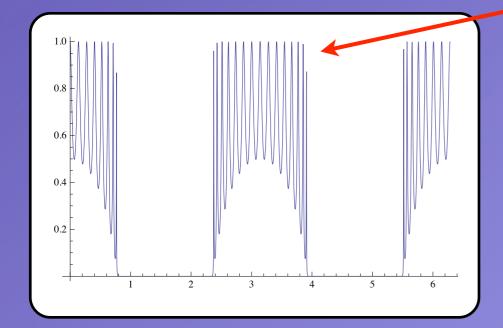
$$\downarrow_{i=0}^{\text{F.}} \left| \tilde{\psi}_{i,t} \right|^{2} = \underbrace{\int \frac{dz}{2\pi iz}}_{\text{F.}} \left| \tilde{\psi}_{i} \left(z \right) \right|^{2}$$

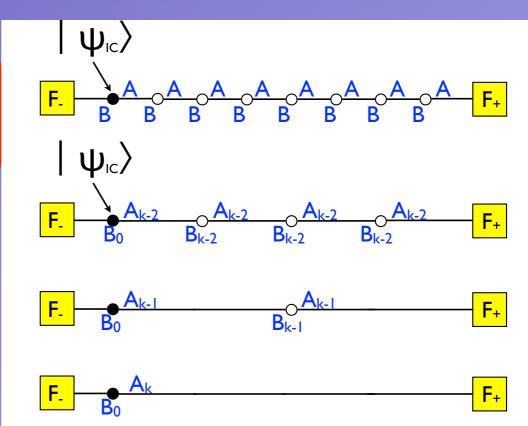


Problems for Quantum Walk RG

Problem 1:

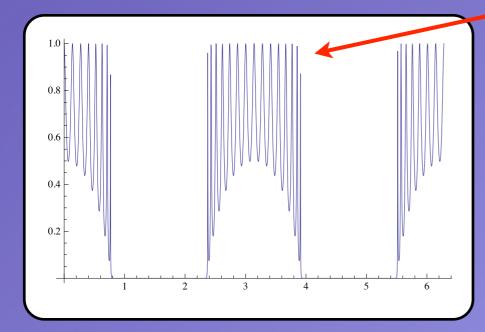
$$P_{i} = \sum_{t=0}^{\infty} |\psi_{i,t}|^{2} = \oint \frac{dz}{2\pi iz} \left[\left| \tilde{\psi}_{i} \left(z \right) \right|^{2} \right]$$

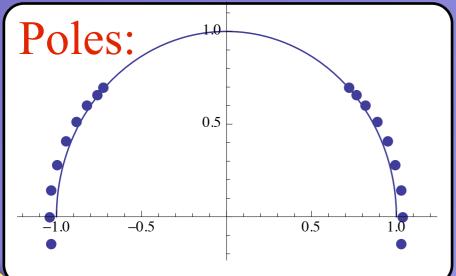


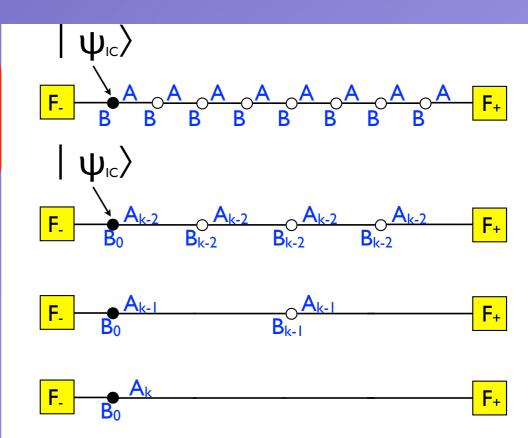


Problem 1:

$$P_{i} = \sum_{t=0}^{\infty} |\psi_{i,t}|^{2} = \oint \frac{dz}{2\pi iz} \left(\left| \tilde{\psi}_{i} \left(z \right) \right|^{2} \right)$$





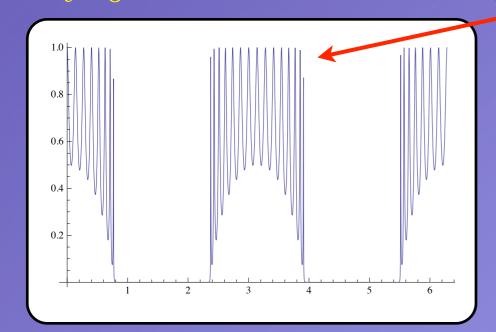


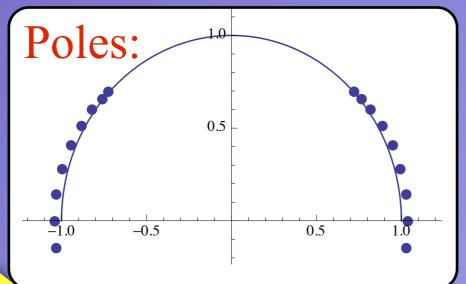
<u>Stefan</u>

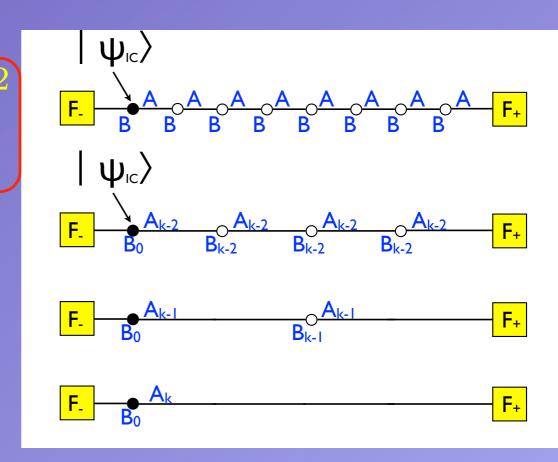
Problems for Quantum Walk RG

Problem 1:

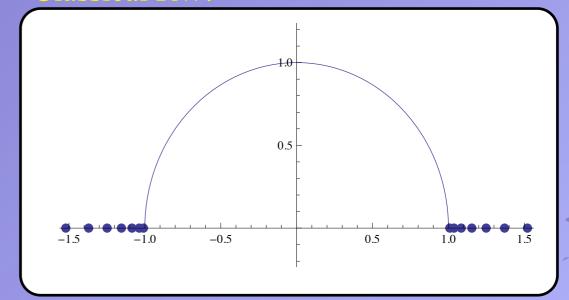
$$P_{i} = \sum_{t=0}^{\infty} \left| \psi_{i,t} \right|^{2} = \oint \frac{dz}{2\pi i z} \left[\left| \tilde{\psi}_{i} \right| \right]$$







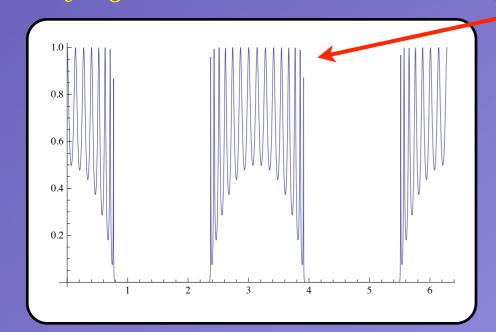
Classical RW:

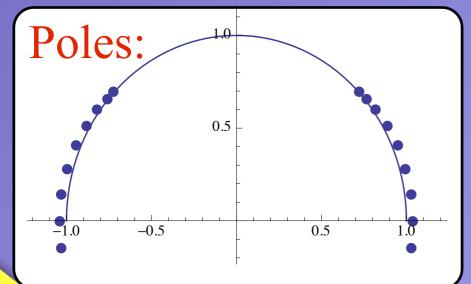


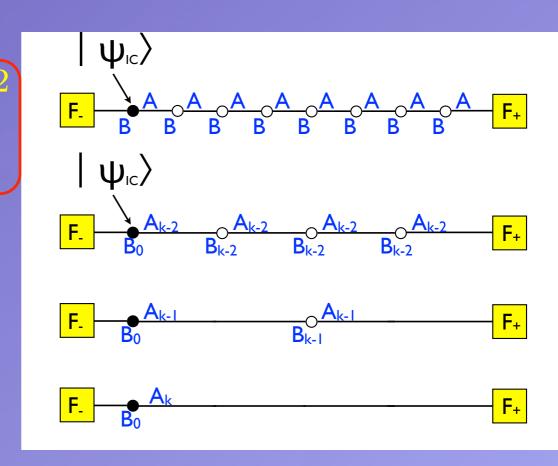
<u>Stefan</u>

Problem 1:

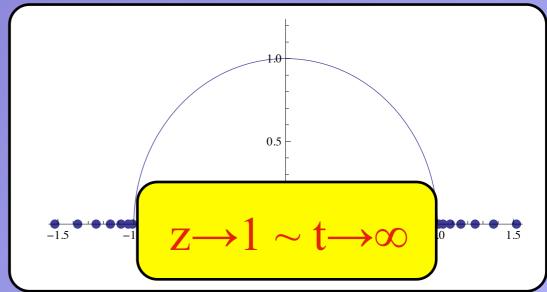
$$P_i = \sum_{t=0}^{\infty} |\psi_{i,t}|^2 = \oint \frac{dz}{2\pi iz} \left[|\tilde{\psi}_i|^2 \right]$$







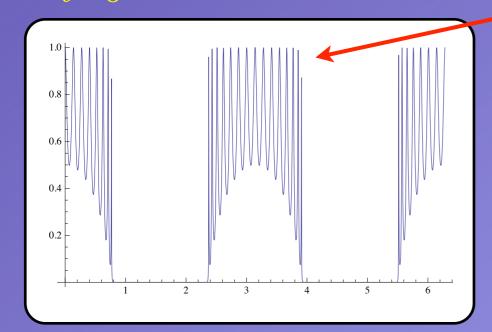
Classical RW:

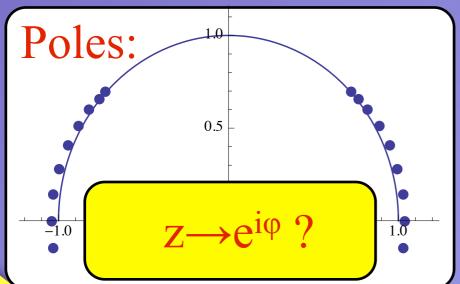


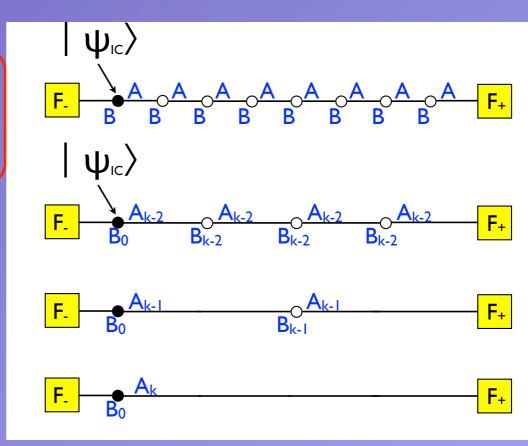
<u>Stefan</u>

Problem 1:

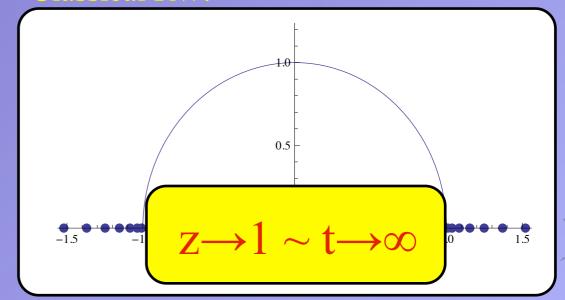
$$P_{i} = \sum_{t=0}^{\infty} |\psi_{i,t}|^{2} = \oint \frac{dz}{2\pi iz} \left[\left| \tilde{\psi}_{i} \left(z \right) \right|^{2} \right]$$







Classical RW:

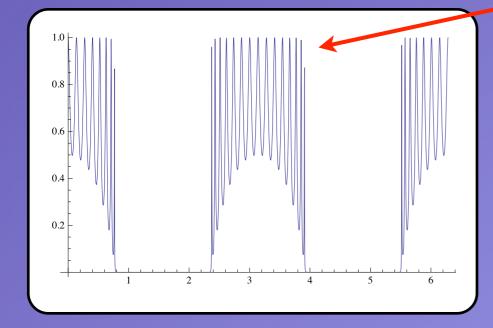


<u>Stefan</u>

Problems for Quantum Walk RG

Problem 1:

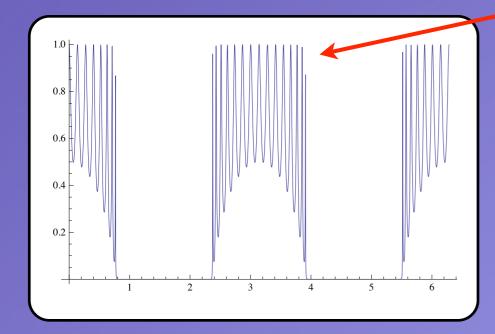
$$P_{i} = \sum_{t=0}^{\infty} |\psi_{i,t}|^{2} = \oint \frac{dz}{2\pi iz} \left[\left| \tilde{\psi}_{i} \left(z \right) \right|^{2} \right]$$



Problems for Quantum Walk RG

Problem 1:

$$P_{i} = \sum_{t=0}^{\infty} |\psi_{i,t}|^{2} = \oint \frac{dz}{2\pi iz} \left(\left| \tilde{\psi}_{i} \left(z \right) \right|^{2} \right)$$



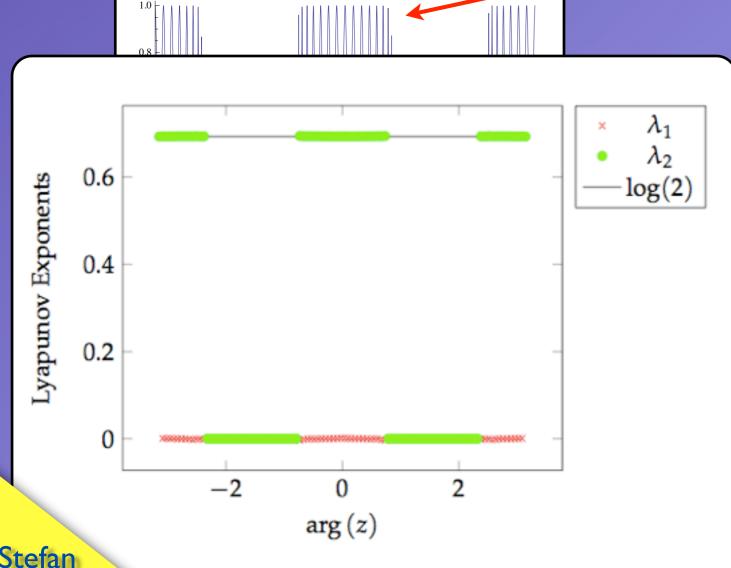
<u>Lyapunov:</u>

$$egin{aligned} \Lambda_k &= \prod_{i=0}^k J_i \ \lambda &= \lim_{k o \infty} \left(\Lambda_k^\dagger \Lambda_k
ight)^{rac{1}{2k}} \end{aligned}$$

Problems for Quantum Walk RG

Problem 1:

$$P_{i} = \sum_{t=0}^{\infty} |\psi_{i,t}|^{2} = \oint \frac{dz}{2\pi i z} \left[\left| \tilde{\psi}_{i} \left(z \right) \right|^{2} \right]$$



<u>Lyapunov:</u>

$$\Lambda_k = \prod_{i=0}^{\infty} J_i$$

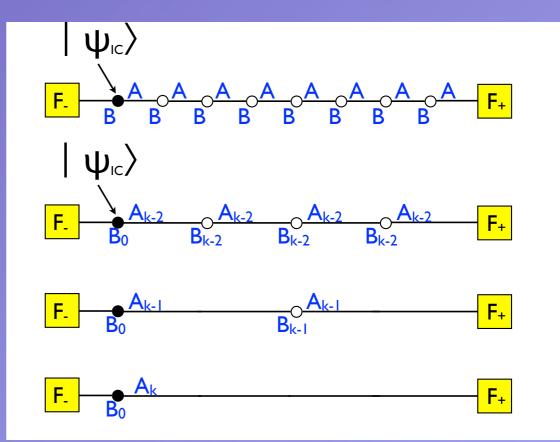
$$\lambda = \lim_{k \to \infty} \left(\Lambda_k^{\dagger} \Lambda_k \right)^{\frac{1}{2k}}$$

Problem 1:

$$P_{i} = \sum_{t=0}^{\infty} |\psi_{i,t}|^{2} = \oint \frac{dz}{2\pi iz} \left| \tilde{\psi}_{i} \left(z \right) \right|^{2}$$

$$\downarrow_{i=0}^{\text{F.}} \left| \tilde{\psi}_{i,t} \right|^{2} = \underbrace{\int \frac{dz}{2\pi iz}}_{\text{F.}} \left| \tilde{\psi}_{i} \left(z \right) \right|^{2}$$

$$\downarrow_{i=0}^{\text{F.}} \left| \tilde{\psi}_{i,t} \right|^{2} = \underbrace{\int \frac{dz}{2\pi iz}}_{\text{F.}} \left| \tilde{\psi}_{i} \left(z \right) \right|^{2}$$



Problems for Quantum Walk RG

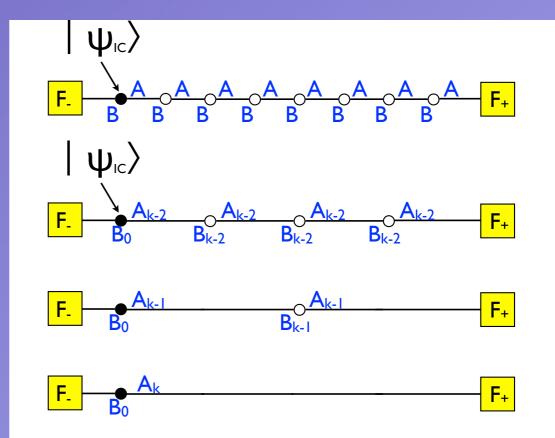
Problem 1:

$$P_{i} = \sum_{t=0}^{\infty} |\psi_{i,t}|^{2} = \oint \frac{dz}{2\pi iz} \left| \tilde{\psi}_{i} \left(z \right) \right|^{2}$$

$$\downarrow_{i} \left(z \right) \left| \tilde{\psi}_{i} \left(z \right) \right|^{2}$$

$$\downarrow_{i} \left(z \right) \left| \tilde{\psi}_{i} \left(z \right) \right|^{2}$$

Polya???



Problems for Quantum Walk RG

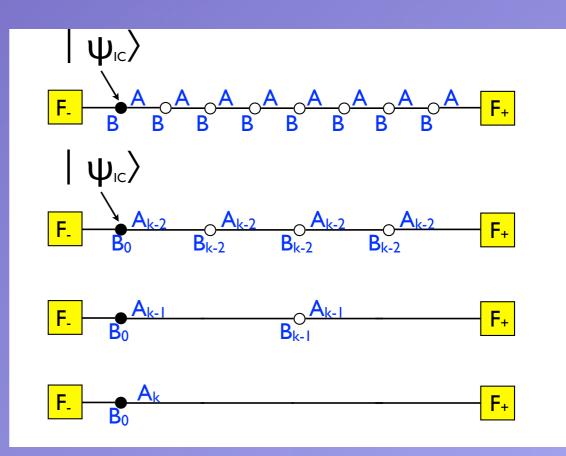
Problem 1:

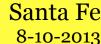
$$P_{i} = \sum_{t=0}^{\infty} |\psi_{i,t}|^{2} = \oint \frac{dz}{2\pi i z} \left| \tilde{\psi}_{i} \left(z \right) \right|^{2}$$

Polya???

Absorption in finite Domain:

$$F_{-} = \frac{1}{\sqrt{2}}$$





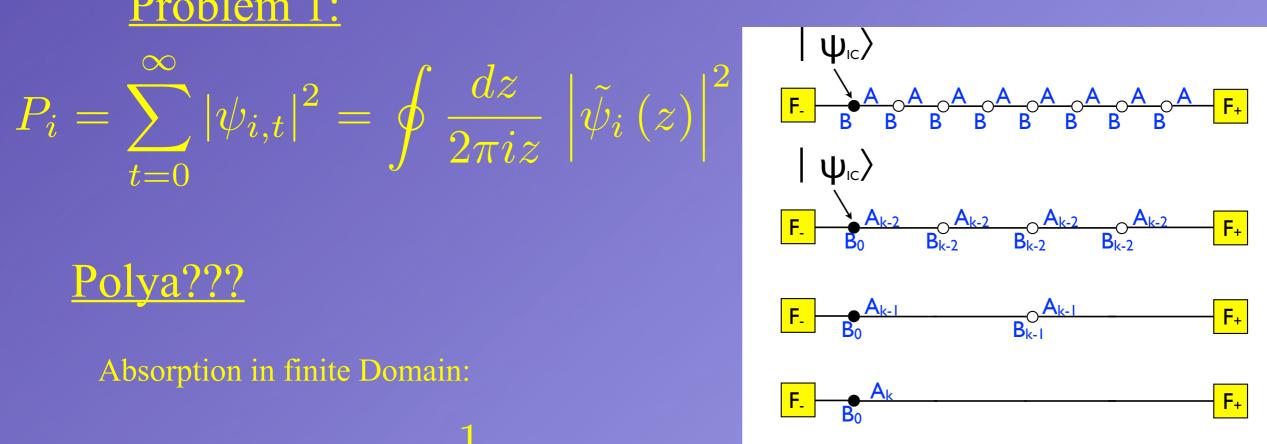
Problem 1:

$$P_{i} = \sum_{t=0}^{\infty} |\psi_{i,t}|^{2} = \oint \frac{dz}{2\pi i z} |\tilde{\psi}_{i}(z)|^{2}$$

Polya???

Absorption in finite Domain:

$$F_{-} = \frac{1}{\sqrt{2}}$$



Absorption on semi-infinite Line:

$$F'_{-}=rac{2}{\pi},\quad (<1 \text{ and } \neq F_{-} \text{ for } L \to \infty!)$$

Renormalization Group for Quantum Walks

Deep Computation

Santa Fe 8-10-2013

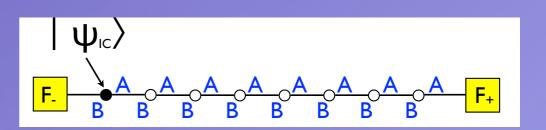
Problems for Quantum Walk RG

<u>Stefan</u>

Problems for Quantum Walk RG

Problem 2: Localization

For 3x3-Coin, finite fraction of QW never reaches the wall!

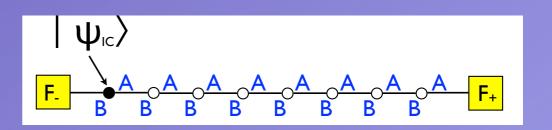


EMORY

Problems for Quantum Walk RG

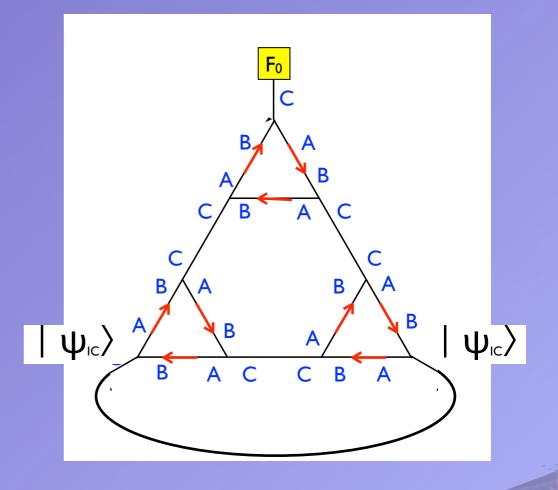
Problem 2: Localization

For 3x3-Coin, finite fraction of QW never reaches the wall!



On Dual-Sierpinski:

For Grover-Coin, <u>all</u> of QW never reaches the wall for $L \rightarrow \infty$!

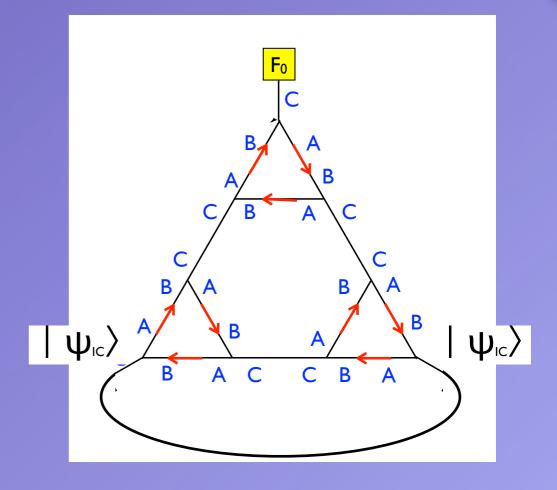


Problems for Quantum Walk RG

Problem 2: Localization

On Dual-Sierpinski:

For Grover-Coin, <u>all</u> of QW never reaches the wall for $L \rightarrow \infty$!

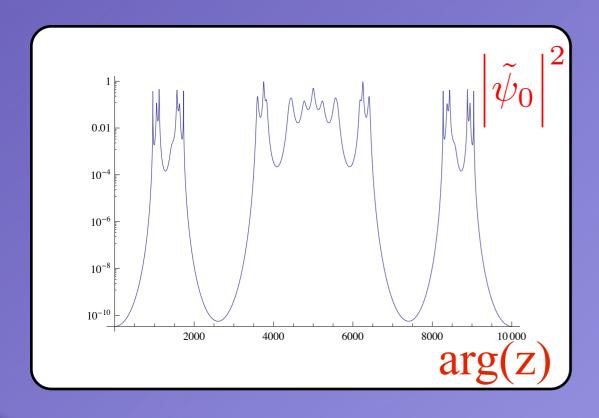


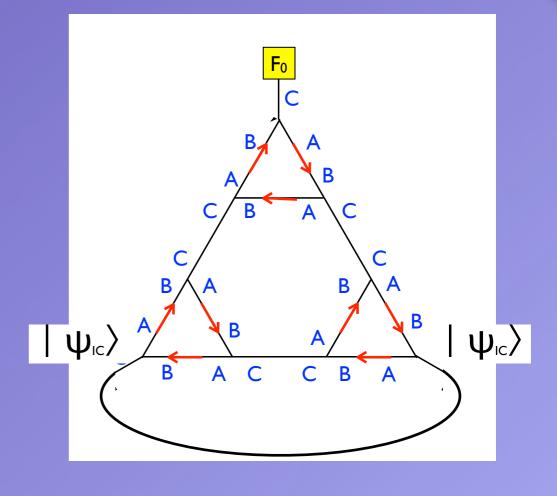
www.physics.emory.edu/faculty/boettcher/

Problem 2: Localization

On Dual-Sierpinski:

For Grover-Coin, <u>all</u> of QW never reaches the wall for $L \rightarrow \infty$!

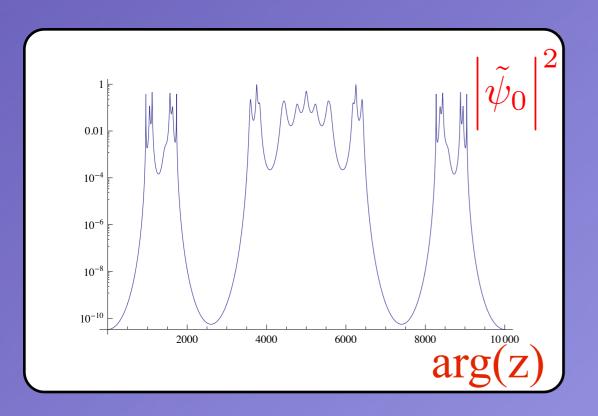


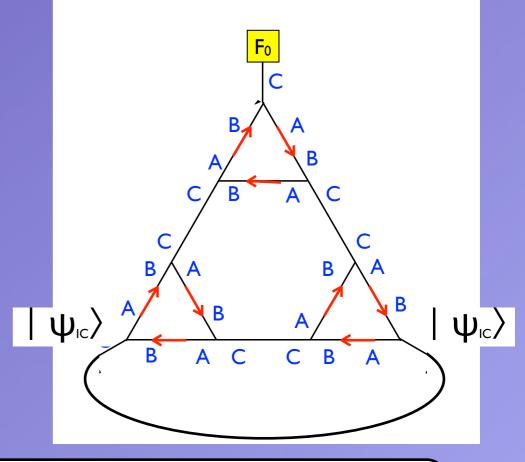


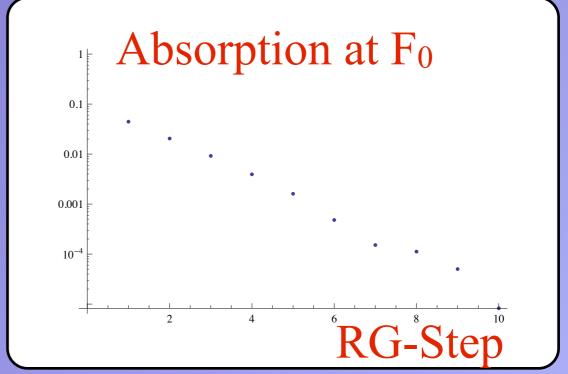
Problem 2: Localization

On Dual-Sierpinski:

For Grover-Coin, <u>all</u> of QW never reaches the wall for $L\rightarrow \infty$!





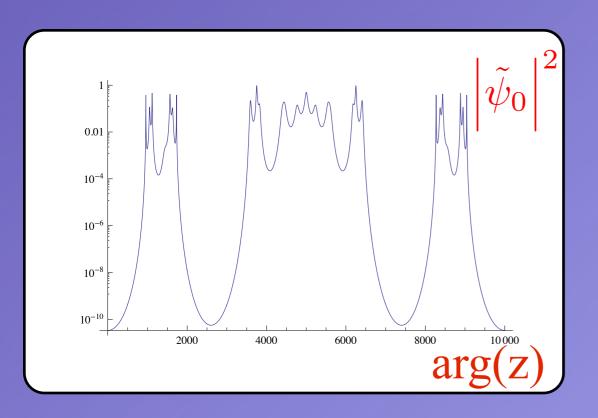


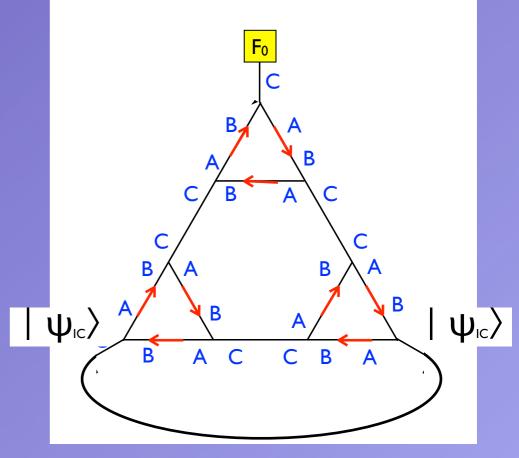
<u>Stefan</u>

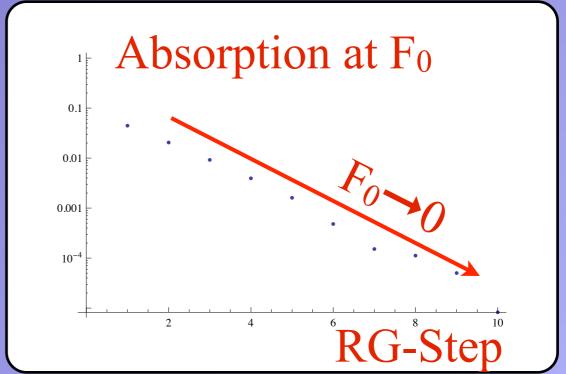
Problem 2: Localization

On Dual-Sierpinski:

For Grover-Coin, <u>all</u> of QW never reaches the wall for $L \rightarrow \infty$!







<u>Stefan</u>

EMORY

Renormalization Group for Quantum Walks

Deep Computation Santa Fe

8-10-2013

Conclusions:

Stefan Boettcher

www.physics.emory.edu/faculty/boettcher/

Conclusions:

RG for Quantum Walks

- Encouraging Results for 1d-Line (universal d_w=1)
- Complex Fixed Point Analysis
- Can Lyapunov Procedure give Finite-Size Scaling?
- Can Localization be included?

General:

• What is Universality in Quantum Algorithms?

