Information Theory for Tralfamadorians: The Anatomy of a Bit: A Rope of Sand

Ryan G. James
Christopher J. Ellison
James P. Crutchfield

Complexity Sciences Center
Department of Physics
University of California, Davis
One Shields Avenue, Davis, CA 95616

June 11, 2012
I’ve been ionized, but I’m okay now.

Say What?
I’ve been ionized, but I’m okay now.

Say What?

Kurt Vonnegut, *Slaughterhouse-Five*
I’ve been ionized, but I’m okay now.

Say What?

I am a Tralfamadorian, seeing all time as you might see a stretch of the Rocky Mountains.

- Kurt Vonnegut,
 Slaughterhouse-Five
Humans vs. Tralfamadorians

Humans:

I've been ionized, but I'm okay now.
I’ve been ionized, but I’m okay now.

Humans vs. Tralfamadorians

Humans:
- Time is sequential
Humans vs. Tralfamadorians

Humans:

- Time is sequential
- Use past measurements to inform us of the present
Humans vs. Tralfamadorians

Humans:
- Time is sequential
- Use past measurements to inform us of the present

Tralfamadorians:
Humans vs. Tralfamadorians

Humans:
- Time is sequential
- Use past measurements to inform us of the present

Tralfamadorians:
- Time is “random access”
Humans vs. Tralfamadorians

Humans:
- Time is sequential
- Use past measurements to inform us of the present

Tralfamadorians:
- Time is “random access”
- The present can be placed in the context of its past as well as its future
Setting the Scene: Processes

\[\mathcal{P} = (X, \mu) : \quad X \subseteq A^\mathbb{Z}, \sigma(\mathcal{P}) = \mathcal{P} \]

\[\cdots X_{-3} \ X_{-2} \ X_{-1} \ X_0 \ X_1 \ X_2 \ X_3 \ \cdots \]

Additional properties:
- Ergodic
- Stationary
- Discrete
Setting the Scene: Processes

\[\mathcal{P} = (X, \mu) : \quad X \subseteq A^\mathbb{Z}, \sigma(\mathcal{P}) = \mathcal{P} \]

\[\begin{array}{cccccccc}
 & & & & & & & \\
 & & & & & & & \\
 & & & & & & & \\
 & & & \text{present} & & & & \\
 & & & & & & & \\
 \vdots & X_{-3} & X_{-2} & X_{-1} & X_0 & X_1 & X_2 & X_3 & \cdots \\
 & & & & & & & \\
 & & & & & & & \\
 \end{array} \]

Additional properties:

- Ergodic
- Stationary
- Discrete
Setting the Scene: Processes

\[\mathcal{P} = (X, \mu) : \quad X \subseteq A^\mathbb{Z}, \sigma(\mathcal{P}) = \mathcal{P} \]

\[\begin{align*}
X_{-3} & \quad X_{-2} & \quad X_{-1} & \quad X_0 & \quad X_1 & \quad X_2 & \quad X_3 & \quad \cdots \\
\text{past} & \quad \text{present}
\end{align*} \]

Additional properties:
- Ergodic
- Stationary
- Discrete
Setting the Scene: Processes

\[\mathcal{P} = (X, \mu) : \quad X \subseteq \mathcal{A}^\mathbb{Z}, \sigma(\mathcal{P}) = \mathcal{P} \]

Additional properties:
- Ergodic
- Stationary
- Discrete
$H[X_0]$ is partitioned by the past and the future $\sigma \mu = I[X_0; X_1|X_0]$; evidence of internal states.
\(H[X_0] \) is partitioned by the past and the future \(\sigma \mu = I[X_0]; X_1|X_0] \): evidence of internal states.
$H[X_0]$ is partitioned by the past and the future $\sigma \mu = I[X:0; X_1:]$. Evidence of internal states.
H[X₀] is partitioned by the past and the future.
H[X_0] is partitioned by the past and the future.

$\sigma_{\mu} = I[X_{0}; X_{1:} | X_0]$: evidence of internal states.
Decompositions of the Present
The Human Decomposition
The Human Decomposition

- $\rho_\mu = I[X:0;X_0]$: predicted information
The Human Decomposition

- $\rho_\mu = I[X_0; X_0]$: predicted information
- $h_\mu = H[X_0|X_0]$: unanticipated information
The Tralfamadorean Decomposition
The Tralfamadorian Decomposition

\(r_\mu = H[X_0|X_0, X_1]: \)
ephemeral information
The Tralfamadorian Decomposition

- $r_{\mu} = H[X_0|X_0, X_1]:$ ephemeral information
- $b_{\mu} = I[X_0; X_1|X_0]:$ stochastic structure
The Tralfamadorian Decomposition

- \(r_\mu = H[X_0|X_0, X_1:] \): ephemeral information
- \(b_\mu = I[X_0; X_1|X_0] \): stochastic structure
- \(q_\mu = I[X_0; X_0, X_1:] \): who knows?
The Structural Decomposition
The Structural Decomposition

- \(r_\mu = H[X_0|X_0; X_1]: \)
 - irrelevant information
The Structural Decomposition

- $r_\mu = H[X_0|X_0; X_1:]$: irrelevant information
- $w_\mu = I[X_0; X_0, X_1:]$: structural information
The Recommended Decomposition

\[
\rho \mu = I[X : 0 ; X 0]:
\]
an anticipated information

\[
\mu b = I[X 0 ; X 1 : | X : 0]:
\]
unanticipated and relevant

\[
\rho r = H[X 0 | X : 0 ; X 1]:
\]
unanticipated and irrelevant

\[
\rho \mu b \mu r
\]
The Recommended Decomposition

\[\rho_{\mu} = I[X_0; X_0] : \text{anticipated information} \]
The Recommended Decomposition

- $\rho_\mu = I[X_0; X_0]$:
 anticipated information

- $b_\mu = I[X_0; X_1|X_0]$:
 unanticipated and relevant
The Recommended Decomposition

- $\rho_\mu = I[X_0; X_0]$: anticipated information
- $b_\mu = I[X_0; X_1; X_0]$: unanticipated and relevant
- $r_\mu = H[X_0 | X_0; X_1]$: unanticipated and irrelevant
And you know my Achilles tendon is my one Achilles’ heel

Like Humans Do

“How do I measure these?”
Asymptotic Rates: $H & T$

![Graph showing $H(\ell)$ and $T(\ell)$ as functions of block length ℓ.

The graph displays two curves, one in green representing $H(\ell)$ and another in red representing $T(\ell)$. The y-axis represents information in bits, while the x-axis represents block length in symbols. The curves show how the information content changes with block length.](image-url)
Asymptotic Rates: R, B, & Q

The graph shows the curves of $R(\ell)$, $B(\ell)$, $Q(\ell)$, and $W(\ell)$ as functions of block length ℓ [symbols].
Entropy

$$H[X_{1:n}] = \sum_{x \in X} p_x \log(p_x)$$
Total Correlation

\[
T[X_{1:n}] = \sum_{i \in \{1...n\}} H[X_i] - H[X_{1:n}]
\]
Residual Entropy

\[R[X_{1:n}] = \sum_{i \in \{1...n\}} H[X_i | X_{\{1...n\} \setminus i}] \]
Binding Information

\[B[X_{1:n}] = H[X_{1:n}] - R[X_{1:n}] \]
$Q[X_{1:n}] = T[X_{1:n}] - B[X_{1:n}]$
Local Exogenous Information

\[W[X_{1:n}] = T[X_{1:n}] + B[X_{1:n}] \]
Pesin’s Theorem:

\[h_\mu = \max(0, \lambda) \]
Pesin’s Theorem: \(h_\mu = \max(0, \lambda) \)

Use a generating partition to gather statistics
Pesin’s Theorem:
\[h_\mu = \max(0, \lambda) \]

Use a generating partition to gather statistics

\[h_\mu = r_\mu + b_\mu \]
Pesin’s Theorem:
\[h_\mu = \max(0, \lambda) \]

Use a generating partition to gather statistics

\[h_\mu = r_\mu + b_\mu \]
Logistic Map

- Pesin’s Theorem:
 \[h_\mu = \max(0, \lambda) \]
- Use a generating partition to gather statistics
- \[h_\mu = r_\mu + b_\mu \]
Tent Map

- Pesin’s Theorem:
 \[h_\mu = \max(0, \lambda) \]
- Use a generating partition to gather statistics
- \[h_\mu = r_\mu + b_\mu \]
It happens sometimes. People just explode. Natural causes.

So It Goes...

Thank You

Reference