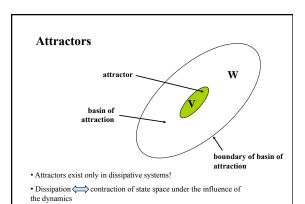
So far: mostly about maps.

- discrete time systems:
 - time proceeds in clicks
 - "maps"
 - modeling tool: difference equation

Next up: flows

- continuous time systems:
 - time proceeds smoothly
 - "flows"
 - modeling tool: differ*ential* equations



• Can still have chaos if no dissipation...just not chaotic attractors



Conditions for chaos in continuous-time systems

Necessary:

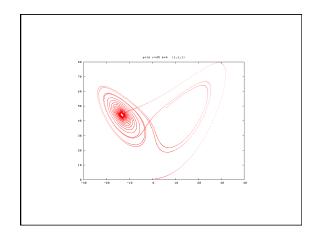
- Nonlinear
- At least three state-space dimensions (NB: only one needed in maps)

Necessary and sufficient:

• Cannot be solved in closed form ("nonintegrable," in Hamiltonian parlance)

Concepts: review

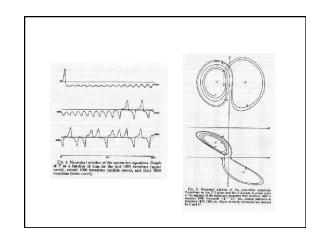
- State variable
- State space
- Initial condition
- Trajectory
- Attractor
- Basin of attraction
- Transient
- Fixed point (un/stable)
- Bifurcation
- Parameter



Deterministic Nonperiodic Flow

EDWARD N. LORENZ

Massachusetts Institute of Technology received 18 November 1962, in revised form



• Equations:

$$x'=a(y-x)$$

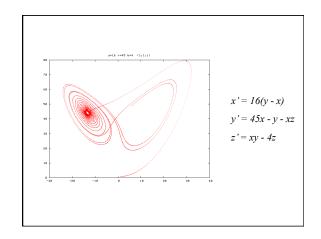
$$y' = rx - y - xz$$

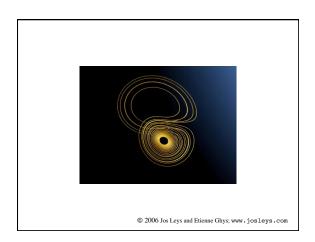
z' = xy - bz

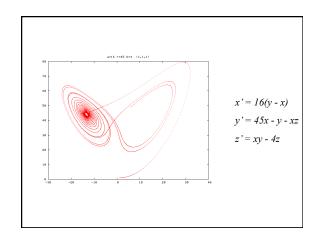
(first three terms of a Fourier expansion of the Navier-Stokes eqns)

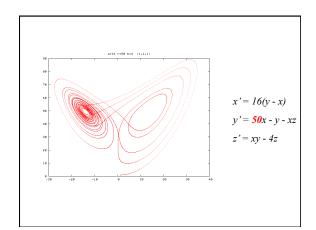
- State variables:
 - x convective intensity
 - y temperature
 - z deviation from linearity in the vertical convection profile

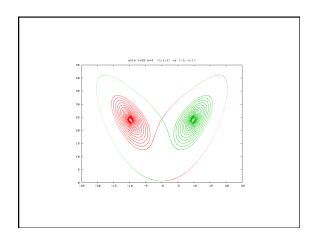
- Parameters:
 - a Prandtl number fluids property
 - r Rayleigh number related to ΔT
 - b aspect ratio of the fluid sheet

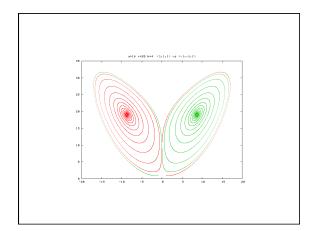


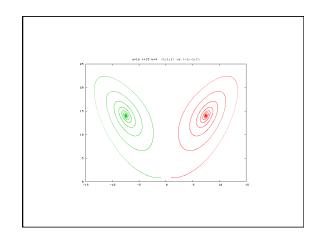


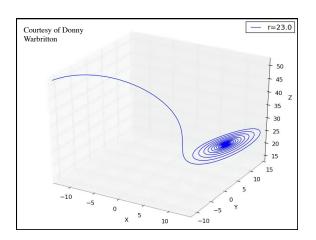












Attractors

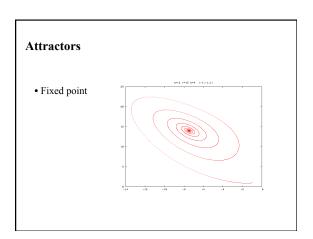
Four types:

- fixed points
- limit cycles (aka periodic orbits)
- quasiperiodic orbits
- · chaotic attractors

A nonlinear system can have any number of attractors, of all types, sprinkled around its state space

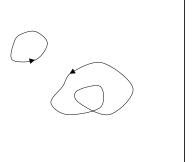
Their basins of attraction (plus the basin boundaries) $\ensuremath{\textit{partition}}$ the state space

And there's no way, *a priori*, to know where they are, how many there are, what types, etc.



Attractors

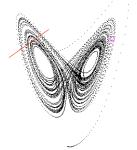
• Limit cycle



Attractors

• Quasi-periodic orbit...

"Strange" or chaotic attractors



• often fractal

- covered densely by trajectories
- exponential divergence of neighboring trajectories...

Lyapunov exponents

• nonlinear analogs of eigenvalues: one λ for each dimension

Lyapunov exponents: summary

- \bullet nonlinear analogs of eigenvalues: one λ for each dimension
- negative λ_i compress state space; positive λ_i stretch it
- $\Sigma \lambda_i < 0$ for dissipative systems
- λ_i are same for all ICs in one basin
- long-term average in definition; biggest one (λ_l) dominates as $t \to \infty$
- ullet positive λ_1 is a signature of chaos