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Epochal Evolution Shapes the
Phylodynamics of Interpandemic
Influenza A (H3N2) in Humans
Katia Koelle,1,2*† Sarah Cobey,1† Bryan Grenfell,2,3 Mercedes Pascual1

Human influenza A (subtype H3N2) is characterized genetically by the limited standing diversity of
its hemagglutinin and antigenically by clusters that emerge and replace each other within 2 to
8 years. By introducing an epidemiological model that allows for differences between the genetic
and antigenic properties of the virus’s hemagglutinin, we show that these patterns can arise from
cluster-specific immunity alone. Central to the formulation is a genotype-to-phenotype mapping,
based on neutral networks, with antigenic phenotypes, not genotypes, determining the degree of
strain cross-immunity. The model parsimoniously explains well-known, as well as previously
unremarked, features of interpandemic influenza dynamics and evolution. It captures the observed
boom-and-bust pattern of viral evolution, with periods of antigenic stasis during which genetic
diversity grows, and with episodic contraction of this diversity during cluster transitions.

Interpandemic influenza causes substantial
morbidity and mortality in humans. Annual
winter epidemics yield cumulative attack

rates between 10 and 20% for influenza A (sub-
types H3N2 and H1N1), and influenza B infec-
tions (1) and contribute heavily to deaths caused
by respiratory infections worldwide. The virus
is capable of evading immune recognition
through continual antigenic drift of its surface
glycoproteins, hemagglutinin (HA) and neur-
aminidase (NA), complicating long-term con-
trol of the disease through vaccination (2). An
understanding of the ecological and immuno-
logical processes driving influenza dynamics
and evolution is therefore critical for antic-
ipating and ultimately mitigating the effect of
this infectious disease. Here we focus on the

phylodynamics (3) of H3N2, which has been
present worldwide since its pandemic appear-
ance in 1968.

One of the most striking characteristics of
influenza A evolution is the limited standing
diversity of the HA gene, despite the virus’s
high mutation rate. This limited diversity is
evident in its phylogeny: The tree consists of a
long trunk with short side branches that are
indicative of high extinction rates of the lineages
(4) (Fig. 1A). Epidemiological factors that con-
tribute to this pattern include the short infectious
period of the host and partial cross-immunity
between similar strains (3). However, the most
detailed model of interpandemic influenza to
date suggests that these factors alone cannot
account for limited diversity and that temporary
strain-transcendent (generalized) immunity is
necessary to restrict diversity (5).

More recently, differences between the ge-
netic and antigenic evolution of the H3N2 vi-
rus’s HA glycoprotein have been highlighted
(6). A key unexplained pattern is that, although
genetic change is gradual, antigenic change is
punctuated. HA inhibition (HI) assays show that
H3N2 sequences fall into groups, or clusters,
with unique antigenic properties. Between 1968
and 2003, these clusters emerged and replaced
each other within 2 to 8 years, exerting a major
influence on vaccine strategy (2). Empirical
evidence suggests that there is almost complete
immunity between strains within a cluster (7). In
contrast, cross-immunity is as low as 60 to 85%
between clusters adjacent in time (7, 8) and is
undetectable between temporally distant clus-
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ters (9). A time series of influenza-related deaths
highlights the importance of clusters and the
timing of their transitions: Anomalously high
mortality rates accompany cluster transitions
(10, 11) (Fig. 1B).

Here we present a model that offers an
explanation for both limited HA diversity and
punctuated antigenic changes. It is a phylody-
namic model, in that it simulates the interaction
of epidemiological dynamics and pathogen evo-
lution using a single underlying framework (3).
Unlike previous models that focus on individual
strains [e.g. (5, 12)], our model emphasizes the
concept of clusters. We first looked at the
genetic sequences analyzed by Smith and
coauthors (6) by cluster designation (Fig. 1C).
Within a cluster, the HA sequences can differ by
a substantial number of amino acids while
retaining their antigenic similarity. For example,
two sequences in the HK68 cluster differ by 19
amino acids. Furthermore, transitions between
clusters, and therefore large changes in antigenic
properties, can result from as few as one amino
acid change (as in the case of the SI87 to BE89
and the BE92 to WU95 cluster transitions).

Traditional multistrain disease models (in-
cluding those for influenza) directly relate the
degree of cross-immunity between strains to the
distances between their sequences. Distance
metrics often employ the Hamming distance be-
tween two strain sequences, and they are used in
both bit-string models (with alleles 0 or 1 at each
locus) (13, 14) and in more realistic models of
amino acid evolution (5). By design, distance
metrics set the degree of cross-immunity high
between strains with high sequence similarity
and low between strains with low sequence simi-
larity. However, these distance metrics are
incongruent with observations of cross-immunity
between influenza clusters (Fig. 1C). They can-
not provide a framework in which a single amino
acid change can markedly release a strain from
population-level host immunity and in which 19
changes can have little antigenic effect.

Although it may be argued that amino acid
changes that precipitate cluster jumps occur at
key influential sites, a closer investigation of the
substitutions associated with cluster transitions
suggests that few sites fit this model. Of the 43
sites associated with cluster transitions, 35 also

exhibited some degree of neutral polymorphism
(6). (We categorize a site as carrying some de-
gree of neutral polymorphism if the site exhibits
any variation in amino acid use within at least
one cluster.) In the remaining eight sites, sub-
stitutions were always accompanied by cluster
transitions (table S1); however, these sites could
not account for every transition. Four transi-
tions were associated only with sites capable of
showing neutral polymorphism. Site-directed
mutagenesis of strains belonging to different
clusters also showed that identical substitutions
can have different effects on hemadsorption,
depending on differences in local structure
(15). Thus, a model of invariably influential and
neutral sites is unlikely to generate a realistic
topology.

Neutral networks map genetic-to-antigenic
change. We therefore take an alternative ap-
proach for modeling cross-immunity–one in
which phenotype is determined by a context-
dependent interaction of amino acids. Every
amino acid site in an epitope is potentially
important. Whether an amino acid replacement
in a site precipitates a cluster jump is determined

Fig. 1. Characteristics of influenza dynamics and evolution. (A)
Phylogenetic tree showing the restricted genetic diversity of HA1,
which is the part of the HA gene that encodes all of HA’s known
antibody binding sites. The tree was built with the MEGA software
package version 3.1 (47), with the same 253-nucleotide
sequences and A/Bilthoven/16190/68 root as in Smith et al.
(2004), using a neighbor-joining (NJ) method with the Tamura-
Nei (gamma parameter = 0.4) model. Strains are color coded by
antigenic cluster. (B) Monthly percentage of deaths from P&I in
the United States from 1968 to 1998 for all persons ≥65 years
old. Asterisks mark the first season dominated by H3N2 after a
cluster transition [from (10)]. (C) Unrooted NJ trees for each
cluster. Arrows above trees show the maximum number of
differences between HA1 amino acid sequences in the same
cluster, and arrows between trees show the minimum number of
differences between neighboring clusters.
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not only by the change at that site, but also by the
genetic background in which the change is made.
Epitope structure is thus mediated through high-
level interactions between the amino acids of a
HA sequence. Extensive theoretical and empiri-
cal studies have focused on understanding protein
genotype-to-phenotype mapping in light of these
interactions. These studies have shown that
sequence space is inhabited by “neutral net-
works” (16–20). Neutral networks for proteins
are defined as sets of amino acid sequences (of
length L) that are connected by one-mutation
neighbors and map into the same conformation.
The number of sequences folding into the same
conformation varies, with the size distribution of
the conformational sets consisting of many rare
shapes and only a few highly designable, or
frequent, shapes (21). The presence of an
underlying neutral network topology affects
evolutionary dynamics on the phenotype land-
scape: In simulations where an optimal shape
(phenotype) is defined exogenously, an initial
phenotype will evolve toward this target shape
in punctuated steps (22, 23). During the periods
of phenotypic stasis separating the punctuated
shape changes, sequences diffuse through
genotype space along neutral or almost neutral
networks (24, 25). This diffusion is critical for
gaining access to adjacent networks that enable
more dramatic phenotypic change (22, 26). The
stepwise emergence of these phenotypic innova-
tions, guided by the process of neutral diffusion,
has been termed epochal evolution (27, 28).

We can now interpret influenza clusters in
terms of neutral networks (Fig. 1C). Within each
cluster, strains have similar conformations of
their HA epitopes; host antibodies are thus more
likely to recognize these strains as antigenically
equivalent, and strain cross-immunity is close to
complete. These strains can therefore be clas-
sified as belonging to a set of neutral networks
with similar antigenic phenotypes. Sharply re-
duced cross-immunity between influenza clus-
ters arises from antigenic escape by the HA
protein and is precipitated by amino acid sub-
stitutions that substantially change the structure
of one or more epitopes.

Dynamical consequences of the genetic-
antigenic map. To determine the effect of this
genotype topology on the dynamics and evolution
of influenza, we modeled the disease by coupling
an epidemiological transmission model to a
genotype-phenotype (GP) model that imple-
ments neutral networks. The GP model is used
to map strains, or genotypes, into antigenic phe-
notypes. To this end, we extended a simple mod-
el that allows for a tunable degree of neutrality
(29, 30). It is a generalization of the NK fitness-
landscape model, which allows epistatic inter-
actions between loci to affect fitness (31).

We modeled influenza’s HA as five distinct
epitopes, with each epitope represented by a
separate GP map (32). At a given epitope, amino
acids interact with a small number of their
neighbors [K = 1, where K is the degree of

epistasis or context dependency] to determine
the epitope’s overall shape. This level of context
dependency captures the size distribution of the
neutral networks seen in lattice models of protein
folding (21) (Fig. 2A). Our genetic-antigenic
map for HA assumes statistical properties of
cross-immunity between strains that are one
amino acid apart (Fig. 2B). Specifically, point
mutations resulting in an amino acid replacement
in an epitope belong to one of three types.
Mutations are neutral (100% cross-immunity) if
the epitope in which the replacement occurs does
not change its conformation. This occurs when
the two sequences belong to the same neutral
network at the mutated epitope. When the
mutated sequence belongs to another neutral net-
work, two different cases are considered: Mu-
tations are almost neutral (93% cross-immunity)
if the epitope changes its conformation only
slightly, whereas they are classified as escape
mutations if the epitope changes its structure
significantly (80% cross-immunity). These es-
cape mutations precipitate cluster transitions and
occur relatively infrequently (32) (Fig. 2).

Given this underlying genotype space topol-
ogy, we simulated the dynamics of influenza and
the concurrent evolution of its HA in a temperate-
latitude population. We based our influenza
transmission model on a multistrain model that

uses a status-based approach for tracking classes
of hosts (12). However, instead of modeling the
number of individuals susceptible, infected, and
recovered to each individual strain, we modeled
the number of individuals susceptible, infected,
and recovered to each neutral ensemble. We
define a neutral ensemble i as the set of strains
that have identically shaped epitopes; i.e., that
reside on the same neutral network at each
epitope. This compartmental formulation elimi-
nates the need to track the infection histories of
individual hosts and facilitates future mathemat-
ical analyses of the dynamics. Without mutation,
the dynamics of a system with n neutral ensem-
bles are given by Eqs. 1a and 1b:

dI i
dt

¼ ½bðtÞI i þ mpi�
Si
N

− ðnþ mDÞI i ð1aÞ

dSi
dt

¼ mBN − ∑
n

j ¼ 1
½bðtÞIj þ mpj�sij SiN − mDSi

ð1bÞ

where the subscript i denotes the neutral ensem-
ble, and sij denotes the degree of cross-immunity
between neutral ensembles i and j. As in standard
epidemiological models, b(t) is the seasonally
varying transmission rate, n is the recovery rate,

Fig. 2. Statistical proper-
ties of themodel’s neutral
networks and patterns
of genetic and antigenic
change under the neutral-
network framework. (A)
Distribution of neutral-
network sizes for each of
the five modeled HA epi-
topes. Epitopes one to five
each contain approxi-
mately 1.5L=438 neutral
networks, or distinct con-
formations. For each epi-
tope, the networks were
generated with a neutral-
ized NK fitness-landscape
model (30), with L = 15,
K = 1, alphabet size (A) =
2, and neutrality param-
eter (F) = 2 (see support-
ing online material text). (B) Cross-immunity sij between strains i and j that differ by a single amino acid.
We let a neutral mutation of an epitope e result in xij(e) = 100% recognition, an almost-neutral mutation
result in xij(e) = 65% recognition, and an escapemutation result in xij(e) = 0% recognition. The degree of
cross-immunity between two strains is assumed to depend additively on recognition at each epitope, such

that sij = 1
5∑e¼1

5
xij(e). In the case of a non-neutral mutation, we let there be a low chance [r = 1/40 (1 out

of 40)] that the adjacent neutral networks have conformations that are antigenically very different,
yielding an escape mutant that may precipitate a cluster transition. The remainder of the time, a non-
neutral mutation is considered almost neutral, yielding an antigenically similar conformation. With cross-
immunity additive across epitopes, two sequences that are one mutation apart have either full cross-
immunity, 93% cross-immunity, or 80% cross-immunity. The distribution was generated by computing
the degree of cross-immunity between two strains of Hamming distance that are one amino acid apart for
1000 randomly sampled strain pairs. (C) Genetic [Jukes-Cantor (JC)] distance from the founder strain to
the annual strain samples over the time course of the simulation. (D) Frequency distribution of the degree
of cross-immunity between the simulation-generated HA strains shown in Fig. 3D.
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mB is the birth rate, and mD is the death rate.
Because clusters consist of neutral ensembles
with high levels of cross-immunity, the model
formulation yields dynamics that are essentially
susceptible-infected-recovered (SIR) within sin-
gle clusters. The model without immigration
results in the stochastic extinction of influenza
during the summer troughs; we therefore intro-
duced the immigration rate parameter m to allow
an influx of strains from areas outside the region.
We let pi represent the proportion of strains in the
outside region that belong to neutral ensemble
i. For simplicity, rather than modeling the
outside region dynamically, we assumed that
the strains in this region are derived from the
strains present in the temperate region during the
previous year (32). A more complex model that
incorporates the region dynamically produces
similar results as long as there is sufficient
asynchrony between the geographic patches
and provided that no genetic bottlenecks are
otherwise produced.

The resulting disease dynamics reproduce
influenza’s well-known annual outbreaks in
temperate regions, with seasonal attack rates
of 1 to 13% (Fig. 3, A and B). The model also
captures the sequential replacement of influenza
clusters that is seen empirically, with cluster-
transition years having higher incidence levels
(Fig. 3A) and correspondingly higher annual
attack rates (Fig. 3B), echoing the pneumonia
and influenza (P&I) mortality rates that are
representative of influenza’s time series (10)

(Fig. 1B). The temporal patterns of genetic and
antigenic change can now also be visualized
(Fig. 2, C and D). Figure 2C shows that genetic
distances increase gradually from the founder
strain, consistent with the gradual genetic change
of H3N2’s HA1 observed by Smith and co-
authors (6). However, antigenic change, as mea-
sured by cross-immunity, evolves in punctuated
steps between clusters. In Fig. 2D, we plotted
cross-immunity between genetically distinct
strains that were sampled over the time course
of the simulation. Under influenza’s epochal
evolution, a roughly linear relationship between
antigenic differences and genetic differences
emerges. This relationship is in agreement with
the previously observed relationship between
genetic and antigenic distances (6). However,
the roughly linear relationship between these
distances over the long run does not imply that
genetic and antigenic differences are linearly
related at shorter time scales. Figure 1C and the
previous findings of punctuated antigenic change
by Smith and colleagues (6) clearly show that
antigenic and genetic distances can be uncorre-
lated at this temporal scale. The neutral network
topology thus accounts for both the short and the
long time-scale patterns of antigenic and genetic
distance relationships.

The model also predicts an emergent dy-
namic property of influenza that arises from the
interaction between cluster jumps and herd im-
munity. Specifically, the model frequently gen-
erates a refractory year of low attack rates after

cluster-transition years. During cluster transi-
tions, many hosts become infected and recover,
and hence there are few susceptible hosts to infect
in the following year. Two years after a cluster-
transition year, enough susceptible hosts have
been replenished to cause another large annual
outbreak. The replenishment of susceptible hosts
comes from a combination of new births and the
slight antigenic evolution of the strains that com-
pose the cluster. The existence of this refractory
period is empirically suggested–a pattern that,
to our knowledge, has gone unnoticed. After a
year dominated by a new cluster (and not im-
mediately followed by another cluster), the
incidence of H3N2 often drops below that of
the following “normal” year—a year that is neither
dominated by an invading cluster nor possibly
refractory (10, 33, 34). This pattern occurs in
six out of seven cases after the HK68 cluster.
Interestingly, also in six out of seven poten-
tially refractory years, subtypes H1N1 and/or
B predominate.

We compared our model’s results with the
characteristic phylogenetic patterns of H3N2
HA1. A phylogenetic reconstruction of the
sequences obtained from yearly sampling of
the model’s infected individuals generated a tree
with a long trunk and short side branches that is
characteristic of influenza (4) (Fig. 3D). To
better understand the factors that determine the
shape of this phylogenetic tree, we tracked the
diversity of strains present in the population over
time, as measured by average pairwise nucleo-

Fig. 3. Influenza dy-
namics and evolution
from model simulations.
(A) Time series of in-
fected cases, color coded
by cluster designation.
Clusters remained domi-
nant for less than a dec-
ade, in congruence with
the empirically suggested
two- to eight-season dom-
inance of H3N2’s clusters
(6). (B) Annual attack
rates, showing increases
during cluster-transition
years and a refractory
period during each subse-
quent year. (C) Average
pairwise nucleotide dif-
ferences over time, show-
ing a boom-and-bust pattern of genetic diversity that is associated with cluster-transition years. Nucleotide
differences were calculated annually from 20 randomly sampled strains along cluster designations.
Simulations were started at the endemic equilibrium of a single random strain. (D) Phylogenetic tree showing
the restricted HA diversity generated by the model. The neighbor-joining (JC distance) tree was built with 10
randomly sampled strains from every year. Lineages are color coded by antigenic cluster. Simulations were
run with an initial population size of two million. We let the duration of infection n−1 = 8 days (48), the birth
rate mB = 14/1000 per year, the death rate mD = 8/1000 per year, themutation rate d = 2× 10−5 per base per
day, and the probability of an adjacent network being antigenically discontinuous r = 1/40. We used an
average basic reproductive rate R0 of 5 [consistent with estimates from (49)], with seasonal sinusoidal forcing
c = 0.35. The strength of the interaction between the temperate region and the outside region is determined
by the transmissibility-reduction factor r−1 = 1/150 and the immigration rate of m = 50 per day (32).
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tide differences between strains (Fig. 3C). As a
cluster emerges and spreads, strains diffuse
through genotype space with weak positive
selection from the slight antigenic changes
accumulating at the epitopes, increasing strain
diversity. The appearance of a novel phenotype
severely curtails diversity in the old cluster. This
contraction results from a selective sweep, with
the mutant strain having higher fitness (because
of the higher levels of susceptible hosts available
to it), thereby allowing it to competitively ex-
clude all the strains in the previous cluster. The
invasion of the new cluster is facilitated by the
accumulated diversity of the old cluster: The
novel antigenic cluster can have up to 80%
cross-immunity with strain variants of the old
cluster that share four out of five of its epitopes;
however, it has only 52% cross-immunity with
strain variants of the old cluster that differ
slightly in four out of five of the epitopes. The
emergence of new clusters, their rapid expan-
sion, and their decline create a boom-and-bust
cycle of explosive diversity and contraction.

To validate this model, we computed the
average pairwise nucleotide differences in the
H3N2 sequences given by Smith and coauthors
(6). Despite the limited number of antigenically
typed samples, a boom-and-bust pattern is
evident. There is a significant increase in nucleo-
tide differences as the clusters age (P < 0.02)
(Fig. 4A), suggesting diffusion in genotype
space. A plot of diversity over time (1968 to
2003) shows that this overall increase occurs in
seven out of nine clusters and is greatest while the
cluster is still dominant (Fig. 4B). This pattern in

diversity also holds when analysis is restricted to
residues located in the five epitopes, with
pairwise nucleotide differences growing from 0
to 3 to approximately 5 to 13 in 3 to 4 years. A
further match between themodel andH3N2HA1
is observed when tree-balance metrics are em-
ployed to determine the degree of skewness
within clusters (32). These types of quantitative
measures should be used in the future to compare
different phylodynamic models.

A minimal theory for influenza. By incor-
porating a GP mapping based on neutral net-
works into a simple multistrain transmission
model, we have shown that major features of
influenza’s interpandemic ecology and evolution
can be explained. These features include sequen-
tial cluster transitions and limited standing HA
diversity in the viral population. Another model,
which assumes that genotypic differences approx-
imate phenotypic differences, has been successful
in reproducing clustered strain appearances (12).
However, this model is deliberately restricted to a
much lower dimensional space [one-dimensional
(1D) or 2D], which constrains the direction of
evolution. Models that incorporate higher
dimensions of mutational possibilities have not
shown evidence for self-organized clusters; thus,
explosive diversity results instead (5, 14). To limit
viral diversity, these models have had to invoke
temporary strain-transcending immunity (5, 14).
Both of these models also predict fluctuations in
strain diversity; however, these decreases in
diversity are not associated with increases in the
attack rate. It is also unclear whether or not these
models generate antigenic clusters. The existence

of generalized immunity is suggested by cellular
immune responses in mice [(35, 36), but see (37)],
although the amount of protection required in
models of human populations appears to be com-
paratively greater. Here, we have shown that gen-
eralized immunity is unnecessary to restrict the
interpandemic diversity of HA. Our model
indicates that weak within-cluster selection and
the selective sweeps that accompany cluster transi-
tions are sufficient. Empirical patterns corroborate
this model (Fig. 1B and Fig. 4).

This model made several simplifying as-
sumptions that should be investigated. We as-
sumed that only HA determines the antigenic
phenotype. This is certainly not the whole story:
Antibody responses to NA and internal proteins,
cellular immune responses, and non–immune-
mediated traits contribute to viral fitness and
hence might affect influenza’s dynamics and
diversity patterns (38, 39). However, the fact that
HA diversity and associated variations in herd
immunity allow our model to explain emergent
evolutionary and epidemic properties underlines
the fact that HA is the major (phylo)dynamical
component to build on. Teasing out whole-
genome influences on influenza cluster transi-
tions is an important area for future work. We
have also assumed that there is no interaction
between H3N2, H1N1, or influenza B, despite
suggestive instances of subtype replacement (e.g.,
of H1N1 by H2N2 and H2N2 by H3N2). Al-
though the model presented here predicts refrac-
tory periods after cluster-transition years during
which H1N1/B outbreaks often occur, it does not
include a mechanism to explain why H1N1/B
outbreaks do not seem to occur in seasons with
high H3N2 incidence. Some degree of gen-
eralized immunity (5) or ecological interference
(40) may be needed to account for these inter-
annual subtype patterns and pandemic subtype
replacements. These processes do not, however,
seem necessary to restrict the intrasubtype di-
versity of HA, nor can they parsimoniously ex-
plain aspects of H3N2’s interannual variability.

Our model also opens up general questions
about the time-series analyses of influenza dy-
namics at the population level. In the absence of
strain data, influenza has been modeled as a
simple SIRS system (41–43), with viral evolution
causing transition from the recovered class to the
susceptible class. In light of the punctuated cluster
transitions identified by Smith and colleagues (6)
and the implications of the transitions expanded
upon in this paper, it is becoming evident that
influenza dynamics can be approximated as a
serial SIR system, with abrupt changes in the level
of susceptible hosts when a new cluster appears.
The development of such mathematical and
statistical approaches may allow the short-term
dynamics of influenza to be predicted without re-
course to complex evolutionarymodels. Improved
subtype-specific flu surveillance is the key to full
utilization of such methods (44).

Further investigation of the biological basis
of neutrality in GP mappings could yield new

Fig. 4. Patterns of ge-
netic diversity in HA1. (A)
Average pairwise nucleo-
tide differences between
the HA1 regions of circu-
lating strains as a func-
tion of cluster age. Cluster
age was calculated from
the first year in which a
strain from the cluster ap-
peared in the data set.
Each strain was assumed
to circulate only during
the year it was isolated.
Average pairwise differ-
ences were calculated as
the means within groups
of isolates, distinguished
by cluster and year, using
the MEGA software pack-
age version 3.1 (47). The slope is significantly positive (P < 0.02), as was determined by least-trimmed-
squares regression (LTSR) and 1000 bootstrap samples. (B) Average pairwise nucleotide differences in HA1
by cluster and year. The average number of nucleotide differences increased in all nine clusters for which
between-year comparisons are possible using least-squares regression, and in seven of nine clusters (EN72,
VI75, BK79, SI87, BE89, BE92, and SY97) using LTSR. Vertical bars indicate 95% confidence levels, inferred
from 500 bootstrap samples. More sequences were available for EN72, SI87, BE89, BE92, WU95, and SY97
than for other clusters (fig. S1). The patterns in diversity shown in (A) and (B) were similar when considering
only the subset of codons belonging to epitopes A to E, as identified in (50) and (6). For some clusters, the
growth in pairwise nucleotide differences was interrupted by sampling discontinuities (i.e., years for which
one or no sequences of that cluster were sampled; see fig. S1).
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insights into the phylodynamics of disease
systems in general. Critically, neutrality is me-
diated not only by the accessibility of different
structures to the pathogen but also by the hosts’
abilities to detect these differences. The pheno-
type of the pathogen thus depends on the spec-
ificity of the host response. The availability of
different phenotypes under this framework may
establish major differences between the phyloge-
netic characteristics of different diseases [e.g.,
influenza A and measles (3)] and the same
disease in different hosts experiencing different
ecologies (e.g., influenza A in swine, avian, and
equine hosts). There is also evidence that the
specificity of the host antibody response to
influenza varies within a host population (45).
This heterogeneity might have important con-
sequences for the diffusion of strains along anti-
genically similar networks in genotype space.

This study highlights the necessity of cou-
pling molecular evolution with population-level
models to understand the basic aspects of a
biological system. In the case of influenza, a
more detailed understanding of the structural
basis of antigenicity and the dynamics of immune
recognition of viral epitopes is of utmost im-
portance. The roles that neutrality and context
dependency play in enabling phenotypic change
(46) need to be addressed in virological studies.
These efforts could help to identify the GP map
of influenza’s HA and are critical for vaccine
development, because antigenic distances be-
tween epidemic strains and vaccine strains
determine vaccine efficacy (2). Further inquiries
into population-level processes that affect influ-
enza dynamics and evolution, such as the extent
of epidemiological mixing and the global circu-
lation of the virus in humans and other host
species, are also necessary parts of this research.
Integrating findings from these fields will be
critical to understanding andmanaging influenza.
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Structure of Dual Function Iron
Regulatory Protein 1 Complexed
with Ferritin IRE-RNA
William E. Walden,1 Anna I. Selezneva,1 Jérôme Dupuy,2 Anne Volbeda,2
Juan C. Fontecilla-Camps,2 Elizabeth C. Theil,3 Karl Volz1*

Iron regulatory protein 1 (IRP1) binds iron-responsive elements (IREs) in messenger RNAs (mRNAs),
to repress translation or degradation, or binds an iron-sulfur cluster, to become a cytosolic
aconitase enzyme. The 2.8 angstrom resolution crystal structure of the IRP1:ferritin H IRE complex
shows an open protein conformation compared with that of cytosolic aconitase. The extended,
L-shaped IRP1 molecule embraces the IRE stem-loop through interactions at two sites separated by
~30 angstroms, each involving about a dozen protein:RNA bonds. Extensive conformational
changes related to binding the IRE or an iron-sulfur cluster explain the alternate functions of IRP1
as an mRNA regulator or enzyme.

Iron regulatory protein 1 (IRP1) is a cytosolic,
RNA binding protein that regulates the
translation or stability of mRNAs encoding

proteins for iron transport, storage, and use. IRP1
has an alternate function as cytosolic (c-)
aconitase when a [4Fe-4S] cluster is bound (1–5).

The distribution of IRP1 between thesemutually
exclusive activities requires no new protein
synthesis; iron excess or starvation promotes c-
aconitase or RNA binding activity, respectively
(6). Assembly and disassembly of the [4Fe-4S]
cluster appears to be an effective mechanism for

www.sciencemag.org SCIENCE VOL 314 22 DECEMBER 2006 1903

RESEARCH ARTICLES

 o
n 

Ju
ne

 1
0,

 2
01

3
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

http://www.sciencemag.org/

