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Information Theory

I Entropy quantifies the average uncertainty of a variable

H(X) =
∑
x∈X

p(x) log 1/p(x) ≥ 0

I Entropy satisfies the Shannon inequalities

H(X), H(Y ) ≤ H(X,Y ) ≤ H(X) +H(Y )

H(X|Y ) H(Y |X)I(X;Y )

H(Y )H(X)

H(X,Y )

H(X|Y ) = H(X,Y )−H(Y ) ≥ 0

H(Y |X) = H(X,Y )−H(X) ≥ 0

I(X;Y ) = H(X) +H(Y )−H(X,Y ) ≥ 0
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Multivariate Information Theory

I(X;Y ;Z)

H(X|Y, Z)

H(Y |X,Z) H(Z|X,Y )

I(X,Z|Y )I(X,Y |Z)

I(Y, Z|X)

H(X)

H(Z)H(Y )

I The mutual information for two variables

I(X;Y ) = H(X) +H(Y )−H(X,Y ) ≥ 0.

I Multivariate mutual information

I(X;Y ;X) = I(X;Y )+I(X;Z)−I(X;Y, Z).

a.k.a. interaction information, co-information

I This quantity can be negative!

I How do we interpret this result?

I There are no Shannon inequalities for multivariate information.
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Unique, redundant, and synergistic information

Consider trying to predict T from S1 and S2

I Several types of information

– Unique information U(S1\S2 → T )

– Redundant information R(S1, S2 → T )

– Synergistic information C(S1, S2 → T )

I Mutual information captures

I(T ;S1) = R(S1, S2→T ) + U(S1\S2→T )

I(T ;S2) = R(S1, S2→T ) + U(S2\S1→T )

I Joint mutual information captures

I(T ;S1, S2) = R(S1, S2→T )+U(S1\S2→T )+U(S2\S1→T )+C(S1, S2→T )

UNQ

p s1 s2 t

1/4 0 0 0
1/4 0 1 0
1/4 1 0 1
1/4 1 1 1

RDN

p s1 s2 t

1/2 0 0 0
1/2 1 1 1

XOR

p s1 s2 t

1/4 0 0 0
1/4 0 1 1
1/4 1 0 1
1/4 1 1 0

RU1 U1

C
I(S1,S2;T )

I(S2;T )I(S2;T )
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Different kinds of dependency

I Multivariate mutual information conflates redundant and synergistic information

I(T ;S1;S2) = I(T ;S1) + I(T ;S2)− I(S1, S2;T )

= U(T : S1\S2) +R(T : S1, S2) + U(T : S1\S2) +R(T : S1, S2)

−R(S1, S2→T ) + U(S1 S2→T ) + U(S2 S1→T ) + C(S1, S2→T )

= R(S1, S2→T )− C(S1, S2→T )

I How can we separate these effects in general?
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Partial information decomposition

Framework from Williams and Beer (2010)

I Axioms for redundant information
1. Commutativity

2. Monotonically decreasing

3. Self-redundancy (idempotency)

I Yields a redundancy lattice
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PID is elegant, however...

I Defining the redundant information is not simple

I Why should we be interested?

– Feature selection in machine learning
– Network information theory
– Lossless ompression of structured databases
– Neuroscience: quantifying information modification in the brain

I The good news: pointwise partial information decomposition
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Quantifying information modification in CAs

-6

-4

-2

0

-2

0

2

4

6

8

0

1

2

3



Questions?



Redundancy measures: Imin

Original measure of redundancy introduced by Williams and Beer

Imin(X : Y1, . . . , Yk) =
∑
x

p(x)min
Yi

I(X = x;Yi)

I Semi-local approach: for each X = x the redundant information is the minimum
information provided by all of the sources Yi

I Widely critised after its introduction — two bit copy problem

X Y Z P

00 0 0 1/4
01 0 1 1/4
10 1 0 1/4
01 1 1 1/4

Imin(X : Y ;Z) = 1 bit

I “The problem is Imin does not distinguish whether sources carry the same
information or just the same amount of information”
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Redundancy measures: Ired

Based on information geometry and introduced by Harder et al.

Ired(Z : X;Y ) = min
{
IπZ (X ↘ Y ) , IπZ (X ↘ Y )

}
where IπZ (X ↘ Y ) is the mutual information between Z and X expressed in terms of
the mutual information between Z and Y .

I Only able to quantify bivariate
redundancy: multivariate extension highly
non-trivial and evaluation is intractable

I Not even clear that it does indeed capture the
redundant information

I No meaningful local intepretation
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Unique information measure: ŨI

Indroduced by Bertschinger et al. — game-theoretic motivation

I Defining the unique information implicitly defines the redundant information in the
partial information decomposition framework

I If a source contains unique information then there must be a way to exploit this
information in a decision problem

I No unique local intepretation

I Worse than that

X Y Z P

0 0 0 1/2
1 0 1 1/4
1 1 0 1/4

ŨI(X : Y ) = ŨI(X : Y ) = 0 bit
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ŨI(X : Y ) = ŨI(X : Y ) = 0 bit



References

Paul L Williams and Randall D Beer. Nonnegative decomposition of multivariate information. arXiv preprint
arXiv:1004.2515, 2010.


	References

