What every power system engineer needs to know about August 10, 1996 and August 14, 2003: Sequence of events, root causes, and lessons learned

Jeff Dagle, PE
Chief Electrical Engineer
Energy Technology Development Group
Pacific Northwest National Laboratory
(509) 375-3629
jeff.dagle@pnl.gov
Major North American Blackouts

<table>
<thead>
<tr>
<th>Date</th>
<th>Location</th>
<th>Load Interrupted</th>
</tr>
</thead>
<tbody>
<tr>
<td>November 9, 1965</td>
<td>Northeast</td>
<td>20,000 MW</td>
</tr>
<tr>
<td>July 13, 1977</td>
<td>New York</td>
<td>6,000 MW</td>
</tr>
<tr>
<td>December 22, 1982</td>
<td>West Coast</td>
<td>12,350 MW</td>
</tr>
<tr>
<td>January 17, 1994</td>
<td>California</td>
<td>7,500 MW</td>
</tr>
<tr>
<td>December 14, 1994</td>
<td>Wyoming, Idaho</td>
<td>9,336 MW</td>
</tr>
<tr>
<td>July 2, 1996</td>
<td>Wyoming, Idaho</td>
<td>11,743 MW</td>
</tr>
<tr>
<td>August 10, 1996</td>
<td>Western Interconnection</td>
<td>30,489 MW</td>
</tr>
<tr>
<td>June 25, 1998</td>
<td>Midwest</td>
<td>950 MW</td>
</tr>
<tr>
<td>August 14, 2003</td>
<td>Northeast</td>
<td>61,800 MW</td>
</tr>
</tbody>
</table>
Case Study #1: August 10, 1996

- Above average water year
 - Extensive hydro generation available in Canada
- Lower Columbia generation not available
 - Water bypass for salmon migration
- Key transmission assets out of service for maintenance in Seattle-Portland area
- Temperatures above 100°F in California
- Transmission system experiencing abnormally high transfers, operating in unusual pattern that hadn’t been studied
Sequence of Events

Measurement at BPA Dittmer Control Center
Vancouver, WA

15:42:03
Keeler-Allston line trips

15:47:36
Ross-Lexington line trips/
McNary generation drops off

15:48:51
Out-of-Step separation

Reference time = 15:35:30 PDT

Time in Seconds since 10-Aug-1996 22:35:30.000
Generator Response: Loss of McNary units critical factor

Grand Coulee Generation MW
Chief Joe Generation MW
Malin-Round Mountain #1 MW
McNary Generation MW

Time in Seconds

Power Change in MW
Blackout Investigation Findings

- Right-of-way maintenance (tree trimming) was inadequate
- The system was being operated in a condition in which a single contingency outage would overload parallel transmission lines
 - Because adequate operating studies had not been conducted
- Outages in the hours leading up to the blackout were not fully communicated to other utilities
 - Each deemed insignificant at the time
 - With this information, other utilities might have reduced loadings on lines or adjusted local generation as precautionary measures to protect against the weakened state of the system
- McNary units tripped due to exciter protection error
 - These units were responding to reduced voltage
 - Other generators in the area did not respond to the extent assumed in previous planning studies
- Breakup caused significant generation loss
Lesson Learned: Modeling Errors

- Measured
- Simulated (After the Fact)
Case Study #2: August 14, 2003
August 14, 2003 Blackout Investigation

Phase I
- Investigate the outage to determine its causes and why it was not contained
- Interim report released November 19, 2003

Phase II
- Develop recommendations to reduce the possibility of future outages and minimize the scope of any that occur
- Final report released April 5, 2004

Joint U.S. - Canada Power System Outage Task Force

- Electric System Working Group
 - Investigate the cascading electrical failure.
- Nuclear Working Group
 - Review performance of plants and assess possibility of damage.
- Security Working Group
 - Determine if failures were caused with malicious intent.
Control Areas and Reliability Coordinators at the Epicenter of the August 14 Blackout
August 14 Conditions Prior to Blackout

- **Planned outages**
 - Cook 2, Davis Besse nuclear plants
 - East Lake 4, and Monroe 1

- **Transfers high to northeast U.S. + Ontario**
 - Not unusually so and not above transfer limits

- **Critical voltage day**
 - Voltages within limits
 - Operators taking action to boost voltages

- **Frequency**
 - Typical for a summer day

- System was within limits prior to 3:05 pm, on both actual and contingency basis
Warm But Not Unusual for August
Voltages Prior to 3:05 pm - Low But Within Limits
Frequency – Nothing Unusual
1:31:34pm – Eastlake Unit 5 Trips
East Lake 5 Exciter Failure Causes Trip

- **Exciter Control** trips to manual and backs off overloaded MVAR output.
- **Exciter System** trips completely off as operator returns it to automatic voltage control.

Graph showing time in EDT (Eastern Daylight Time) with MW and MVAR curves indicating the failure and trip events.
2:02pm – Transmission line trips in southwestern Ohio
Cause: Brush Fire
Significance: Contingency analysis system at the Midwest Independent System Operator failed due to incomplete topology information (software glitch)
FirstEnergy (FE) Computer Failures

- 2:14 pm Alarm logger fails and operators are not aware
 - No further alarms to FE operators
- 2:20 pm Several remote consoles fail
- 2:41 pm Energy Management System (EMS) server hosting alarm processor and other functions fails to backup
- 2:54 pm Backup server fails
 - EMS continues to function but with very degraded performance
 - FE system data passed normally to others: MISO and AEP
 - Automatic Generator Control (AGC) function degraded and strip charts flat-lined
- 3:08 pm Reboot of EMS appears to work, but alarm process not tested and still in failed condition
- No contingency analysis of events during the day including loss of East Lake 5 and subsequent line trips
- FE received calls from MISO, AEP, and PJM indicating problems on the FE system but did not recognize evolving emergency
What a typical EMS alarm processor looks like
(Note: This example is *NOT* associated with the 2003 blackout in any way)
3:05:41pm – Harding – Chamberlain 345kV line trip
Chamberlain-Harding Ground Fault due to Tree Contact as Measured by Digital Fault Recorder

Juniper ground fault current build up (fault current)

Line Trips

Time = 14.028 mSec

Faulted phase current

Harding - Chamberlain 345 kV fault at 15:05 EDT
DFR recorder taken from Harding - Juniper @ Juniper
3:32:03pm – Hanna – Juniper 345kV line trip
Hanna - Juniper confirmed as tree contact at less than the emergency ratings of the line
3:41:35pm – Star – South Canton 345 kV line opens
Note: Previously tripped and reclosed twice
3:45:41pm – Canton Central – Tidd 345 kV line trip
Line recloses 58 seconds later, but 345/138 kV transformers at Canton Central remain open
4:05:57.5pm – Sammis – Star 345 kV line trip
Loading on Critical Lines

Several 138 kV lines in the vicinity trip during this time.
Key Voltages

Voltage (kV)

100% Voltage
95% Voltage
90% Voltage

15:00
Time - EDT
16:00

Harding - Chamberlin
345 kV Line Trip

Hanna - Juniper
345 kV Line Trip

Gaps in Data Records

Star - South Canton
345 kV Line Trip

Sammis - Star
345 kV Line Trip

Star
Hanna
Beaver
Perry

Pacific Northwest
NATIONAL LABORATORY
Sammis-Star “Zone 3” Relay Operates on Steady State Overload
4:08:58pm Galion – Muskingum – Ohio Central
345 kV line trip
4:09:06pm – E. Lima – Fostoria Central 345 kV line trip
4:10pm Harding – Fox 345 kV line, Kinder Morgan unit trips, 20 generating units (2174 MW) trip in Northern Ohio
4:10:37pm 345 kV transmission lines trip between western and eastern Michigan
4:10:38pm - Midland Cogeneration Venture unit trip (loaded to 1265 MW), Transmission system separates northwest of Detroit, Perry-Ashtabula-Erie West 345 kV line trip
4:10:38pm Situational Assessment:
Northern Ohio & eastern Michigan collapsing, many units tripped, only connection remaining is with Ontario. When last tie between Pennsylvania and Ohio trips, power drawn into the affected region suddenly reverses direction around Lake Erie.
Pennsylvania – New York Separation
4:10:40pm – Homer City-Watercure Road 345 kV
4:10:40pm – Homer City-Stolle Road 345 kV
4:10:41pm – South Ripley-Dunkirk 230 kV
4:10:44pm – East Towanda-Hillside 230 kV
4:10:41pm
Fostoria Central-Galion 345 kV line trip
Perry 1 nuclear unit trip (rated 1252 MW)
Avon Lake 9 unit trip (rated 616 MW)
Beaver-Davis Besse 345 kV line trip
Northeast portion of the grid separates from the interconnection
4:10:42pm – Campbell unit 3 (rated 820 MW) trips
4:10:43pm – Keith-Waterman 230 kV line trip
4:10:45pm – Wawa-Marathon 230 kV line trip (above Lake Superior)
4:10:45pm – Branchburg-Ramapo 500 kV line trip
After the Branchburg – Ramapo 500 kV line trips, the underlying 230 kV and 138 kV ties in New Jersey trip, leaving northern New Jersey connected with New York, and southern New Jersey and Pennsylvania remain connected with the remainder of the eastern Interconnection.
Frequency in Ontario and New York during Breakup
Niagara Generation Stays with Western NY

Frequency Separation
Interior Ontario and Northern New York

Northwest Ontario Stays with Manitoba

Beck Re-Separates from Interior Ontario System

Beck and St Lawrence Stay Separated from Interior Ontario But Connected to New York State

Beck and St Lawrence Separate from Interior Ontario System

Beck Reconnects to Interior Ontario System

Seconds from 16:10:00
One Minute
Generator Trips to 4:10:38pm

Legend
- Generator Trips Before 16:05:57
- Generator Trips Before 16:10:38
Generator Trips – Next 7 Seconds
Generator Trips – After 4:10:44pm
Blackout Root Cause Finding #1: Failure by FirstEnergy and ECAR to Understand Inadequacies of the System

- FirstEnergy failed to conduct rigorous long-term planning studies of its system (neglected to conduct multiple contingency assessments)
- FirstEnergy did not conduct sufficient voltage analyses for its Ohio control area and used operational voltage criteria that did not reflect actual voltage stability conditions
- The East Central Area Reliability Coordination Agreement (ECAR) did not conduct an independent review or analysis of FirstEnergy’s voltage criteria and operating needs
- Some of NERC’s planning and operational requirements and standards were sufficiently ambiguous that FirstEnergy could interpret them to include practices that were inadequate for reliable system operation
Blackout Root Cause Finding #2
Lack of Situational Awareness by FirstEnergy Operators

► FirstEnergy did not:
 ▪ ensure a reliable system after contingencies occurred because it did not have an effective contingency analysis capability
 ▪ have effective procedures to ensure operators were aware of the status of critical monitoring tools
 ▪ have effective internal communications procedures
 ▪ have effective procedures to test monitoring tools after repairs
 ▪ have additional high level monitoring tools after alarm system failed
Blackout Root Cause Finding #3
Inadequate Vegetation Management

FirstEnergy did not adequately manage tree growth in its transmission rights of way
- Common cause of the outage for three 345 kV transmission lines and one 138 kV line

Effects of Ambient Conditions on Transmission Line Ratings

- 38' Height @ 5 MPH Winds
- 36' Height @ 0 MPH Winds
- 34' Height @ Emergency Rating

800'
Another word about vegetation management...

- Sometimes utilities have disputes with landowners preventing necessary work from occurring
- Columbus – Bedford (345kV) Line in Indiana owned by Cinergy
 - 12:08:40.0 Line trips and locks out
 - 18:23:00.0 Line returned to service

August 14, 2003

October 9, 2003
Blackout Root Cause Finding #4
Improper Reliability Coordinator Diagnostics

- Midwest Independent System Operator’s (MISO) state estimator failed due to a data error
- MISO’s flowgate monitoring tool didn’t have real-time line information to detect growing overloads
- MISO operators couldn’t easily link breaker status to line status to understand changing conditions.
- PJM and MISO ineffective procedures and wide grid visibility to coordinate problems affecting their common boundaries
Blackout was NOT Caused by

► Heavy wide-area transfers
► Low voltages, voltage collapse
► Lack of voltage/reactive support from generators
► Frequency anomalies
► Cinergy outages starting at 12:08
► East Lake 5 trip at 13:31
 ■ Contributing factor to later events, but not by itself causal to the blackout
► Dayton Power & Light Stuart-Atlanta trip at 14:02
 ■ Contributing factor to loss of MISO real-time monitoring, but not electrically significant
Address institutional issues related to reliability (14)

Strengthen initiatives of the electric power industry’s North American Electric Reliability Council (NERC) (17)

Tighten physical and cyber security (13)

Canadian nuclear power sector (2)

Blackout report and other materials available at:
http://www.oe.energy.gov/information_center/documents.htm
Concluding Remarks

- The power grid is exceptionally complex, and extraordinarily reliable
 - Most customer outages are due to issues with radial distribution feeders vs. the networked transmission grid
- Hierarchical control strategy provides good tradeoff between reliability and efficiency
- Blackouts provide good opportunity to study and apply lessons learned to further enhance reliability
- As advanced technology is being considered for deployment, need to consider unintended consequences (e.g., cyber security)
- Robustness and resiliency are enhanced by considering all threats to the power system
 - An “all-hazards” approach
Suddenly, knowing a lot about the U.S. power grid became sexy at cocktail parties.