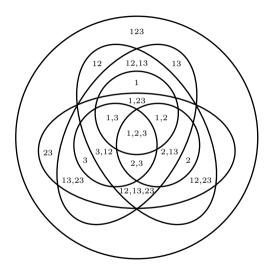
Information Decomposition CSSS18 Tutorial

Conor Finn

July 6, 2018



Entropy quantifies the average uncertainty of a variable

$$H(X) = \sum_{x \in X} p(x) \log 1/p(x) \ge 0$$

Entropy quantifies the average uncertainty of a variable

$$H(X) = \sum_{x \in X} p(x) \log \frac{1}{p(x)} \ge 0$$

Entropy satisfies the Shannon inequalities

$$H(X), \ H(Y) \le H(X,Y) \le H(X) + H(Y)$$

Entropy quantifies the average uncertainty of a variable

$$H(X) = \sum_{x \in X} p(x) \log \frac{1}{p(x)} \ge 0$$

Entropy satisfies the Shannon inequalities

$$H(X), \ H(Y) \le H(X,Y) \le H(X) + H(Y)$$

$$H(X|Y) = H(X,Y) - H(Y) \ge 0$$

$$H(Y|X) = H(X,Y) - H(X) \ge 0$$

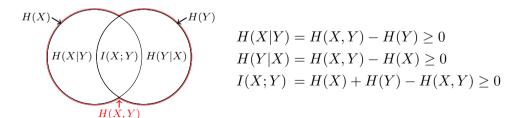
$$I(X;Y) = H(X) + H(Y) - H(X,Y) \ge 0$$

Entropy quantifies the average uncertainty of a variable

$$H(X) = \sum_{x \in X} p(x) \log \frac{1}{p(x)} \ge 0$$

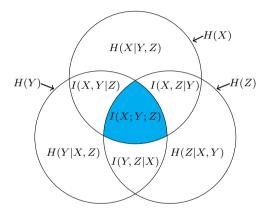
Entropy satisfies the Shannon inequalities

$$H(X), \ H(Y) \le H(X,Y) \le H(X) + H(Y)$$



The mutual information for two variables

 $I(X;Y) = H(X) + H(Y) - H(X,Y) \ge 0.$

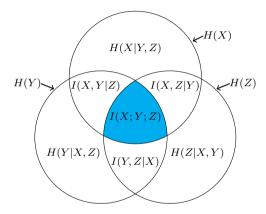


• The mutual information for two variables $I(X;Y) = H(X) + H(Y) - H(X,Y) \ge 0.$

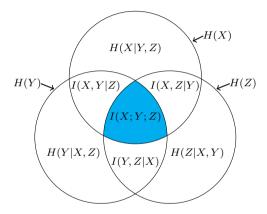
Multivariate mutual information

I(X;Y;X)=I(X;Y)+I(X;Z)-I(X;Y,Z).

a.k.a. interaction information, co-information



- The mutual information for two variables $I(X;Y) = H(X) + H(Y) H(X,Y) \ge 0.$
- Multivariate mutual information
 I(X;Y;X) = I(X;Y) + I(X;Z) I(X;Y,Z).
 a.k.a. interaction information, co-information
- This quantity can be negative!
- How do we interpret this result?



The mutual information for two variables $I(X;Y) = H(X) + H(Y) - H(X,Y) \ge 0.$

Multivariate mutual information I(X;Y;X) = I(X;Y) + I(X;Z) - I(X;Y,Z).a.k.a. interaction information, co-information

- This quantity can be negative!
- How do we interpret this result?

There are no Shannon inequalities for multivariate information.

Consider trying to predict T from S_1 and S_2

Several types of information

Consider trying to predict T from S_1 and S_2

- Several types of information
 - Unique information $U(S_1 \setminus S_2 \to T)$

	UNQ						
\boldsymbol{p}	\boldsymbol{s}_1	\boldsymbol{s}_2	t				
1/4	0	0	0				
1/4	0	1	0				
1/4	1	0	1				
1/4	1	1	1				

Consider trying to predict T from S_1 and S_2

- Several types of information
 - Unique information $U(S_1 \setminus S_2 \to T)$
 - Redundant information $R(S_1, S_2 \rightarrow T)$

UNQ								
p	\boldsymbol{s}_1	\boldsymbol{s}_2	t	_		R	DN	
1/4	0	0	0		p	\boldsymbol{s}_1	\boldsymbol{s}_2	t
1/4	ŏ	1	ŏ	_	1/2	0	0	0
1/4	1	0	1		1/2	1	1	1
1/4	1	1	1	-				

Consider trying to predict T from S_1 and S_2

- Several types of information
 - Unique information $U(S_1 \setminus S_2 \to T)$
 - Redundant information $R(S_1, S_2 \rightarrow T)$
 - Synergistic information $C(S_1, S_2 \rightarrow T)$

	U١	Q							Xc	DR	
p	\boldsymbol{s}_1	\boldsymbol{s}_2	t		R	DN		p	s_1	s_2	t
1/4	0	0	0	p	\boldsymbol{s}_1	\boldsymbol{s}_2	t	1/4	0	0	0
1/4	õ	Ĩ	Õ	1/2	0	0	0	1/4	õ	1	ĩ
1/4	1	0	1	1/2	1	1	1	1/4	1	0	1
1/4	1	1	1					1/4	1	1	0

Consider trying to predict T from S_1 and S_2

- Several types of information
 - Unique information $U(S_1 \setminus S_2 \to T)$
 - Redundant information $R(S_1, S_2 \rightarrow T)$
 - Synergistic information $C(S_1, S_2 \rightarrow T)$
- Mutual information captures

 $I(T; S_1) = R(S_1, S_2 \rightarrow T) + U(S_1 \setminus S_2 \rightarrow T)$ $I(T; S_2) = R(S_1, S_2 \rightarrow T) + U(S_2 \setminus S_1 \rightarrow T)$

Joint mutual information captures

 $I(T; S_1, S_2) = R(S_1, S_2 \rightarrow T) + U(S_1 \backslash S_2 \rightarrow T) + U(S_2 \backslash S_1 \rightarrow T) + C(S_1, S_2 \rightarrow T) + U(S_2 \backslash S_1 \rightarrow T) + C(S_1, S_2 \rightarrow T) + U(S_2 \backslash S_1 \rightarrow T) + U(S_2 \backslash S_2 \rightarrow T)$

U١	Q							Xc	DR	
\boldsymbol{s}_1	\boldsymbol{s}_2	t		R	DN		p	s_1	s_2	t
0	0	0	p	\boldsymbol{s}_1	\boldsymbol{s}_2	t	1/4	0	0	0
õ	1	Ō	1/2	0	0	0	1/4	õ	1	ĩ
1	0	1	1/2	1	1	1	1/4	1	0	1
1	1	1					1/4	1	1	0
	s ₁ 0	0 0 0 1	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						

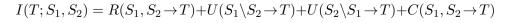
Consider trying to predict T from S_1 and S_2

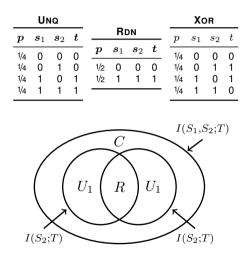
- Several types of information
 - Unique information $U(S_1 \setminus S_2 \to T)$
 - Redundant information $R(S_1, S_2 \rightarrow T)$
 - Synergistic information $C(S_1, S_2 \rightarrow T)$
- Mutual information captures

$$I(T; S_1) = R(S_1, S_2 \rightarrow T) + U(S_1 \setminus S_2 \rightarrow T)$$

$$I(T; S_2) = R(S_1, S_2 \rightarrow T) + U(S_2 \setminus S_1 \rightarrow T)$$

Joint mutual information captures





Different kinds of dependency

Multivariate mutual information conflates redundant and synergistic information

$$\begin{split} I(T;S_1;S_2) &= I(T;S_1) + I(T;S_2) - I(S_1,S_2;T) \\ &= U(T:S_1 \backslash S_2) + R(T:S_1,S_2) + U(T:S_1 \backslash S_2) + R(T:S_1,S_2) \\ &- R(S_1,S_2 \to T) + U(S_1 S_2 \to T) + U(S_2 S_1 \to T) + C(S_1,S_2 \to T) \\ &= R(S_1,S_2 \to T) - C(S_1,S_2 \to T) \end{split}$$

Different kinds of dependency

Multivariate mutual information conflates redundant and synergistic information

$$\begin{split} I(T;S_1;S_2) &= I(T;S_1) + I(T;S_2) - I(S_1,S_2;T) \\ &= U(T:S_1 \backslash S_2) + R(T:S_1,S_2) + U(T:S_1 \backslash S_2) + R(T:S_1,S_2) \\ &- R(S_1,S_2 \to T) + U(S_1 S_2 \to T) + U(S_2 S_1 \to T) + C(S_1,S_2 \to T) \\ &= R(S_1,S_2 \to T) - C(S_1,S_2 \to T) \end{split}$$

How can we separate these effects in general?

Partial information decomposition

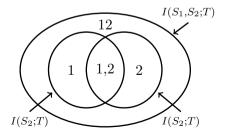
Framework from Williams and Beer (2010)

- Axioms for redundant information
 - 1. Commutativity
 - 2. Monotonically decreasing
 - 3. Self-redundancy (idempotency)
- Yields a redundancy lattice

Partial information decomposition

Framework from Williams and Beer (2010)

- Axioms for redundant information
 - 1. Commutativity
 - 2. Monotonically decreasing
 - 3. Self-redundancy (idempotency)
- Yields a redundancy lattice

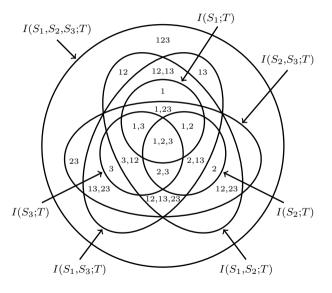


Partial information decomposition

Framework from Williams and Beer (2010)

- Axioms for redundant information
 - 1. Commutativity
 - 2. Monotonically decreasing
 - 3. Self-redundancy (idempotency)
- Yields a redundancy lattice





Defining the redundant information is not simple

- Defining the redundant information is not simple
- Why should we be interested?
 - Feature selection in machine learning
 - Network information theory
 - Lossless ompression of structured databases

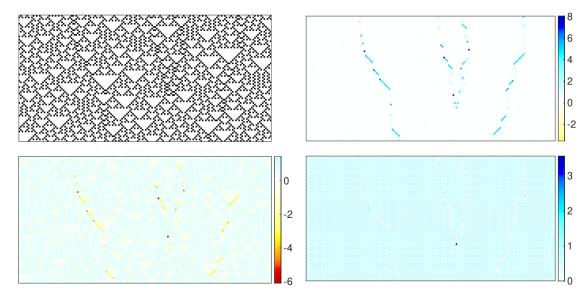
- Defining the redundant information is not simple
- Why should we be interested?
 - Feature selection in machine learning
 - Network information theory
 - Lossless ompression of structured databases
 - Neuroscience: quantifying information modification in the brain

- Defining the redundant information is not simple
- Why should we be interested?
 - Feature selection in machine learning
 - Network information theory
 - Lossless ompression of structured databases
 - Neuroscience: quantifying information modification in the brain
- The good news: pointwise partial information decomposition

MDPI

Received: 10 July 2017; Accepted: 10 April 2018; Published: 18 April 2018

Quantifying information modification in CAs



Questions?

Redundancy measures: Imin

Original measure of redundancy introduced by Williams and Beer

$$I_{\min}(X:Y_1,\ldots,Y_k) = \sum_{x} p(x) \min_{Y_i} I(X=x;Y_i)$$

Redundancy measures: I_{min}

Original measure of redundancy introduced by Williams and Beer

$$I_{\mathsf{min}}(X:Y_1,\ldots,Y_k) = \sum_x p(x) \min_{Y_i} I(X=x;Y_i)$$

Semi-local approach: for each X = x the redundant information is the minimum information provided by all of the sources Y_i

Redundancy measures: I_{min}

Original measure of redundancy introduced by Williams and Beer

$$I_{\mathsf{min}}(X:Y_1,\ldots,Y_k) = \sum_x p(x) \min_{Y_i} I(X=x;Y_i)$$

- Semi-local approach: for each X = x the redundant information is the minimum information provided by all of the sources Y_i
- Widely critised after its introduction two bit copy problem

X	Y	Z	P
00	0	0	1/4
01	0	1	1/4
10	1	0	1/4
01	1	1	1/4

Redundancy measures: I_{min}

Original measure of redundancy introduced by Williams and Beer

$$I_{\min}(X:Y_1,\ldots,Y_k) = \sum_x p(x) \min_{Y_i} I(X=x;Y_i)$$

- Semi-local approach: for each X = x the redundant information is the minimum information provided by all of the sources Y_i
- Widely critised after its introduction two bit copy problem

X	Y	Z	P
00	0	0	1/4
01	0	1	1/4
10	1	0	1/4
01	1	1	1/4

$$I_{\min}(X:Y;Z) = 1$$
 bit

Redundancy measures: Imin

Original measure of redundancy introduced by Williams and Beer

$$I_{\mathsf{min}}(X:Y_1,\ldots,Y_k) = \sum_{x} p(x) \min_{Y_i} I(X=x;Y_i)$$

- Semi-local approach: for each X = x the redundant information is the minimum information provided by all of the sources Y_i
- Widely critised after its introduction two bit copy problem

X	Y	Z	P
00	0	0	1/4
01	0	1	1/4
10	1	0	1/4
01	1	1	1/4

 $I_{\min}(X:Y;Z) = 1 \text{ bit}$

"The problem is I_{min} does not distinguish whether sources carry the same information or just the same amount of information"

Based on information geometry and introduced by Harder et al.

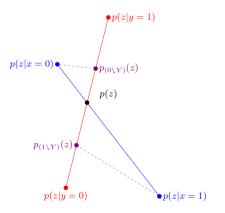
 $\mathbf{I}_{\mathsf{red}}(Z:X;Y) = \min\left\{\mathbf{I}_Z^{\pi}(X\searrow Y), \ \mathbf{I}_Z^{\pi}(X\searrow Y)\right\}$

where $I_Z^{\pi}(X \searrow Y)$ is the mutual information between Z and X expressed in terms of the mutual information between Z and Y.

Based on information geometry and introduced by Harder et al.

$$I_{\mathsf{red}}(Z:X;Y) = \min\left\{I_Z^{\pi}(X \searrow Y), \ I_Z^{\pi}(X \searrow Y)\right\}$$

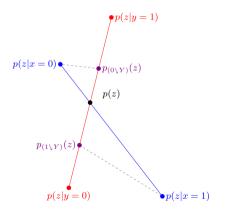
where $I_Z^{\pi}(X \searrow Y)$ is the mutual information between Z and X expressed in terms of the mutual information between Z and Y.



Based on information geometry and introduced by Harder et al.

$$I_{\mathsf{red}}(Z:X;Y) = \min\left\{I_Z^{\pi}(X \searrow Y), \ I_Z^{\pi}(X \searrow Y)\right\}$$

where $I_Z^{\pi}(X \searrow Y)$ is the mutual information between Z and X expressed in terms of the mutual information between Z and Y.

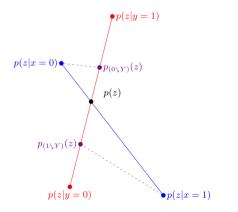


Only able to quantify bivariate redundancy: multivariate extension highly non-trivial and evaluation is intractable

Based on information geometry and introduced by Harder et al.

$$\mathbf{I}_{\mathsf{red}}(Z:X;Y) = \min\left\{\mathbf{I}_Z^{\pi}(X\searrow Y), \ \mathbf{I}_Z^{\pi}(X\searrow Y)\right\}$$

where $I_Z^{\pi}(X \searrow Y)$ is the mutual information between Z and X expressed in terms of the mutual information between Z and Y.

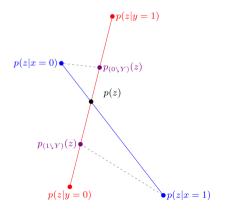


- Only able to quantify bivariate redundancy: multivariate extension highly non-trivial and evaluation is intractable
- Not even clear that it does indeed capture the redundant information

Based on information geometry and introduced by Harder et al.

$$\mathbf{I}_{\mathsf{red}}(Z:X;Y) = \min\left\{\mathbf{I}_Z^{\pi}(X\searrow Y), \ \mathbf{I}_Z^{\pi}(X\searrow Y)\right\}$$

where $I_Z^{\pi}(X \searrow Y)$ is the mutual information between Z and X expressed in terms of the mutual information between Z and Y.



- Only able to quantify bivariate redundancy: multivariate extension highly non-trivial and evaluation is intractable
- Not even clear that it does indeed capture the redundant information
- No meaningful local intepretation

Indroduced by Bertschinger et al. — game-theoretic motivation

Defining the unique information implicitly defines the redundant information in the partial information decomposition framework

- Defining the unique information implicitly defines the redundant information in the partial information decomposition framework
- If a source contains unique information then there must be a way to exploit this information in a decision problem

- Defining the unique information implicitly defines the redundant information in the partial information decomposition framework
- If a source contains unique information then there must be a way to exploit this information in a decision problem
- No unique local intepretation

- Defining the unique information implicitly defines the redundant information in the partial information decomposition framework
- If a source contains unique information then there must be a way to exploit this information in a decision problem
- No unique local intepretation
- Worse than that

X	Y	Z	P
0	0	0	1/2
1	0	1	1/4
1	1	0	1/4

- Defining the unique information implicitly defines the redundant information in the partial information decomposition framework
- If a source contains unique information then there must be a way to exploit this information in a decision problem
- No unique local intepretation
- Worse than that

X	Y	Z	P
0	0	0	1/2
1	0	1	1/4
1	1	0	1/4

$$\widetilde{\mathrm{UI}}(X:Y)=\widetilde{\mathrm{UI}}(X:Y)=0$$
 bit

References

Paul L Williams and Randall D Beer. Nonnegative decomposition of multivariate information. *arXiv preprint arXiv:1004.2515*, 2010.