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abstract: Ecosystems driven by wildfire regimes are characterized
by fire size distributions resembling power laws. Existing models
produce power laws, but their predicted exponents are too high and
fail to capture the exponent’s variation with geographic region. Here
we present a minimal model of fire dynamics that describes fire
spread as a stochastic birth-death process, analogous to stochastic
population growth or disease spread and incorporating memory ef-
fects from previous fires. The model reproduces multiple regional
patterns in fire regimes and allows us to classify different regions in
terms of their proximity to a critical threshold. Transitions across
this critical threshold imply abrupt and pronounced increases in
average fire size. The model predicts that large regions in Canada
are currently close to this transition and might be driven beyond the
threshold in the future. We illustrate this point by analyzing the time
series for large fires (1199 ha) from the Canadian Boreal Plains,
found to have shifted from a subcritical regime to a critical regime
in the recent past. By contrast to its predecessor, the model also
suggests that a critical transition, and not self-organized criticality,
underlies forest fire dynamics, with implications for other ecological
systems exhibiting power-law-like patterns, in particular for their
sensitivity to environmental change and control efforts.

Keywords: forest fire model, wildfire, threshold phenomena, regime
shift, climate change, criticality, self-organized criticality, power-law
scalings.

Introduction

Wildfires act as key drivers in many terrestrial ecosystems.
Changes in wildfire regimes can have significant impacts
from local to global scales on patterns of species abundance
and succession, as well as on ecosystem services and, via
the atmosphere and biogeochemical cycles, on climate it-
self (Turner and Romme 1994; Whelan 1995; Amiro et al.
2001). It has therefore been of interest to understand the
mechanisms controlling wildfire regimes and to predict
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when and how they will change (Flannigan et al. 2009;
Krawchuk et al. 2009).

From a different perspective, wildfire dynamics have
been at the heart of the study of criticality and self-
organization in nature (Malamud et al. 1998; Pascual et
al. 2002; Pascual and Guichard 2005). They have been used
as a central metaphor for numerous phenomena such as
earthquakes, avalanches, and communicable diseases
(Rhodes and Anderson 1996; Turcotte 1999). A charac-
teristic pattern in all these systems is a heavy-tailed, power-
law-like distribution of event sizes, such as fires and ep-
idemics. These distributions imply the intermittent
occurrence of extreme events, such as very large fires, in
a sea of events of all sizes, in proportions characterized
by the exponent of the approximate power law.

Spanning a vast range of climatic and biotic conditions,
fire size distributions resembling power laws have been
documented from all over the world, for example, from
Australia, China, Italy, and across the United States (Ratz
1996; Malamud et al. 1998, 2005; Ricotta et al. 1999, 2001;
Song et al. 2001). Importantly, however, not all fire size
distributions are the same; they are all heavy tailed but of
different slope over a given range of sizes that can also
vary. Although the varying slope of fire size distributions
has been highlighted and used to characterize ecoregions
across the United States (Malamud et al. 2005), this key
pattern remains largely unexplained. The observed gra-
dient in slope (characterized, e.g., by power-law exponents,
ranging from about �1.9 to �1.3) corresponds to an in-
creased frequency of large fires relative to smaller ones,
from east to west across the United States.

Models addressing wildfire regimes cover a wide range
of model types of different complexity (Keane et al. 2004).
At one extreme, the best-known minimal model for forest
fires (the Drossel-Schwabl model, hereafter DSM; Henley
1989; Drossel and Schwabl 1992) is an extension of the
original fire model proposed in the context of self-orga-
nized criticality (hereafter SOC; Bak et al. 1988). It has
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been investigated mostly in statistical physics. Large-scale
patterns emerge as the system self-organizes from simple
rules for the local propagation of fire, the regrowth of
vegetation, and the ignition of new fires by sparking events.
Self-organization means here that regardless of parameters
and initial conditions, the system takes itself to the same
state, always generating the same macroscopic patterns in
fire size distributions and the average (mean) density of
grid cells susceptible to fire (provided the temporal scales
of fire propagation and vegetation regrowth are sufficiently
separated; Drossel and Schwabl 1992). This appealing
property is also the reason why this simple model fails to
capture the variation in slope observed in fire size distri-
butions: its robustness implies that wildfire systems are
not strongly affected by changes in parameters and, there-
fore, by differences in the biotic and abiotic environment
resulting from environmental change or human control
efforts. Despite this clear limitation, including the asso-
ciated tendency to produce too many large fires, SOC
models have demonstrated that a heavy-tailed distribution
in fire sizes can, in principle, be explained by a set of
simple hypotheses.

At the opposite extreme, very detailed, realistic models
from landscape ecology can produce the observed spec-
trum in the steepness of the fire size distribution (Moritz
et al. 2005). Although sophisticated techniques are avail-
able, parameters and key mechanisms may be difficult to
identify. Hence, we present here an approach of inter-
mediate complexity that maintains the tractability of the
minimal DSM but still incorporates the effects of regional
characteristics on wildfire regimes in a simple way.

One approach to handle this problem is pattern-ori-
ented modeling (Grimm et al. 2005), in which several
patterns in a system are identified and used to select be-
tween competing hypotheses. A recent pattern-oriented
analysis of more generic, tractable wildfire models of in-
termediate complexity has shown that they are essentially
equivalent to the DSM, generating size distributions that
resemble power laws but sharing the inability to produce
the variation seen in the exponents of fire size distributions
(Zinck and Grimm 2009). Despite this common limitation,
these models do produce realistic fire shapes (Zinck and
Grimm 2008) and the observed hump-shaped relationship
between average annual area burned and landscape-level
diversity of succession stages (Zinck and Grimm 2009;
Zinck et al. 2010).

The common property shared by these generic wildfire
models is a spatial memory of previous fires (Peterson
2002; Zinck and Grimm 2009), such that the flammability
of a local patch depends mostly on the time since the last
consumption of its fuel and, hence, on the biomass re-
growth since the last fire. Thus, these models represent
mostly fuel-limited systems. Their inability to produce the

whole spectrum of fire size distributions is an indication
that not all wildfire systems are dominated by fuel limi-
tation and that the influence of other regional drivers such
as the characteristic vegetation, topography, and weather
patterns of fire spread is not negligible. Here, we dem-
onstrate how regional differences in these drivers and a
spatial memory may account for the variation observed
in macroscopic patterns such as fire size distribution.

One advantage of minimal models, due to their level of
abstraction, is that they may apply across different systems,
and this leads us to the development of the model we
present here. There have been some exploratory applica-
tions in both directions, from epidemiology to landscape
ecology (as, e.g., in O’Neil et al. 1992), in which suscep-
tible-infected-recovered-type models were run on hetero-
geneous landscapes, and from statistical physics to epi-
demiology via the metaphor of fire in the context of SOC
(Rhodes and Anderson 1996; Rhodes et al. 1997, 1998;
Pascual and Guichard 2005).

In the DSM application to epidemics (Rhodes and An-
derson 1996), it was found that their observed size dis-
tributions are also heavy tailed and that the distributions
for different diseases, such as measles and rubella, can
exhibit a varying degree of steepness unexplained by the
model. One possible solution, suggested by Rhodes et al.
(1997), was to change the dimensionality of the underlying
transmission network, as the network on which a disease
spreads might not be limited to two dimensions. Although
this modification does not transfer to wildfire dynamics,
a central concept of epidemiology, the idea of a basic re-
productive ratio, R0, potentially does. The basic repro-
ductive ratio is the average number of infected individuals
produced by one individual during its lifetime as infected
and therefore differs between diseases. Here, we incor-
porate this concept into a wildfire model.

We present here a model in which fire spread is rep-
resented as a stochastic propagation process—a birth-
death process of burning grid cells—providing a phenom-
enological representation of the many regional factors,
such as weather, topography, and vegetation, that influence
its reproductive success. We show that this model, and
therefore the two main processes of a stochastic fire spread
and an ecological memory of previous fires in the fuel
mosaic, can account for the complete variation of expo-
nents observed across the ecoregions of Canada. We dem-
onstrate that this seemingly small modification of existing
models leads to fundamentally different predictions from
SOC on the sensitivity of wildfire regimes to changes in
external drivers. Specifically, this new model suggests the
existence of a drastic transition rather than a gradual one
from moderately to strongly fire-driven ecosystems. By
contrast to SOC, the model implies that ecoregions that
are currently close to this transition will be sensitive to
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Figure 1: Graphical representation of the control flow of the model. Representation of ignition and regrowth are identical to the Drossel-
Schwabl model (with separate timescales). Crucially, the way in which fires spread (burning) is probabilistic; that is, fire does not automatically
spread to all susceptible neighbors, as in the classic self-organized criticality fire model. Rather, we use a stochastic birth-death process to
model the reproductive dynamics of fire. Its intrinsic, regional spread success is , which corresponds to the basic reproductive ratioj p l/m
of epidemics.

changes in the environment and human interventions af-
fecting fire propagation, such as are expected with climate
change. Power-law-like patterns emerge at a specific crit-
ical point or threshold and degenerate in a characteristic
way as one moves away from it. We show how the qual-
itative understanding gained from our model can be used
to classify wildfire regimes as subcritical, critical, or su-
percritical and to identify regions that are close to this
critical point. We identify such regions for Canada and
end with a discussion of other critical phenomena in ecol-
ogy, especially the epidemic dynamics of infectious
diseases.

The Model

Our model is based on a lattice of L2 sites. The processes
of sparking (generating ignition events), burning (sto-
chastic spread of fire among neighboring cells), and spatial

reappearance of fuel are marked separately in the algo-
rithmic flowchart (fig. 1). We preserve the treatment of
fuel consumption and regrowth of SOC-type models
(DSM; Drossel and Schwabl 1992), in which a time-
dependent flammability emerges at the site level (Zinck
and Grimm 2009), but change the way in which fires
spread (fig. 1, burning). Fuel reappearance is modeled with
a spatial point process. Using a point process, we can relate
the expected average area burned and average fire size
directly to the parameters of regrowth and sparking fre-
quency by following the analysis for the DSM.

We call ps the fraction of cells on the lattice that are in
state s (s can be fuel, abbreviated as “t” for “tree” or “e”
for “empty”). Fuel reappears spontaneously in empty cells
at rate p, and ignitions occur spontaneously at the cell
level with a probability f. A cell can ignite only if it carries
fuel; hence f corresponds to the rate of sparking events
rather than ignitions. Further, we assume that timescales
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Table 1: Comparison of fire, population, and disease dynamics

System Cell state Event Control parameter

Population Alive, dead Birth, death Intrinsic growth rate
Disease Infectious, immune, dead Infection, recovery, death Reproductive ratio R0

Fire Burning, burned, no fuel Ignition, extinction Fire spread success j

Note: Burning area is part of the population of a fire that ultimately becomes extinct. The burned area is not

part of the fire population; rather, it consists of dead ancestors.

are separated such that and , which is moref K p p K 1
biologically plausible, as it guarantees that fuel does not
reappear instantly and is not ignited by a spark as soon
as it appears. This condition has been identified in the
physics literature as necessary to produce heavy-tailed fire
size distributions in SOC fire models (Drossel and Schwabl
1992; Grassberger 1993).

In classical (SOC) fire models, fire spread is determined
solely by local fuel availability and is fully deterministic
(Drossel and Schwabl 1992). If a neighboring cell of a
burning cell carries fuel, the fire will spread to it. Our
model emphasizes instead the stochastic nature of fire
spread, since a burning cell does not necessarily infect its
neighbor, even if this neighbor is carrying fuel. We can
use the metaphor of disease spread or that of individual
reproduction and consider that a burning cell gives birth
or reproduces (see table 1 for a comparison). Furthermore,
the acquisition of immunity or individual death would
correspond to a severe local reduction in combustible ma-
terial (fuel) necessary to sustain a fire of the same type
(crown or ground fire).

Burned area is defined here as the sum of all the areas
that actively burned at some time during the fire but are
no longer infectious and cannot continue propagating the
fire in the current time step. If we consider snapshots of
a fire in progress, only a small fraction of the affected area
will be actively burning, and this flaming front will occur
mostly at the perimeter of the fire. We make this actively
burning (and hence potentially infectious or regenerative)
area the main variable of our fire spread process. This
differs from a previous analysis of fire spread as a stochastic
process by Reed and McKelvey (2002), in which the dy-
namics of the entire fire-affected area (composed of both
the actively burning area and the devastated area left be-
hind) is analyzed using a diameter-dependent hazard rate
function. A focus on the infective area allows us to treat
the development of a large fire as the outcome of a sto-
chastically growing and shrinking population of actively
burning areas that leave dead, or burned, areas behind.

As time progresses, the actively burning area canN(t)
shrink, grow, or remain the same in size; refers onlyN(t)
to the area that is burning at time t. The fate of the cells
comprising depends on many small-scale factors, suchN(t)
as local vegetation and microclimate, fuel humidity, to-

pographical aspects, and current wind direction and speed
(Whelan 1995). Extensive theoretical and empirical studies
have focused on understanding the role of these factors
in combustion spread (Rothermel 1972; Wagner 1977;
Turner and Romme 1994). Here, we represent the effects
of such variation phenomenologically by introducing tran-
sition rates for the probability of the fire front to grow,
shrink, or remain the same, given the vegetation, topog-
raphy, and average weather conditions in the burning sea-
son of an ecoregion. These dynamics can formally be
mapped to a stochastic birth and death process with per-
area rates (as opposed to per capita for populations) of
growing (l), shrinking (m), or remaining the same (1 �

).(l � m)
A summary of the algorithm is as follows: A fire starts

if a spark hits a cell with fuel. All burning cells are kept
in a queue. A random number is drawn to decide whether
a burning cell extinguishes (with probability ) orm/(l � m)
whether a direct neighbor of one of the burning cells starts
to burn (with probability ), provided that it hasl/(l � m)
suitable fuel. We call the controlling parameter j p l/m
the reproductive ratio of fire, or fire spread success. We
go through neighbors in the order of the burning cells in
the queue. A fire stops once the last burning cell fails to
ignite a neighbor. If run long enough (about 10,000 fires),
the model reaches a quasi-stationary state in which the
density of fuel-carrying cells, pt, fluctuates around a well-
defined temporal mean. In the equilibrium state, the
amount of fuel expected to appear between two sparks is

. Because sparking events are rare compared(p/f )(1 � Ap S)t

with regrowth, we simulate the model by randomly choos-
ing sites (regardless of whether they are empty orv p p/f
occupied) between sparks and changing their state to fuel
(Grassberger 1993). This speeds up the model simulations
considerably.

Fire Data

The fire size data used in figure 2 are available from the
Canadian Large Fire Database (CLFD; Canadian Forest
Service 1997). The CLFD is a compilation of fires larger
than 199 ha that have occurred in Canada from 1959 to
1999. We sorted the data by ecozones, which are char-
acterized by similar conditions in geomorphology, soils,
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Figure 2: Fire size distributions of 12 ecozones from the Canadian Large Fire Database (red circles p fires larger than 199 ha, 1959–1999).
We use log equidistant bins and plot on double-logarithmic scales. Each ecozone (location indicated by map) has its own characteristics
in topography, weather, and vegetation that influence the fire size distribution and leave a signature in its shape and steepness. The observed
variation in the slope when the distribution is approximated by a power law is successfully produced by our model (blue line p R2 fit is
better than 0.98 for all ecoregions), in which fires have a characteristic spread success j that varies across ecozones (these are ordered in
the plots according to the steepness of their corresponding slope); j is the probabilistic growth rate of actively burning (and hence infectious)
areas, which constitutes the fire front. The columns correspond to subcritical (left, ), close to critical (center, ), and supercriticalj ! 1 j ≈ 1
(right, ) regimes.j 1 1

vegetation, and climate. The fire size distribution was vi-
sualized in double-logarithmic plots. We used log equi-
distant bins; the number of fires per bin was normalized
by bin size and number of fires in the ecozone. The var-
iability in the data samples is indicated by 200 bootstrap
data sets, of which the upper and lower 2.5% were removed
to obtain a 95% confidence interval. A bootstrap data set
contains the same number of fires as the original data set.
Each fire in a bootstrap data set was sampled at random
from the original data set.

We also analyze two epidemic time series in the context
of the discussion on the potential relevance of the model
to other fields and in the context of future directions. We
consider for this the size distribution of measles epidemics
in a small city before and after vaccination was available.
The measles data for Bradford (West Yorkshire, UK) were
provided by P. Rohani.

Parameter Estimation

Maximum Likelihood Fits from Simulation

The simulations were run on grids of 2L p 500 # 500
cells. Once the densities reach a stationary state (after ap-
proximately 10,000 fires), 3,000 fires were sampled to ob-
tain the frequency-area distribution for each combination
of ( , ), with v in 100, 150, ..., 1,500. Thev p p/f j p l/m
values for j were selected such that always,l � m p 1
from to 0.99 in 0.01 steps (lower values of ll p 0.38
result in distributions that no longer exhibit a fat tail).

To minimize edge effects, we obtained the average den-
sity of susceptible cells from 500 snapshots in the

lattice center. We learned from exploratory fit-400 # 400
tings that cell sizes of 30–55 ha lead to better fits. These
values are larger, as expected, than those in Zinck and
Grimm (2008) and Ratz (1996; 4–12 ha) for similar cellular
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Table 2: Parameter estimates for 12 ecozones from the Canadian Large Fire Database

Ecozone Panel in figure 2 j � SD (BP) j � SD (MLE) �log (L) ha/cell v

Pacific Maritime 1 .7172 � .0318 .72 � .0350 �776.56 33 800
Montane Cordillera 2 .8533 � .001 .89 � .0205 �5,661.45 46 700
Northern region 3 .8889 � .0266 .89 � .0150 �719.38 49 500
Atlantic Maritime 4 .8848 � .0240 .89 � .0268 �616.26 37 800
Prairie 5 .8979 � .0225 .89 � .0148 �1,050.14 46 800
Hudson Plains 6 .9635 � .0056 .96 � .0068 �2,764.99 49 700
Boreal Shield 7 .9691 � .0015 .96 � .0168 �3,782.60 49 800
Boreal Plains 8 .9678 � .0030 1.00 � .0070 �14,947.22 45 500
Taiga Plains 9 NA 4.26 � .1641 �11,644.46 48 100
Taiga Shield 10 NA 4.26 � .1562 �16,237.11 48 100
Boreal Cordillera 11 NA 49 � .1200 �1,911.54 34 100
Taiga Cordillera 12 NA 49 � .1431 �7,065.53 34 100

Note: Estimates for the control parameter are obtained analytically from branching process (BP) theory and byj p l/m

maximum likelihood (ML) fits with likelihood L. The ML fits include estimates for cell size and the regrowth parameter v p
. Panels in figure 2 are numbered according to this list of ecozones.p/f

automata models, since those studies based their param-
eter estimation on the analysis of burn scars in the land-
scape rather than on fire size distributions and considered
only one region (Ontario). According to that data set and
models similar to the DSM, the cell of a grid should be
on the order of 4–12 ha/cell. The algorithm does not de-
pend on cell size; the best-fit size can, however, have im-
plications for interpretation. The birth-death process can
be interpreted on a smaller scale, yet the fit to data from
the CLFD performs better using larger values. This may
be partially an effect of the minimum fire size recorded
in this database, 199 ha.

Because of the large parameter space for the search (over
, j: ) and the computational effort inp/f 28 # 61 p 1,708

obtaining the fire size distribution (given that at least
20,000 fires need to be simulated per parameter config-
uration, that the search needs to be repeated for every
ecozone, and that the best cell size needs to be found for
each of these), we created and used a simulation database
to avoid repeated calculations.

We estimated j, along with its range of uncertainty, for
the Canadian ecoregions by searching for the value that
has the highest likelihood, given the data. To assess this
likelihood, we compared the fire size distributions of the
model, as stored in our database, with the empirical dis-
tribution. The fire size distribution is obtained by binning
the data according to size class (log equally spaced). Hence,
we use a multinomial distribution to determine the like-
lihood of the data, given the model at a particular param-
eterization. We maximized a log multinomial likelihood
to estimate the parameters for which the data are most
likely and to obtain their uncertainty:

max � log (L) p n log (p ) , (1)� i i( )
i(j; p/f; ha/cell)

where ni is the number of fires in bin i and pi is the
probability of a fire being sorted into bin i, given the
parameterization of the model. The results are provided
in table 2.

Parameter Estimates by Analytical Approximation

Another way of estimating j, which applies, however, only
to subcritical ( ) regimes, comes from the theory onj ! 1
birth-death processes. A birth-death process refers here to
a homogeneous branching process in which the branching
ratio, j, is related to the average fire size (or outbreakAsS
size, in the case of disease; Jansen et al. 2003), as

1
j p 1 � . (2)

AsS

The estimates of j made in this way are listed in table 2,
along with the results from the maximum likelihood
method. This approximation has been used by Jansen et
al. (2003) to estimate the effective reproductive ratio of
diseases when vaccination leads to a low success of trans-
mission (technically, when ). Here, we normalizedR ! 10

the average fire size by the smallest fire size found in the
database. Because this formula breaks down for ,j ≥ 1
values near or slightly above criticality will be underesti-
mated, resulting in estimates smaller than 1. We use a
moving-window approach, in which j is estimated at each
point in time (when a fire occurred), using 600 prior fires,
to detect changes of j over time. We estimate the variation
in j by using the estimation procedure for 15 bootstrap
data sets at each point.
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Figure 3: Model showing critical behavior controlled by j. The probability of finding a spanning cluster (a connected cluster of fuel that
reaches from one end of the lattice to the other) and its weight (relative area) drops sharply at (upper left). This is because thej p 1
average density of fuel on the lattice, pt, drops abruptly from about 1 to approximately 0.41 (upper right), a value also characteristic of the
Drossel-Schwabl model (DSM). For large , our model effectively behaves like the DSM. The average fuel density is reduced becausej k 1
fires grow larger as j increases (lower left). At , fires can potentially grow to any size and therefore can consume the entire fuel clusterj p 1
on which they were ignited more frequently, creating a spatially heterogeneous fuel mosaic. The depicted ecoregions are the Pacific Maritime,
Boreal Plains, and Taiga Shield (1, 8, and 10, respectively, in fig. 2). Consequently, the average area burned also jumps at this critical value
of j (lower right). The respective values of the plateau reached for the average fire size and the average area burned are determined by the
area that turns susceptible between fires. Thus, they are controlled by the second parameter in the model, .v p p/f

Results

Our model reproduces the entire spectrum of slopes ap-
parent in the fire size distributions of the CLFD (fig. 2).
This spectrum is representative of the slopes reported in
the United States and from other continents, such as Aus-
tralia, Italy, and China. The parameter values we report
for these ecoregions (table 2) were found by maximum
likelihood fitting to our model and from branching process
theory.

Although small changes in fire spread success j usually
have very little influence on the average area burned and
average fire size, they can lead to distinct and abrupt
changes at the critical point ( ; see fig. 3, lower left,j p 1
lower right). The probability of finding a cluster of sus-
ceptible cells that spans the entire grid drops abruptly at

(fig. 3, upper left). If a spanning cluster is found,j p 1
which happens only rarely, its area is considerably smaller.
The average density of susceptible cells on the lattice has

a similarly sharp decrease at (fig. 3, upper right). Itj p 1
drops from almost 1 to , a value also characteristicp ≈ 0.4t

of the DSM, the classic SOC fire model.
For practical applications, the average fire size (fig. 3,

lower left) and average area burned (fig. 3, lower right) are
two important quantities. The average fire size, which re-
mains fairly small for , jumps upward at ,j ≤ 1 j p 1
reaching a plateau (cf. fig. 2, prairies [5] and Hudson
Plains [6]). The height of this plateau is determined by
the parameter , which is proportional to the num-v p p/f
ber of cells that turn susceptible between two successive
fires (on average) and differs between ecozones. The av-
erage area burned shows an analogous behavior, with a
sharp increase at the same critical value of j. The value
of the plateau it reaches is determined by the parameter
p controlling the reappearance of fuel at the cell level.

The three ecoregions closest to the critical point (j p
) are the Hudson Plains, the Boreal Shield, and the Boreal1
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Figure 4: The Boreal Plains have a fire reproduction ratio near criticality . Visual inspection of the time series suggests that the firej ≈ 1
regime may have intensified over time (upper left). This is confirmed by estimates of j (based on the 600 earlier fires at each point), which
increase considerably and take the system from subcritical to closer to critical (around fire 800 or 1980, lower left). By splitting the data
set at 1980, we obtain size distributions with a higher slope for the later period (2, upper right) and whose corresponding average fire size
triples from 3,278 (pre-1980, 1) to 9,066 (post-1980, 2) ha. The maximum likelihood estimate of j for the pre-1980 data is andj p 0.96
reaches the critical value of for the post-1980 data (lower right). The likelihood of observing such a jump in estimated j without anj p 1
actual change in the parameter is small (with P values between .03 and .08, depending on the choice of j).

Plains (fig. 2; table 2). The Boreal Plains lie closest to the
critical point. Visual inspection of their time series (fig. 4,
upper left, upper right) shows an increase in the size of the
largest fires after 1978. To quantify this conjecture, also
suggested by change in the size distribution (fig. 4, upper
right) and in the average fire size (pre-1980: 3,278 ha; post-
1980: 9,066 ha), we estimated j by using the analytical
estimate (which is suitable for subcritical regimes) for five
different sections in the time series, containing 270 fires
each. We used 10,000 bootstrap data sets for each of those
sections to approximate the variability in this estimate.
The results show a strong indication of an increase in fire
spread success j around the year 1980, leading from a
subcritical regime to a regime poised at criticality.

This is confirmed by estimates obtained with the max-
imum likelihood approach, which places the Boreal Plains
at the critical transition after 1980. To quantify the statis-
tical significance of this change, we need to assess how
likely the observation of such a jump is in time series
produced by our model when there is no variation in the
underlying j for both subcritical and critical regimes. In

both cases, the observation of such a jump without a
change in j is very low ( ,p p 0.068 p p(jp0.93) (jp0.96)

, ). It is therefore very likely that the0.035 p p 0.0062(jp1)

Boreal Plains have experienced a change from a subcritical
regime to the edge of a critical one in recent decades,
presumably around 1980.

Figure 5 shows the size distributions of measles out-
breaks in Bradford before and after vaccination. For the
data collected before vaccination became available (1944–
1968), the size distribution is clearly heavy tailed and sim-
ilar to the distributions seen in supercritical fire regimes.
The introduction of vaccination has reduced outbreak sizes
(by orders of magnitude) and has led to a steeper distri-
bution (which is no longer heavy tailed).

Discussion

Because of the high degree of abstraction and the com-
monalities between systems that exhibit transmission or
propagation behavior, the forest fire model known as DSM
has previously been applied to the dynamics of both wild-
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Figure 5: Outbreak sizes for communicable diseases in small, isolated communities are known to exhibit heavy-tailed distributions similar
to those of fires (Rhodes and Anderson 1996; Rhodes et al. 1998; Cuddington and Beisner 2005). This is illustrated here for measles in
Bradford. Not surprisingly, the value of j estimated for our model indicates that measles spread was supercritical before the introduction
of vaccination in 1968. The relevance of forest fire–type models to the epidemic dynamics of infectious diseases, including potentially those
in larger cities for the postvaccination era, has been previously proposed; one such city was shown to exhibit a heavy-tailed distribution,
with a lower exponent, however, than that predicted by such earlier models (Rhodes et al. 1998). Following work on postvaccination measles
in London considered outbreak size distributions based on the stochastic dynamics of birth-death processes (Jansen et al. 2003). Our model
is able to account for the change in the slope with vaccination and to consider both types of dynamics, supercritical and subcritical, in a
single framework. The introduction of vaccination changes the distribution of epidemic sizes by reducing its tail and decreasing its slope,
with the disappearance of the very large epidemics, as illustrated here for Bradford (for years with vaccination levels larger than 70%).
Correspondingly, the dynamics switch from supercritical to subcritical (prevaccination, postvaccination, respectively), with a clear change
in j from above 1 to below 1. In wildfire systems, vaccination corresponds to large-scale fuel treatments such as prescribed burning and
mechanical fuel reduction.

fires and epidemics. However, the appealing properties of
robustness and self-organization in this model are also its
weaknesses. They are only partially observed in the specific
systems, as reflected in the inability of the model to capture
the variation in the slope (and associated shape) of the
size distribution of events, whether these are fires or ep-
idemics in the real world.

We presented here an extension of this model that re-
tains its simplicity by subsuming in a phenomenological
way several of the many factors that can locally affect the
propagation of fire. Future extensions could consider, for
example, the role of spotting or seasonality more explicitly.
The model incorporates a basic concept from epidemi-
ology, the reproductive ratio of an infectious disease, or
R0. Thus, fire in our model behaves like a living entity or
infectious agent that can reproduce (in area) by spreading
into adjacent fuel and also die and fail to propagate, with
both processes ruled stochastically by probabilities. We
show that the variation in the statistical, macroscale pat-
tern of observed fire size distributions can be explained
by differences in the local basic reproductive ratio of fire,
given by the ratio of these probabilities. The full variation

of exponents in the heavy-tailed distributions results from
this birth-death process of fire acting together with the
regeneration of the underlying forest landscape, whose ex-
tent at any given time reflects the history or memory of
previous fires.

By making the seemingly small modification to the DSM
and specifically treating the propagation of fire as a sto-
chastic process rather than a deterministic one, we arrive
at a fundamentally different view from SOC with regard
to the resilience of wildfire ecosystems. Namely, the system
does not take itself (self-organize) to a critical state with
the same power-law patterns regardless of parameters. The
state of the system and its statistical properties depend
instead on the value of a parameter (the local reproductive
ratio). Power-law-like patterns arise at a critical value of
this parameter, at which the system exhibits threshold be-
havior in a number of important quantities, including the
average fire size. Technically, the system exhibits a critical
phase transition. This has fundamental implications for
the sensitivity of wildfire systems to environmental change
or control strategies. Small changes in the parameters un-
derlying fire propagation may have a great effect on the
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fire regime (fire sizes and area burned). If SOC were the
full story, such changes would not have a significant effect,
as the system would self-organize back to the previous
state. If our model applies and some wildfire systems are
close to a phase transition, then small changes may sud-
denly and drastically alter their dynamics, whereas they
would have little effect in regions far from this point.
Another recent study by Pueyo et al. (2010) concluded
that Amazonian savanna and tropical rainforest fires do
not display SOC and suggested external drivers such as
weather fluctuations as a source of power-law-like distri-
butions. In our model, external factors may well influence
the reproductive success of fire, but strong external forcing
is not necessary to explain the variation in size distribu-
tions and the absence of SOC in some fire ecosystems
(which we identify as subcritical).

Our model suggests that the slope of the fire size dis-
tribution (and an estimate of the local reproductive ratio
close to 1) provides a signature of how close an ecoregion
is to the critical point. There is ongoing debate on whether
fire size distributions are best described by power laws or
other functions (Reed and McKelvey 2002; Malamud et
al. 2005; Newman 2005; Pueyo 2007; Clauset et al. 2009).
From our analysis of the data from Canada and the fit of
our model to the data, it is unlikely that fire size distri-
butions are power laws in the mathematical sense, al-
though they might be described by them to a sufficient
degree for statistical purposes. The fire size distributions
of supercritical regimes are relatively flat, since there is a
greater number of large fires. Among the empirical fire
data, these distributions resemble those of the DSM most
(which has been shown not to produce a power law; Grass-
berger 2002). Thus, as expected, in the limit of a large
reproductive ratio, our model effectively behaves like the
DSM. Fire size distributions near the critical point (j p

) are somewhat steeper and should theoretically follow a1
power law (a technical point regarding the existence of a
phase transition that should be further addressed). As we
move away from the critical point toward subcritical values
of the reproductive ratio, for ecoregions in which fire
spread is not very successful, the pattern gets steeper and
steeper and degenerates, increasingly losing its resem-
blance to a power law.

This interpretation of the variation in the slopes of fire
size distributions led us to identify the Boreal Plains as
the ecoregion closest to the critical point among the
regions considered for Canada. The patterns of its time
series led us to conjecture that there had been a change
from a subcritical regime to a critical regime around 1980,
with a sharp increase in the average fire size from 3,278
to 9,066 ha. This jump is indicated not only by the average
fire size but also by our temporal estimates of the repro-
ductive number of fire spread in the region.

This approach based on the reproductive success of fire
provides an inexpensive tool to monitor fire-prone eco-
regions and possible change in their susceptibility to con-
trol or environmental drivers. Our model predicts that the
effectiveness of control efforts, such as prescribed burning
and fire suppression, will vary with reproductive success
(and hence between ecoregions). Regions with supercrit-
ical values in fire spread success ( ) are dominated byj ≥ 1
fires that spread aggressively and do not stop for reasons
other than heavy environmental forcing or the absolute
depletion of fuel in their path (Moritz 1997, 2003). In
these regions, the average fire size would be limited mainly
by the amount of fuel that rebuilds between fires (con-
trolled by , as in the DSM). This amount can bev p p/f
reduced by prescribed burning and mechanical fuel re-
duction (Stephens et al. 2009), but fires may still spread
even in treated stands (Turner and Romme 1994; Bessie
and Johnson 1995). We therefore expect fire suppression
to have limited effect in this regime, which may also ex-
plain part of the controversy over the effectiveness of sup-
pression efforts in boreal forests (Johnson et al. 2001;
Bridge et al. 2005; Cumming 2005). By contrast, in sub-
critical regions ( ) the average fire size is small becausej ! 1
fire does not spread well. Hence, we expect fire suppression
to be more effective in influencing the fate of a fire, while
prescribed burning will be less necessary. Gradual changes
in vegetation, as expected under global change, may affect
the average fire spread success sufficiently to push a sub-
critical system into a critical or supercritical regime with
a rapid and pronounced increase in average area burned.
This suggests that monitoring fire spread success and
change in vegetation composition (with significant differ-
ences in the flammability among tree species, depending,
e.g., on the type and amount of resin) in areas where fire
spread success is close to critical might contribute to ef-
fective mitigation. We expect the prediction of suscepti-
bility made by our approach to be most useful in com-
bination with predictions made by an ensemble of different
models based on different approaches, such as mechanistic
models that couple wildfire and climate (e.g., Krawchuk
et al. 2009). Although we have presented one way to mon-
itor such change when a relatively long time series of fire
events is available, other statistical approaches to param-
eterize the model should also be investigated in future
work. For example, high-resolution spatiotemporal data
on the propagation of fires could be used to fit the sto-
chastic model via Markov chain Monte Carlo approaches.
The supercritical regime will be most challenging, and sta-
tistical efforts from propagation patterns should be com-
plemented with empirical studies on the local regrowth of
fuel.

Mitigation activities that target the fuel composition
correspond to vaccination in models of communicable
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disease spread (reducing ). Although vaccinationv p p/f
has not resulted in the eradication of measles, it has sub-
stantially changed the dynamics of disease (in terms not
just of overall number of cases but also of dominant fre-
quencies, coherence of temporal cycles, and spatial syn-
chrony; Rohani et al. 1999; Earn et al. 2000). In terms of
epidemic size distributions, extreme outbreaks have be-
come rarer, leading to a breakdown of the power-law-like
patterns (Rhodes et al. 1998; Jansen et al. 2003). As already
mentioned, SOC-type models had been applied before to
infectious diseases in small, isolated populations for the
prevaccination era, for example, in islands, with the ob-
servation that epidemic size distributions resemble power
laws. The exponents of such distributions were shown to
vary for different diseases, and at the other extreme, for
the postvaccination era, the exponent of one such distri-
bution for a large city was noted as lower (Rhodes et al.
1998). More recently, birth-death processes were applied
to explain the shape of the distributions in large cities,
where the dynamics of the disease would become increas-
ingly stochastic with vaccination (Jansen et al. 2003). In-
terestingly, our model provides one single framework to
understand the whole spectrum of observations, with vac-
cination taking the dynamics from supercritical to sub-
critical. This is illustrated here with a preliminary analysis
of infectious disease data based on our model (fig. 5).

This similarity between forest fire models and epide-
miological models reflects the fact that the spread of both
disease and fire can be described as a birth and death, or
branching, process. Hence, in both disease and fire ecology,
the existence of a power-law distribution with exponent
�1.5 may indicate a critical state in which small modifi-
cations can lead to rapid change. This suggests that further
future research across these disciplines might be fruitful,
as also supported by previous findings on epidemics as
critical phenomena (Rhodes and Anderson 1996; Jansen
et al. 2003). It also highlights the importance of branching
processes in general, which may turn out to be, together
with a memory of previous events, the central principle
behind the forest fire metaphor in complex systems.

The strength of our model, its simplicity, comes at the
cost of not incorporating detailed submodels. It remains
an open question how the control parameter j emerges
from the interaction of multiple small-scale factors within
a particular ecoregion and whether hysteresis is involved
in the transition (Scheffer et al. 2001). However, the fact
that our model is able to explain the differences in the fire
size distributions underscores that the spatial memory of
former fires and the stochasticity of fire spread are two
essential elements of the dynamics on which more mech-
anistic models can be built. We also have assumed that
there is no interaction between the wildfire regime and

other large-scale disturbances, such as massive insect out-
breaks and diebacks (Turner 2005).

To close, we note that several ecological systems other
than those related to wildfires and whose dynamics involve
local interactions have been observed to display patterns
resembling power laws, including agroecosystems for the
patterns of ant nests and arid ecosystems for the dynamics
of vegetation cover (Vandermeer and Perfecto 2006; Kefi
et al. 2007; Scanlon et al. 2007). Theoretical studies of
models for the spatiotemporal and stochastic dynamics of
predators and prey have also shown very similar patterns
(Pascual et al. 2002; Roy et al. 2003; Pascual and Guichard
2005). It is interesting to consider that a main difference
between all these phenomena and the fire dynamics de-
scribed here is the lack of a separation of the timescales
of the underlying processes. Thus, one intriguing possi-
bility is that within the context of branching processes and
a local memory of past events, these different ecological
systems could be investigated by considering a continuum
in the relationship between the timescales of propagation,
regrowth, and external drivers. Beyond ecology and epi-
demiology, current developments in statistical physics and
neurobiology are shifting conceptual ideas related to SOC
toward a class of dynamics capable of explaining a broader
set of patterns in nature, including approximate scalings
that resemble power laws (Bonachela and Muñoz 2009;
Levina et al. 2009; Bonachela et al. 2010). The name of
self-organized quasi criticality has emerged (Bonachela
and Muñoz 2009). Interestingly, central features of the
dynamics, especially phase transitions of a percolation type
with a broad scaling region and a hovering (but not strict
self-organization) of the systems around the critical point,
have important commonalities with the properties of the
forest fire model presented here and with robust critical
systems with no apparent separation of timescales (Roy et
al. 2003; Pascual and Guichard 2005). These connections
should be explored further, as they raise the intriguing
possibility of a fundamental type of dynamics that would
underlie many different patterns in nature and is ulti-
mately related to the most basic processes of biology. These
are on one side, the birth-death processes underlying
transmission of an infectious state, and on the other side
is a memory of previous infections that render the system
immune or refractory locally and introduce a nonlinear
feedback in the overall dynamics. Importantly, these dy-
namics are related to the general concept of phase tran-
sitions, which also raises the possibility that threshold phe-
nomena with substantial sensitivity to environmental
change are much more common than SOC would have
implied.
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