# Information Decomposition CSSS18 Tutorial

#### **Conor Finn**

July 6, 2018







Entropy quantifies the average uncertainty of a variable

$$H(X) = \sum_{x \in X} p(x) \log 1/p(x) \ge 0$$

Entropy quantifies the average uncertainty of a variable

$$H(X) = \sum_{x \in X} p(x) \log \frac{1}{p(x)} \ge 0$$

Entropy satisfies the Shannon inequalities

$$H(X), \ H(Y) \le H(X,Y) \le H(X) + H(Y)$$

Entropy quantifies the average uncertainty of a variable

$$H(X) = \sum_{x \in X} p(x) \log \frac{1}{p(x)} \ge 0$$

Entropy satisfies the Shannon inequalities

$$H(X), \ H(Y) \le H(X,Y) \le H(X) + H(Y)$$

$$H(X|Y) = H(X,Y) - H(Y) \ge 0$$
  

$$H(Y|X) = H(X,Y) - H(X) \ge 0$$
  

$$I(X;Y) = H(X) + H(Y) - H(X,Y) \ge 0$$

Entropy quantifies the average uncertainty of a variable

$$H(X) = \sum_{x \in X} p(x) \log \frac{1}{p(x)} \ge 0$$

Entropy satisfies the Shannon inequalities

$$H(X), \ H(Y) \le H(X,Y) \le H(X) + H(Y)$$



The mutual information for two variables

 $I(X;Y) = H(X) + H(Y) - H(X,Y) \ge 0.$ 



• The mutual information for two variables  $I(X;Y) = H(X) + H(Y) - H(X,Y) \ge 0.$ 

Multivariate mutual information

I(X;Y;X)=I(X;Y)+I(X;Z)-I(X;Y,Z).

a.k.a. interaction information, co-information



- The mutual information for two variables  $I(X;Y) = H(X) + H(Y) H(X,Y) \ge 0.$
- Multivariate mutual information
   I(X;Y;X) = I(X;Y) + I(X;Z) I(X;Y,Z).
   a.k.a. interaction information, co-information
- This quantity can be negative!
- How do we interpret this result?



The mutual information for two variables  $I(X;Y) = H(X) + H(Y) - H(X,Y) \ge 0.$ 

Multivariate mutual information I(X;Y;X) = I(X;Y) + I(X;Z) - I(X;Y,Z).a.k.a. interaction information, co-information

- This quantity can be negative!
- How do we interpret this result?

There are no Shannon inequalities for multivariate information.

Consider trying to predict T from  $S_1$  and  $S_2$ 

Several types of information

Consider trying to predict T from  $S_1$  and  $S_2$ 

- Several types of information
  - Unique information  $U(S_1 \setminus S_2 \to T)$

|                  | UNQ                |                    |   |  |  |  |  |
|------------------|--------------------|--------------------|---|--|--|--|--|
| $\boldsymbol{p}$ | $\boldsymbol{s}_1$ | $\boldsymbol{s}_2$ | t |  |  |  |  |
| 1/4              | 0                  | 0                  | 0 |  |  |  |  |
| 1/4              | 0                  | 1                  | 0 |  |  |  |  |
| 1/4              | 1                  | 0                  | 1 |  |  |  |  |
| 1/4              | 1                  | 1                  | 1 |  |  |  |  |

Consider trying to predict T from  $S_1$  and  $S_2$ 

- Several types of information
  - Unique information  $U(S_1 \setminus S_2 \to T)$
  - Redundant information  $R(S_1, S_2 \rightarrow T)$

| UNQ |                    |                    |   |   |     |                    |                    |   |
|-----|--------------------|--------------------|---|---|-----|--------------------|--------------------|---|
| p   | $\boldsymbol{s}_1$ | $\boldsymbol{s}_2$ | t | _ |     | R                  | DN                 |   |
| 1/4 | 0                  | 0                  | 0 |   | p   | $\boldsymbol{s}_1$ | $\boldsymbol{s}_2$ | t |
| 1/4 | ŏ                  | 1                  | ŏ | _ | 1/2 | 0                  | 0                  | 0 |
| 1/4 | 1                  | 0                  | 1 |   | 1/2 | 1                  | 1                  | 1 |
| 1/4 | 1                  | 1                  | 1 | - |     |                    |                    |   |

Consider trying to predict T from  $S_1$  and  $S_2$ 

- Several types of information
  - Unique information  $U(S_1 \setminus S_2 \to T)$
  - Redundant information  $R(S_1, S_2 \rightarrow T)$
  - Synergistic information  $C(S_1, S_2 \rightarrow T)$

|     | U١                 | Q                  |   |     |                    |                    |   |     | Xc    | DR    |   |
|-----|--------------------|--------------------|---|-----|--------------------|--------------------|---|-----|-------|-------|---|
| p   | $\boldsymbol{s}_1$ | $\boldsymbol{s}_2$ | t |     | R                  | DN                 |   | p   | $s_1$ | $s_2$ | t |
| 1/4 | 0                  | 0                  | 0 | p   | $\boldsymbol{s}_1$ | $\boldsymbol{s}_2$ | t | 1/4 | 0     | 0     | 0 |
| 1/4 | õ                  | Ĩ                  | Õ | 1/2 | 0                  | 0                  | 0 | 1/4 | õ     | 1     | ĩ |
| 1/4 | 1                  | 0                  | 1 | 1/2 | 1                  | 1                  | 1 | 1/4 | 1     | 0     | 1 |
| 1/4 | 1                  | 1                  | 1 |     |                    |                    |   | 1/4 | 1     | 1     | 0 |

Consider trying to predict T from  $S_1$  and  $S_2$ 

- Several types of information
  - Unique information  $U(S_1 \setminus S_2 \to T)$
  - Redundant information  $R(S_1, S_2 \rightarrow T)$
  - Synergistic information  $C(S_1, S_2 \rightarrow T)$
- Mutual information captures

 $I(T; S_1) = R(S_1, S_2 \rightarrow T) + U(S_1 \setminus S_2 \rightarrow T)$  $I(T; S_2) = R(S_1, S_2 \rightarrow T) + U(S_2 \setminus S_1 \rightarrow T)$ 

Joint mutual information captures

 $I(T; S_1, S_2) = R(S_1, S_2 \rightarrow T) + U(S_1 \backslash S_2 \rightarrow T) + U(S_2 \backslash S_1 \rightarrow T) + C(S_1, S_2 \rightarrow T) + U(S_2 \backslash S_1 \rightarrow T) + C(S_1, S_2 \rightarrow T) + U(S_2 \backslash S_1 \rightarrow T) + U(S_2 \backslash S_2 \rightarrow T)$ 

| U١                 | Q                          |         |                                                    |                                                       |                                                       |                                                       |                                                       | Xc                                                    | DR                                                    |                                                       |
|--------------------|----------------------------|---------|----------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| $\boldsymbol{s}_1$ | $\boldsymbol{s}_2$         | t       |                                                    | R                                                     | DN                                                    |                                                       | p                                                     | $s_1$                                                 | $s_2$                                                 | t                                                     |
| 0                  | 0                          | 0       | p                                                  | $\boldsymbol{s}_1$                                    | $\boldsymbol{s}_2$                                    | t                                                     | 1/4                                                   | 0                                                     | 0                                                     | 0                                                     |
| õ                  | 1                          | Ō       | 1/2                                                | 0                                                     | 0                                                     | 0                                                     | 1/4                                                   | õ                                                     | 1                                                     | ĩ                                                     |
| 1                  | 0                          | 1       | 1/2                                                | 1                                                     | 1                                                     | 1                                                     | 1/4                                                   | 1                                                     | 0                                                     | 1                                                     |
| 1                  | 1                          | 1       |                                                    |                                                       |                                                       |                                                       | 1/4                                                   | 1                                                     | 1                                                     | 0                                                     |
|                    | <b>s</b> <sub>1</sub><br>0 | 0 0 0 1 | $egin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

Consider trying to predict T from  $S_1$  and  $S_2$ 

- Several types of information
  - Unique information  $U(S_1 \setminus S_2 \to T)$
  - Redundant information  $R(S_1, S_2 \rightarrow T)$
  - Synergistic information  $C(S_1, S_2 \rightarrow T)$
- Mutual information captures

$$I(T; S_1) = R(S_1, S_2 \rightarrow T) + U(S_1 \setminus S_2 \rightarrow T)$$
  
$$I(T; S_2) = R(S_1, S_2 \rightarrow T) + U(S_2 \setminus S_1 \rightarrow T)$$

Joint mutual information captures





#### **Different kinds of dependency**

Multivariate mutual information conflates redundant and synergistic information

$$\begin{split} I(T;S_1;S_2) &= I(T;S_1) + I(T;S_2) - I(S_1,S_2;T) \\ &= U(T:S_1 \backslash S_2) + R(T:S_1,S_2) + U(T:S_1 \backslash S_2) + R(T:S_1,S_2) \\ &- R(S_1,S_2 \to T) + U(S_1 S_2 \to T) + U(S_2 S_1 \to T) + C(S_1,S_2 \to T) \\ &= R(S_1,S_2 \to T) - C(S_1,S_2 \to T) \end{split}$$

#### **Different kinds of dependency**

Multivariate mutual information conflates redundant and synergistic information

$$\begin{split} I(T;S_1;S_2) &= I(T;S_1) + I(T;S_2) - I(S_1,S_2;T) \\ &= U(T:S_1 \backslash S_2) + R(T:S_1,S_2) + U(T:S_1 \backslash S_2) + R(T:S_1,S_2) \\ &- R(S_1,S_2 \to T) + U(S_1 S_2 \to T) + U(S_2 S_1 \to T) + C(S_1,S_2 \to T) \\ &= R(S_1,S_2 \to T) - C(S_1,S_2 \to T) \end{split}$$

How can we separate these effects in general?

### Partial information decomposition

Framework from Williams and Beer (2010)

- Axioms for redundant information
  - 1. Commutativity
  - 2. Monotonically decreasing
  - 3. Self-redundancy (idempotency)
- Yields a redundancy lattice

### Partial information decomposition

Framework from Williams and Beer (2010)

- Axioms for redundant information
  - 1. Commutativity
  - 2. Monotonically decreasing
  - 3. Self-redundancy (idempotency)
- Yields a redundancy lattice



### Partial information decomposition

Framework from Williams and Beer (2010)

- Axioms for redundant information
  - 1. Commutativity
  - 2. Monotonically decreasing
  - 3. Self-redundancy (idempotency)
- Yields a redundancy lattice





Defining the redundant information is not simple

- Defining the redundant information is not simple
- Why should we be interested?
  - Feature selection in machine learning
  - Network information theory
  - Lossless ompression of structured databases

- Defining the redundant information is not simple
- Why should we be interested?
  - Feature selection in machine learning
  - Network information theory
  - Lossless ompression of structured databases
  - Neuroscience: quantifying information modification in the brain

- Defining the redundant information is not simple
- Why should we be interested?
  - Feature selection in machine learning
  - Network information theory
  - Lossless ompression of structured databases
  - Neuroscience: quantifying information modification in the brain
- The good news: pointwise partial information decomposition



MDPI

Received: 10 July 2017; Accepted: 10 April 2018; Published: 18 April 2018

### **Quantifying information modification in CAs**



#### **Questions?**

#### **Redundancy measures:** Imin

Original measure of redundancy introduced by Williams and Beer

$$I_{\min}(X:Y_1,\ldots,Y_k) = \sum_{x} p(x) \min_{Y_i} I(X=x;Y_i)$$

#### Redundancy measures: $I_{min}$

Original measure of redundancy introduced by Williams and Beer

$$I_{\mathsf{min}}(X:Y_1,\ldots,Y_k) = \sum_x p(x) \min_{Y_i} I(X=x;Y_i)$$

Semi-local approach: for each X = x the redundant information is the minimum information provided by all of the sources  $Y_i$ 

#### **Redundancy measures:** I<sub>min</sub>

Original measure of redundancy introduced by Williams and Beer

$$I_{\mathsf{min}}(X:Y_1,\ldots,Y_k) = \sum_x p(x) \min_{Y_i} I(X=x;Y_i)$$

- Semi-local approach: for each X = x the redundant information is the minimum information provided by all of the sources  $Y_i$
- Widely critised after its introduction two bit copy problem

| X  | Y | Z | P   |
|----|---|---|-----|
| 00 | 0 | 0 | 1/4 |
| 01 | 0 | 1 | 1/4 |
| 10 | 1 | 0 | 1/4 |
| 01 | 1 | 1 | 1/4 |

#### **Redundancy measures:** I<sub>min</sub>

Original measure of redundancy introduced by Williams and Beer

$$I_{\min}(X:Y_1,\ldots,Y_k) = \sum_x p(x) \min_{Y_i} I(X=x;Y_i)$$

- Semi-local approach: for each X = x the redundant information is the minimum information provided by all of the sources  $Y_i$
- Widely critised after its introduction two bit copy problem

| X  | Y | Z | P   |
|----|---|---|-----|
| 00 | 0 | 0 | 1/4 |
| 01 | 0 | 1 | 1/4 |
| 10 | 1 | 0 | 1/4 |
| 01 | 1 | 1 | 1/4 |

$$I_{\min}(X:Y;Z) = 1$$
 bit

#### **Redundancy measures:** Imin

Original measure of redundancy introduced by Williams and Beer

$$I_{\mathsf{min}}(X:Y_1,\ldots,Y_k) = \sum_{x} p(x) \min_{Y_i} I(X=x;Y_i)$$

- Semi-local approach: for each X = x the redundant information is the minimum information provided by all of the sources  $Y_i$
- Widely critised after its introduction two bit copy problem

| X  | Y | Z | P   |
|----|---|---|-----|
| 00 | 0 | 0 | 1/4 |
| 01 | 0 | 1 | 1/4 |
| 10 | 1 | 0 | 1/4 |
| 01 | 1 | 1 | 1/4 |

 $I_{\min}(X:Y;Z) = 1 \text{ bit}$ 

"The problem is I<sub>min</sub> does not distinguish whether sources carry the same information or just the same amount of information"

Based on information geometry and introduced by Harder et al.

 $\mathbf{I}_{\mathsf{red}}(Z:X;Y) = \min\left\{\mathbf{I}_Z^{\pi}(X\searrow Y), \ \mathbf{I}_Z^{\pi}(X\searrow Y)\right\}$ 

where  $I_Z^{\pi}(X \searrow Y)$  is the mutual information between Z and X expressed in terms of the mutual information between Z and Y.

Based on information geometry and introduced by Harder et al.

$$I_{\mathsf{red}}(Z:X;Y) = \min\left\{I_Z^{\pi}(X \searrow Y), \ I_Z^{\pi}(X \searrow Y)\right\}$$

where  $I_Z^{\pi}(X \searrow Y)$  is the mutual information between Z and X expressed in terms of the mutual information between Z and Y.



Based on information geometry and introduced by Harder et al.

$$I_{\mathsf{red}}(Z:X;Y) = \min\left\{I_Z^{\pi}(X \searrow Y), \ I_Z^{\pi}(X \searrow Y)\right\}$$

where  $I_Z^{\pi}(X \searrow Y)$  is the mutual information between Z and X expressed in terms of the mutual information between Z and Y.



Only able to quantify bivariate redundancy: multivariate extension highly non-trivial and evaluation is intractable

Based on information geometry and introduced by Harder et al.

$$\mathbf{I}_{\mathsf{red}}(Z:X;Y) = \min\left\{\mathbf{I}_Z^{\pi}(X\searrow Y), \ \mathbf{I}_Z^{\pi}(X\searrow Y)\right\}$$

where  $I_Z^{\pi}(X \searrow Y)$  is the mutual information between Z and X expressed in terms of the mutual information between Z and Y.



- Only able to quantify bivariate redundancy: multivariate extension highly non-trivial and evaluation is intractable
- Not even clear that it does indeed capture the redundant information

Based on information geometry and introduced by Harder et al.

$$\mathbf{I}_{\mathsf{red}}(Z:X;Y) = \min\left\{\mathbf{I}_Z^{\pi}(X\searrow Y), \ \mathbf{I}_Z^{\pi}(X\searrow Y)\right\}$$

where  $I_Z^{\pi}(X \searrow Y)$  is the mutual information between Z and X expressed in terms of the mutual information between Z and Y.



- Only able to quantify bivariate redundancy: multivariate extension highly non-trivial and evaluation is intractable
- Not even clear that it does indeed capture the redundant information
- No meaningful local intepretation

Indroduced by Bertschinger et al. — game-theoretic motivation

Defining the unique information implicitly defines the redundant information in the partial information decomposition framework

- Defining the unique information implicitly defines the redundant information in the partial information decomposition framework
- If a source contains unique information then there must be a way to exploit this information in a decision problem

- Defining the unique information implicitly defines the redundant information in the partial information decomposition framework
- If a source contains unique information then there must be a way to exploit this information in a decision problem
- No unique local intepretation

- Defining the unique information implicitly defines the redundant information in the partial information decomposition framework
- If a source contains unique information then there must be a way to exploit this information in a decision problem
- No unique local intepretation
- Worse than that

| X | Y | Z | P   |
|---|---|---|-----|
| 0 | 0 | 0 | 1/2 |
| 1 | 0 | 1 | 1/4 |
| 1 | 1 | 0 | 1/4 |

- Defining the unique information implicitly defines the redundant information in the partial information decomposition framework
- If a source contains unique information then there must be a way to exploit this information in a decision problem
- No unique local intepretation
- Worse than that

| X | Y | Z | P   |
|---|---|---|-----|
| 0 | 0 | 0 | 1/2 |
| 1 | 0 | 1 | 1/4 |
| 1 | 1 | 0 | 1/4 |

$$\widetilde{\mathrm{UI}}(X:Y)=\widetilde{\mathrm{UI}}(X:Y)=0$$
 bit

#### **References**

Paul L Williams and Randall D Beer. Nonnegative decomposition of multivariate information. *arXiv preprint arXiv:1004.2515*, 2010.