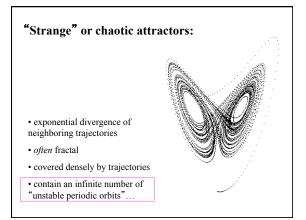
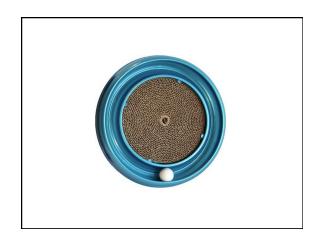
Lyapunov exponents

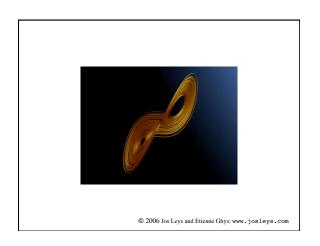
• nonlinear analogs of eigenvalues: one λ for each dimension

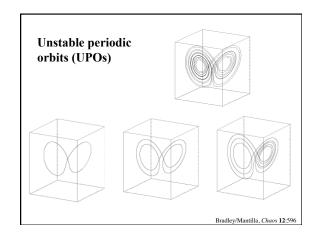
Lyapunov exponents: summary

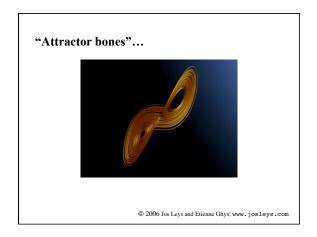
- negative λ_i compress state space; positive λ_i stretch it
- nonlinear analogs of eigenvalues: $n \lambda$ in an n-dimensional system
- \bullet they parametrize growth/shrinkage along the unstable and stable manifolds W^u and W^s
- $\Sigma \lambda_i < 0$ for dissipative systems
- λ_i are same for all ICs in one basin
- long-term average in definition; biggest one (λ_I) dominates as $t \rightarrow \infty$
- positive λ_1 is a signature of chaos

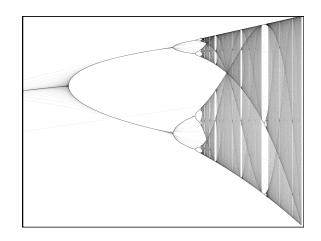


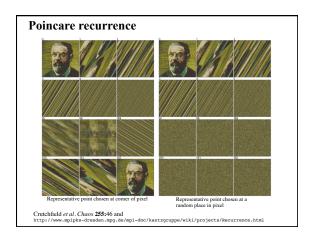




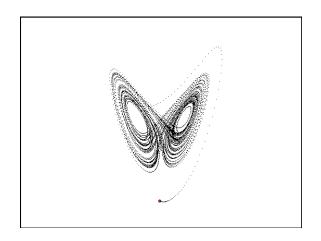


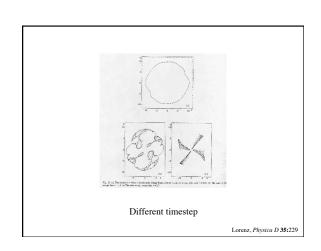


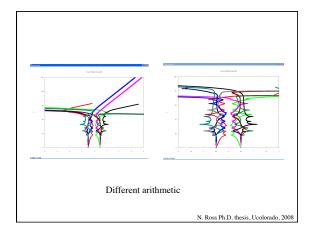


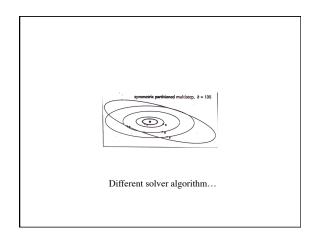


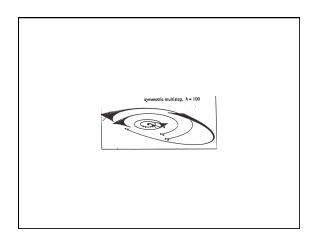


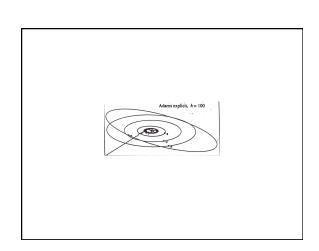












Moral: numerical methods can run amok in "interesting" ways...

- can cause distortions, bifurcations, etc.
- and these look a lot like real, physical dynamics...
- source: algorithms, arithmetic system, timestep, etc.
- Q: what could you do to diagnose whether your results included spurious numerical dynamics?

Moral: numerical methods can run amok in "interesting" ways...

- can cause distortions, bifurcations, etc.
- and these look a lot like real, physical dynamics...
- source: algorithms, arithmetic system, timestep, etc.
- Q: what could you do to diagnose whether your results included spurious numerical dynamics?
 - change the timestep
 - change the method

But beware machine ϵ ...

 $\bullet \ change \ the \ arithmetic$

Another important issue

Many solvers, such as Matlab's ode45, are *adaptive*: they change the timestep and/or the method itself, on the fly, in order to correctly simulate the dynamics.

(The algorithms for this are interesting; we can talk about them offline.)

That means that the points that are output by tools like ode45 are *not evenly spaced in time*. That can matter, depending on how you're using that solution...

So ODE solvers make mistakes.

...and chaotic systems are sensitively dependent on initial conditions....

...??!?

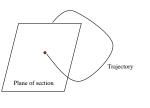
Shadowing lemma

Every* noise-added trajectory on a chaotic attractor is *shadowed* by a true trajectory.

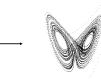
Important: this is for *state* noise, not *parameter* noise.

(*) Caveat: not if the noise bumps the trajectory out of the

Section

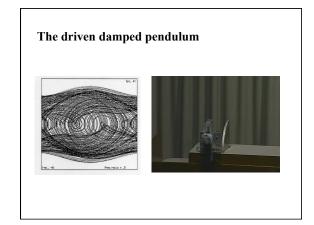


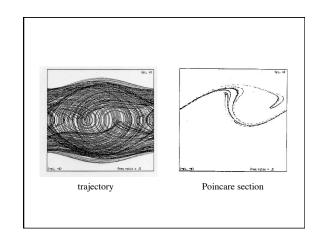
Not the same thing as a projection!

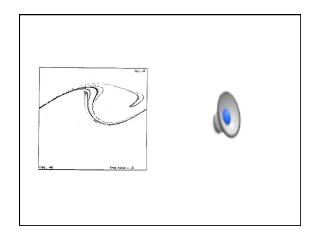


mri.radiology.uiowa.edu

prixray.com

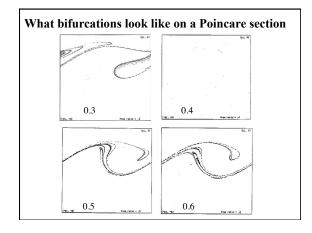


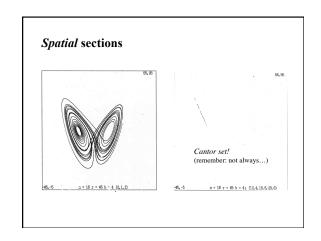


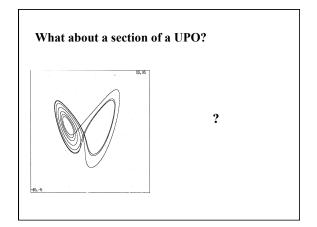


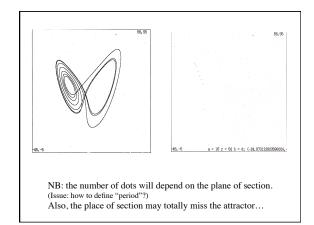
Time-slice sections of periodic orbits: some thought experiments

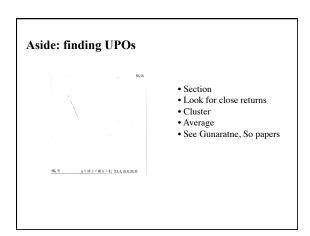
- pendulum rotating @ 1 Hz and strobe @ 1 Hz?
- pendulum rotating @ 1 Hz and strobe @ 2 Hz?
- pendulum rotating @ 1 Hz and strobe @ 3 Hz?
- pendulum rotating @ 1 Hz and strobe @ 1/2 Hz?
- \bullet pendulum rotating @ 1 Hz and strobe @ π Hz? (or some other irrational)





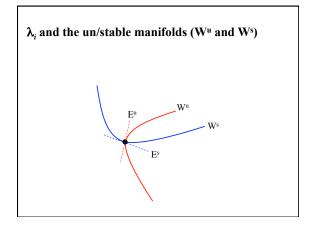






How to compute sections?

- If you're slicing in state space: use the "insideoutside" function
- If you're slicing in time: use modulo on the timestamp
- See Parker & Chua for more details

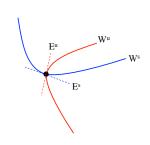


Aside: finding those un/stable manifolds

- Linearize the system
- \bullet Find the eigenvectors $\,E^s$ and E^u
- Take a step along Es; run time forwards
- Take a step along E^u; run time backwards
 See Osinga & Krauskopf paper for more details

Note: saddles are not the only possible landscape geometry around fixed points (they're just the most interesting ones!)

These λ_i & manifolds play a critical role in the control of chaos...



Local-linear control* of a hyperbolic point

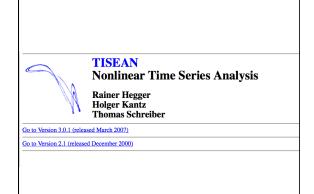
Lyapunov exponents, revisited:

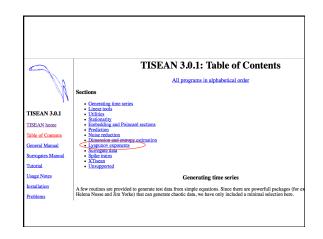
- *n*-dim system has $n \lambda_i$; $\Sigma \lambda_i < 0$ for dissipative systems
- λ_i are same for all ICs in one basin
- negative λ_i compress state space along *stable manifolds*
- positive λ_i stretch it along unstable manifolds
- biggest one (λ_1) dominates as $t \to \infty$
- positive λ_1 is a signature of chaos
- calculating them:
 - <u>From equations:</u> eigenvalues of the variational matrix (see variational system notes on CSCI5446 course webpage, which you can access from Liz's homepage.)
 - From data: various creative algorithms...

Calculating λ (& other invariants) from data

* e.g., via pole placement

- The bible: H. Kantz & T. Schreiber, *Nonlinear Time Series Analysis*
- Associated software: TISEAN www.mpipks-dresden.mpg.de/~tisean
- A recent review article: EB & H. Kantz, "Nonlinear Time Series Analysis Revisited," CHAOS 25:097610 (2015)

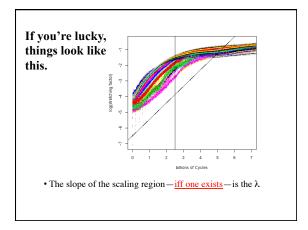


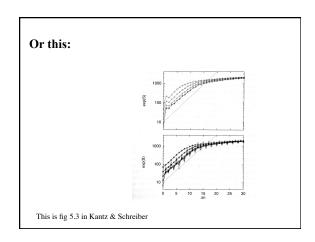


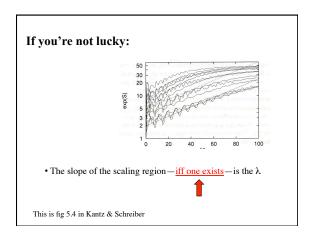
Description of the program: lyap_k The program estimates the largest Lyapunov exponent of a given scalar data set using the algorithm of Kantz. Usage: lyap_k [Options]

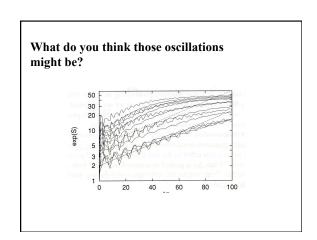
Kantz's algorithm:

- 1. Choose point K •
- 2. Look at the points around it (ε neighborhood)
- 3. Measure how far they are from K
- 4. Average those distances
 5. Watch how that average grows with time (Δn)
- 6. Take the log, normalize over time \rightarrow S(Δn)
- 7. Repeat for lots of points K and average the $S(\Delta n)$









Calculating λ (& other invariants) from data

Be careful! All algorithms for computing these things have lots of knobs and their results are incredibly sensitive to their values!

Option	Description	Default
-1#	number of data to be used	whole file
-x#	number of lines to be ignored	0
-c#	column to be read	1
-M#	maximal embedding dimension to use	2
-m#	minimal embedding dimension to use	2
-d#	delay to use	1
-r#	minimal length scale to search neighbors	(data interval)/1000
-R#	maximal length scale to search neighbors	(data interval)/100
-##	number of length scales to use	5
-n#	number of reference points to use	all
-s#	number of iterations in time	50
-t#	'theiler window'	0
-0#	output file name	without file name: 'datafile'.lyap (or stdin.lyap if the data were read from stdin
-V#	verbosity level 0: only panic messages 1: add input/output messages 2: add statistics for each iteration	3
-h	show these options	none

Description of the Output:

For each embedding dimension and each length scale the file contains a block of data consisting of 3 columns

- 1. The number of the iterati
- 2. The logarithm of the stretching factor (the slope is the Lyapunov exponent if it is a straight line)

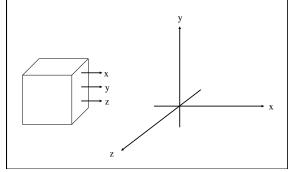
Calculating λ (& other invariants) from data

- Be careful! All algorithms for computing these things have lots of knobs and their results are incredibly sensitive to their values!
- Use your dynamics knowledge to understand & use those knobs intelligently
- Look at the results plots. For example, do not blindly fit a regression line to something that has no scaling region (this is a good idea in general, of course)

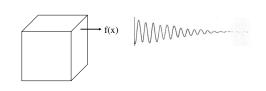
Fractal dimension:

- Capacity
- · Box counting
- Correlation (d2 in TISEAN)
- Lots of others:
 - Kth nearest neighbor
 - Similarity
- Information
- Lyapunov
- ...
- See Chapter 6 and §11.3 of Kantz & Schreiber

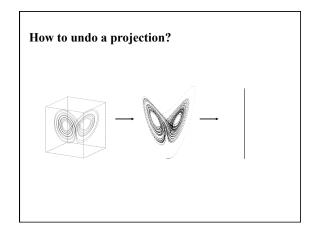
We've been assuming that we can measure all the state variables...



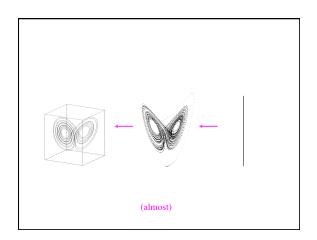
But often you can't.

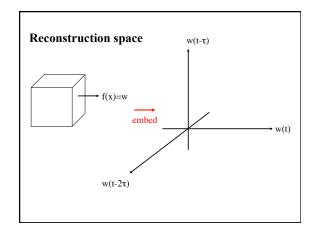


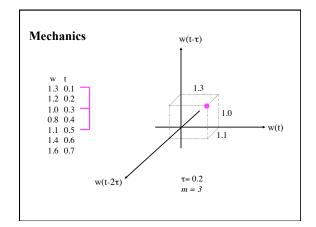
- Rarely do you even *know* what they are.
- Even if you did, you might not be able to measure all of them.
- And even if you could, doing so might *change the dynamics*...

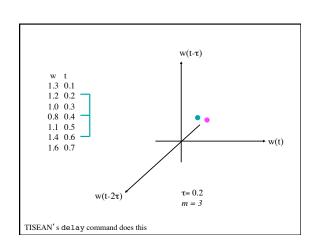


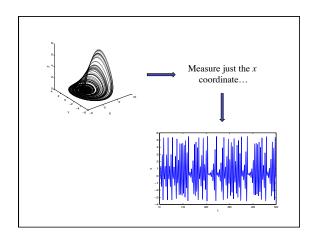
Delay-coordinate embedding "reinflate" that squashed data to get a topologically identical copy of the original thing.

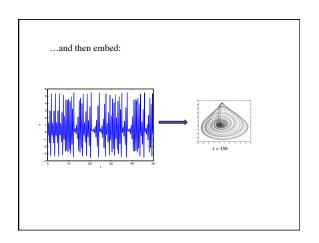










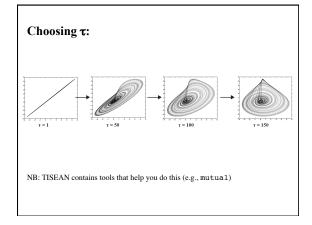


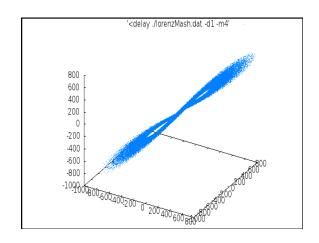
Takens* theorem For the right τ and enough dimensions, the embedded dynamics are diffeomorphic to (and thus have same topology as) the original state-space dynamics. * Whitney, Mane, ... Note: the measured quantity must be a smooth, generic function of at least one state variable, and must be uniformly sampled in time.

Diffeomorphic: mapping from the one to the other is differentiable and has a differentiable inverse.

What that means:

- qualitatively the same shape (topology)
- i.e., can deform one into the other
- have same dynamical invariants (e.g., λ)





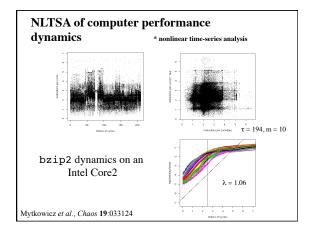
Choosing m

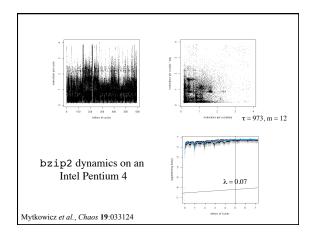
m > 2d: sufficient to ensure no crossings in reconstruction space (Takens et al.)...

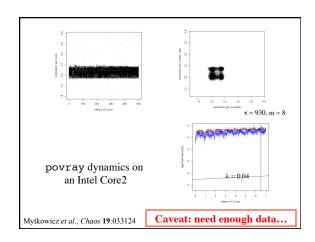
...but that may be overkill, and you rarely know d anyway.

"Embedology" paper: $m > 2 d_{\text{box}}$ (box-counting dimension)

 $NB: TISEAN\ contains\ tools\ that\ help\ you\ do\ this\ (e.g., \verb|false_nearest|)$







If Δt is not uniform

Theorem (Takens): for τ >0 and m 2d, reconstructed trajectory is diffeomorphic to the true trajectory

Conditions: evenly sampled in time, smooth generic measurement function

Interspike interval embedding

<u>idea</u>: lots of systems generate spikes — hearts, nerves, etc.

if you assume that the spikes are the result of an integrate-and-fire system, then the Δt has a one-to-one correspondence to some state variable's integrated value...

in which case the embedding theorems still hold.

(with the Δt s as state variables)

Sauer Chaos 5:127