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Multivariate Information Theory

» The mutual information for two variables

~H(X)
I(X;Y)=H(X)+HY)-H(X,Y)>0.

H(Y )~ ~HZ) ¥ Multivariate mutual information

I(X;V;X) = I(X;Y)+1(X; 2) - I(X;Y, Z).

» This quantity can be negative!

> How do we interpret this result?

> There are no Shannon inequalities for multivariate information.
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» Mutual information captures
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» Joint mutual information captures 1(52;T)
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Different kinds of dependency

> Multivariate mutual information conflates redundant and synergistic information
I(T; S1; 82) = I(T;51) + I(T; S2) — I(S1,S2;T)
= U(T : 51\82) + R(T : 51,52) + U(T : 51\52) + R(T : 51,52)
— R(Sl, SQ-)T) + U(Sl Sy —)T) + U(SQ S1 —)T) + C(Sl, Sy —)T)
= R(Sl, 52 —)T) — C(Sl, 52 —)T)

> How can we separate these effects in general?
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Partial information decomposition

Framework from Williams and Beer (2010) I(Sy;T)
1(51,52,53;T)

N

» Axioms for redundant information

1. Commutativity 1(S2,83;T)
2. Monotonically decreasing

3. Self-redundancy (idempotency)

» Yields a redundancy lattice
I1(51,52;T)

I(SQ;T) I(SQ;T) 1(51753;T) 1(31,52§T)
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PID is elegant, however...

> Defining the redundant information is not simple

» Why should we be interested?

Feature selection in machine learning

Network information theory

Lossless ompression of structured databases

Neuroscience: quantifying information modification in the brain

> The good news: pointwise partial information decomposition

Q entropy by

Article
Pointwise Partial Information Decomposition
Using the Specificity and Ambiguity Lattices




Quantifying information modification in CAs
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Questions?
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Redundancy measures: Iyin

Original measure of redundancy introduced by Williams and Beer

Imin(X:}/ia"'v Zp mlnI _-/EaY;)

» Semi-local approach: for each X = x the redundant information is the minimum
information provided by all of the sources Y;

> Widely critised after its introduction — two bit copy problem

XJ]y zZJ P

000 O 1/4 .
10 | 1 0 1/4
01 1 1 1/4

> “The problem is I, does not distinguish whether sources carry the same
information or just the same amount of information”
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leg(Z : X:Y) = min { IF(X \,Y), IF(X \,V)}

where I7(X \,Y) is the mutual information between Z and X expressed in terms of
the mutual information between Z and Y'.

» Only able to quantify bivariate
redundancy: multivariate extension highly
non-trivial and evaluation is intractable

> Not even clear that it does indeed capture the
redundant information

» No meaningful local intepretation

Nep(zla=1)
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Unique information measure: Ul

Indroduced by Bertschinger et al. — game-theoretic motivation

> Defining the unique information implicitly defines the redundant information in the
partial information decomposition framework

> If a source contains unique information then there must be a way to exploit this
information in a decision problem

» No unique local intepretation

» Worse than that
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