Information Decomposition CSSS18 Tutorial

Conor Finn

July 6, 2018

 \blacktriangleright Entropy quantifies the average uncertainty of a variable

$$
H(X) = \sum_{x \in X} p(x) \log 1/p(x) \ge 0
$$

 \blacktriangleright Entropy quantifies the average uncertainty of a variable

$$
H(X) = \sum_{x \in X} p(x) \log 1/p(x) \ge 0
$$

 \blacktriangleright Entropy satisfies the Shannon inequalities

$$
H(X), H(Y) \le H(X, Y) \le H(X) + H(Y)
$$

 \blacktriangleright Entropy quantifies the average uncertainty of a variable

$$
H(X) = \sum_{x \in X} p(x) \log \frac{1}{p(x)} \ge 0
$$

 \blacktriangleright Entropy satisfies the Shannon inequalities

$$
H(X), H(Y) \le H(X, Y) \le H(X) + H(Y)
$$

$$
H(X|Y) = H(X, Y) - H(Y) \ge 0
$$

\n
$$
H(Y|X) = H(X, Y) - H(X) \ge 0
$$

\n
$$
I(X;Y) = H(X) + H(Y) - H(X,Y) \ge 0
$$

 \blacktriangleright Entropy quantifies the average uncertainty of a variable

$$
H(X) = \sum_{x \in X} p(x) \log 1/p(x) \ge 0
$$

 \blacktriangleright Entropy satisfies the Shannon inequalities

$$
H(X), H(Y) \le H(X, Y) \le H(X) + H(Y)
$$

 \blacktriangleright The mutual information for two variables

 $I(X; Y) = H(X) + H(Y) - H(X, Y) \geq 0.$

The mutual information for two variables $I(X; Y) = H(X) + H(Y) - H(X, Y) \geq 0.$

 \blacktriangleright Multivariate mutual information

 $I(X; Y; X) = I(X; Y) + I(X; Z) - I(X; Y, Z).$

a.k.a. interaction information, co-information

The mutual information for two variables $I(X; Y) = H(X) + H(Y) - H(X, Y) > 0.$

 \blacktriangleright Multivariate mutual information $I(X; Y; X) = I(X; Y) + I(X; Z) - I(X; Y, Z).$ a.k.a. interaction information, co-information

- \blacktriangleright This quantity can be negative!
- \blacktriangleright How do we interpret this result?

The mutual information for two variables $I(X; Y) = H(X) + H(Y) - H(X, Y) \geq 0.$

 \blacktriangleright Multivariate mutual information $I(X; Y; X) = I(X; Y) + I(X; Z) - I(X; Y, Z).$ a.k.a. interaction information, co-information

- \blacktriangleright This quantity can be negative!
- \blacktriangleright How do we interpret this result?

There are no Shannon inequalities for multivariate information.

Consider trying to predict T from S_1 and S_2

 \blacktriangleright Several types of information

Consider trying to predict T from S_1 and S_2

- \blacktriangleright Several types of information
	- **Unique information** $U(S_1 \backslash S_2 \rightarrow T)$

Consider trying to predict T from S_1 and S_2

- \blacktriangleright Several types of information
	- **Unique information** $U(S_1 \backslash S_2 \rightarrow T)$
	- **Redundant information** $R(S_1, S_2 \rightarrow T)$

Consider trying to predict T from S_1 and S_2

- \blacktriangleright Several types of information
	- **Unique information** $U(S_1 \backslash S_2 \rightarrow T)$
	- **Redundant information** $R(S_1, S_2 \rightarrow T)$
	- **Synergistic information** $C(S_1, S_2 \rightarrow T)$

Consider trying to predict T from S_1 and S_2

- Several types of information
	- **Unique information** $U(S_1 \backslash S_2 \rightarrow T)$
	- **Redundant information** $R(S_1, S_2 \rightarrow T)$
	- **Synergistic information** $C(S_1, S_2 \rightarrow T)$
- Mutual information captures

 $I(T; S_1) = R(S_1, S_2 \rightarrow T) + U(S_1 \backslash S_2 \rightarrow T)$ $I(T: S_2) = R(S_1, S_2 \rightarrow T) + U(S_2 \setminus S_1 \rightarrow T)$

Joint mutual information captures

 $I(T; S_1, S_2) = R(S_1, S_2 \rightarrow T) + U(S_1 \backslash S_2 \rightarrow T) + U(S_2 \backslash S_1 \rightarrow T) + C(S_1, S_2 \rightarrow T)$

Consider trying to predict T from S_1 and S_2

- Several types of information
	- **Unique information** $U(S_1 \backslash S_2 \rightarrow T)$
	- **Redundant information** $R(S_1, S_2 \rightarrow T)$
	- **Synergistic information** $C(S_1, S_2 \rightarrow T)$
- Mutual information captures

$$
I(T; S_1) = R(S_1, S_2 \to T) + U(S_1 \setminus S_2 \to T)
$$

$$
I(T; S_2) = R(S_1, S_2 \to T) + U(S_2 \setminus S_1 \to T)
$$

Joint mutual information captures

 $I(T; S_1, S_2) = R(S_1, S_2 \rightarrow T) + U(S_1 \backslash S_2 \rightarrow T) + U(S_2 \backslash S_1 \rightarrow T) + C(S_1, S_2 \rightarrow T)$

Different kinds of dependency

 \blacktriangleright Multivariate mutual information conflates redundant and synergistic information

$$
I(T; S_1; S_2) = I(T; S_1) + I(T; S_2) - I(S_1, S_2; T)
$$

= $U(T : S_1 \setminus S_2) + R(T : S_1, S_2) + U(T : S_1 \setminus S_2) + R(T : S_1, S_2)$
 $- R(S_1, S_2 \to T) + U(S_1 S_2 \to T) + U(S_2 S_1 \to T) + C(S_1, S_2 \to T)$
= $R(S_1, S_2 \to T) - C(S_1, S_2 \to T)$

Different kinds of dependency

 \blacktriangleright Multivariate mutual information conflates redundant and synergistic information

$$
I(T; S_1; S_2) = I(T; S_1) + I(T; S_2) - I(S_1, S_2; T)
$$

= $U(T : S_1 \setminus S_2) + R(T : S_1, S_2) + U(T : S_1 \setminus S_2) + R(T : S_1, S_2)$
 $- R(S_1, S_2 \to T) + U(S_1 S_2 \to T) + U(S_2 S_1 \to T) + C(S_1, S_2 \to T)$
= $R(S_1, S_2 \to T) - C(S_1, S_2 \to T)$

 \blacktriangleright How can we separate these effects in general?

Partial information decomposition

Framework from [Williams and Beer \(2010\)](#page-42-0)

- \blacktriangleright Axioms for redundant information
	- 1. Commutativity
	- 2. Monotonically decreasing
	- 3. Self-redundancy (idempotency)
- \blacktriangleright Yields a redundancy lattice

Partial information decomposition

Framework from [Williams and Beer \(2010\)](#page-42-0)

- Axioms for redundant information
	- 1. Commutativity
	- 2. Monotonically decreasing
	- 3. Self-redundancy (idempotency)
- Yields a redundancy lattice

Partial information decomposition

Framework from [Williams and Beer \(2010\)](#page-42-0)

- Axioms for redundant information
	- 1. Commutativity
	- 2. Monotonically decreasing
	- 3. Self-redundancy (idempotency)
- \blacktriangleright Yields a redundancy lattice

-
-
-
-
-
-
-
-
- - -
		- - - - -

 \triangleright Defining the redundant information is not simple

- \triangleright Defining the redundant information is not simple
- \blacktriangleright Why should we be interested?
	- Feature selection in machine learning
	- Network information theory
	- Lossless ompression of structured databases

- \triangleright Defining the redundant information is not simple
- \blacktriangleright Why should we be interested?
	- Feature selection in machine learning
	- Network information theory
	- Lossless ompression of structured databases
	- Neuroscience: quantifying information modification in the brain

- Defining the redundant information is not simple
- Why should we be interested?
	- Feature selection in machine learning
	- Network information theory
	- Lossless ompression of structured databases
	- Neuroscience: quantifying information modification in the brain
- \blacktriangleright The good news: pointwise partial information decomposition

MDPI

Received: 10 July 2017; Accepted: 10 April 2018; Published: 18 April 2018

Quantifying information modification in CAs

Questions?

Original measure of redundancy introduced by Williams and Beer

$$
I_{\min}(X:Y_1,\ldots,Y_k)=\sum_x p(x)\min_{Y_i} I(X=x;Y_i)
$$

Original measure of redundancy introduced by Williams and Beer

$$
I_{\min}(X:Y_1,\ldots,Y_k)=\sum_x p(x)\min_{Y_i} I(X=x;Y_i)
$$

IGURED Semi-local approach: for each $X = x$ the redundant information is the minimum information provided by all of the sources Y_i

Original measure of redundancy introduced by Williams and Beer

$$
I_{\min}(X:Y_1,\ldots,Y_k)=\sum_x p(x)\min_{Y_i} I(X=x;Y_i)
$$

- **IGURED** Semi-local approach: for each $X = x$ the redundant information is the minimum information provided by all of the sources Y_i
- \triangleright Widely critised after its introduction two bit copy problem

Original measure of redundancy introduced by Williams and Beer

$$
I_{\min}(X:Y_1,\ldots,Y_k)=\sum_x p(x)\min_{Y_i} I(X=x;Y_i)
$$

- **IGURED** Semi-local approach: for each $X = x$ the redundant information is the minimum information provided by all of the sources Y_i
- \triangleright Widely critised after its introduction two bit copy problem

$$
\mathrm{I}_{\text{min}}(X:Y;Z)=1\ \mathrm{bit}
$$

Original measure of redundancy introduced by Williams and Beer

$$
I_{\min}(X:Y_1,\ldots,Y_k)=\sum_x p(x)\min_{Y_i} I(X=x;Y_i)
$$

- Semi-local approach: for each $X = x$ the redundant information is the minimum information provided by all of the sources Y_i
- Widely critised after its introduction two bit copy problem

 $I_{min}(X:Y;Z) = 1$ bit

If the problem is I_{min} does not distinguish whether sources carry *the same* information or just *the same amount* of information"

Based on information geometry and introduced by Harder et al.

$$
\mathrm{I}_{\mathrm{red}}(Z:X;Y)=\min\left\{\mathrm{I}_{Z}^{\pi}(X\searrow Y)\,,\,\mathrm{I}_{Z}^{\pi}(X\searrow Y)\right\}
$$

where $\mathrm{I}_Z^\pi(X\searrow Y)$ is the mutual information between Z and X expressed in terms of the mutual information between Z and Y .

Based on information geometry and introduced by Harder et al.

$$
\mathrm{I}_{\mathrm{red}}(Z:X;Y)=\min\left\{\mathrm{I}_{Z}^{\pi}(X\searrow Y)\,,\,\mathrm{I}_{Z}^{\pi}(X\searrow Y)\right\}
$$

where $\mathrm{I}_Z^\pi(X\searrow Y)$ is the mutual information between Z and X expressed in terms of the mutual information between Z and Y .

Based on information geometry and introduced by Harder et al.

$$
\mathrm{I}_{\mathrm{red}}(Z:X;Y)=\min\left\{\mathrm{I}_{Z}^{\pi}(X\searrow Y)\,,\,\mathrm{I}_{Z}^{\pi}(X\searrow Y)\right\}
$$

where $\mathrm{I}_Z^\pi(X\searrow Y)$ is the mutual information between Z and X expressed in terms of the mutual information between Z and Y .

Only able to quantify bivariate redundancy: multivariate extension highly non-trivial and evaluation is intractable

Based on information geometry and introduced by Harder et al.

$$
\mathrm{I}_{\mathrm{red}}(Z:X;Y)=\min\left\{\,\mathrm{I}_{Z}^{\pi}(X\searrow Y)\,,\;\mathrm{I}_{Z}^{\pi}(X\searrow Y)\right\}
$$

where $\mathrm{I}_Z^\pi(X\searrow Y)$ is the mutual information between Z and X expressed in terms of the mutual information between Z and Y .

- Only able to quantify bivariate redundancy: multivariate extension highly non-trivial and evaluation is intractable
- Not even clear that it does indeed capture the redundant information

Based on information geometry and introduced by Harder et al.

$$
\mathrm{I}_{\mathrm{red}}(Z:X;Y)=\min\left\{\,\mathrm{I}_{Z}^{\pi}(X\searrow Y)\,,\;\mathrm{I}_{Z}^{\pi}(X\searrow Y)\right\}
$$

where $\mathrm{I}_Z^\pi(X\searrow Y)$ is the mutual information between Z and X expressed in terms of the mutual information between Z and Y .

- Only able to quantify bivariate redundancy: multivariate extension highly non-trivial and evaluation is intractable
- Not even clear that it does indeed capture the redundant information
- No meaningful local intepretation

Indroduced by Bertschinger et al. — game-theoretic motivation

 \triangleright Defining the unique information implicitly defines the redundant information in the partial information decomposition framework

- Defining the unique information implicitly defines the redundant information in the partial information decomposition framework
- If a source contains unique information then there must be a way to exploit this information in a decision problem

- Defining the unique information implicitly defines the redundant information in the partial information decomposition framework
- \blacktriangleright If a source contains unique information then there must be a way to exploit this information in a decision problem
- No unique local intepretation

- Defining the unique information implicitly defines the redundant information in the partial information decomposition framework
- If a source contains unique information then there must be a way to exploit this information in a decision problem
- No unique local intepretation
- I Worse than that

- Defining the unique information implicitly defines the redundant information in the partial information decomposition framework
- If a source contains unique information then there must be a way to exploit this information in a decision problem
- No unique local intepretation
- I Worse than that

$$
\widetilde{\mathrm{UI}}(X:Y) = \widetilde{\mathrm{UI}}(X:Y) = 0 \text{ bit}
$$

References

Paul L Williams and Randall D Beer. Nonnegative decomposition of multivariate information. *arXiv preprint arXiv:1004.2515*, 2010.