Community detection on networks

Caterina De Bacco

CSSS, Santa Fe, 2018

caterina.debacco@gmail.com
https://github.com/cdebacco
Lecture 2: *implementing the model*

1. **Testing the model (20mins)**
 - Measuring correlation with ‘ground truth’: F1score, Mutual Information
 - No ground truth: AUC and MDL
2. **Analysing the results (20 mins)**
 - Normalize and extract max group
 - Visualize results
 - Statistical significance: many local optima
3. **Advanced topics (10mins): Metadata**
Community detection: *testing the model.*

How do you evaluate if the model is ‘good’?
Community detection: *testing the model.*

How do you evaluate if the model is ‘good’?

‘Easy’, *if we have* ground truth communities
Cluster matching

4 5 11 24 28 50 69 90 95 113
17 20 27 56 58 59 62 63 65 70 76 87 95 96 113
0 4 9 16 23 41 90 93 104
3 5 10 11 52 58 74 81 82 84 97 98 107
2 3 10 40 52 72 74 81 98 102 107
19 29 30 35 44 55 79 80 82 93 94 101 109
1 25 33 37 45 62 89 103 105 109
12 14 18 26 31 34 36 38 39 42 43 54 55 61 71 79 80 85 99
35 42 44 48 52 56 57 59 63 66 75 80 86 87 91 92 96 97 98 112
7 8 9 21 22 23 40 47 50 51 64 68 77 78 82 108 111
2 6 13 15 32 39 47 60 64 82 100 106
13 24 25 32 46 48 49 52 53 58 67 69 73 80 83 84 88 89 107 110 114

Inferred: C*

19 29 30 35 55 79 94 101
2 6 13 15 32 39 47 60 64 100 106
3 5 10 40 52 72 74 81 84 98 102 107
44 48 57 66 75 86 91 92 110 112
36 42 80 82 90
12 14 18 26 31 34 38 43 54 61 71 85 99
0 4 9 16 23 41 93 104
7 8 21 22 51 68 77 78 108 111
17 20 27 56 62 65 70 76 87 95 96 113
11 24 50 59 63 69 97
28 46 49 53 58 67 73 83 88 114
1 25 33 37 45 89 103 105 109

Ground truth: C
Cluster matching

4 5 11 24 28 50 69 90 95 113
17 20 27 56 58 59 62 63 65 70 76 87 95 96 113
0 4 9 16 23 41 90 93 104
3 5 10 11 52 58 74 81 82 84 97 98 107
2 3 10 40 52 72 74 81 98 102 107
19 29 30 35 44 55 79 80 82 93 94 101 109
1 25 33 37 45 62 89 103 105 109
12 14 18 26 31 34 36 38 39 42 43 54 55 61 71 79 80 85 99
35 42 44 48 52 56 57 59 63 66 75 80 86 87 91 92 96 97 98 112
7 8 9 21 22 23 40 47 50 51 64 68 77 78 82 108 111
2 6 13 15 32 39 47 60 64 82 100 106
13 24 25 32 46 48 49 52 53 58 67 69 73 80 83 84 88 89 107 110 114

19 29 30 35 55 79 94 101
2 6 13 15 32 39 47 60 64 100 106
3 5 10 40 52 72 74 81 84 98 102 107
44 48 57 66 75 86 91 92 110 112
36 42 80 82 90
12 14 18 26 31 34 38 43 54 61 71 85 99
0 4 9 16 23 41 93 104
7 8 21 22 51 68 77 78 108 111
17 20 27 56 62 65 70 76 87 95 96 113
11 24 50 59 63 69 97
28 46 49 53 58 67 73 83 88 114
1 25 33 37 45 89 103 105 109

Inferred: C*

Ground truth: C
Cluster matching

Inferred: C*

Ground truth: C
Cluster matching

C*: 2 6 13 15 32 39 47 60 64 82 100 106
C: 2 6 13 15 32 39 47 60 64 100 106 121 132

82: False Positive
121,132: False Negatives
2,6,13,etc...: True Positives
Cluster matching

| C*: 2 6 13 15 32 39 47 60 64 82 100 106 |
| C: 2 6 13 15 32 39 47 60 64 100 106 |

82: False Positive
121, 132: False Negatives
2, 6, 13, etc...: True Positives

\[\delta(C_i^*, C_j) \]

Distance between ground truth and inferred
Cluster matching: F1-score

Precision = \frac{11}{12} = 0.92
Recall = \frac{11}{13} = 0.85
F1-score = 2 \times \frac{0.92 \times 0.85}{1.77} = 0.88

F1-score = \frac{2 \times \text{precision} \times \text{recall}}{\text{precision} + \text{recall}}

https://en.wikipedia.org/wiki/F1_score
Cluster matching: F1-score

Take as C* all possible subsets of nodes

- Precision = 12/12 = 1
- Recall = 12/12 = 1
- F1-score = 2 x 1/2 = 1.0!!
Cluster matching: F1-score

Consider both C* and C (in turn) as reference, and calculate F1 on both sides

Precision = 11/13 = 0.85
Recall = 11/12 = 0.92
F1-score = 2 x 0.92 * 0.85 / 1.77 = 0.88

\[
\frac{1}{2|C^*|} \sum_{C_i^* \in C^*} \max_{C_j \in C} \delta(C_i^*, C_j) + \frac{1}{2|C|} \sum_{C_j \in C} \max_{C_i^* \in C^*} \delta(C_i^*, C_j)
\]

\[
\delta(C_i^*, C_j)
\]

F1-score
Information theory approach: NMI

\[
NMI(C, C^*) = \frac{I(C : C^*)}{Z(H(C), H(C^*))}
\]

\[
I(C : C^*) = \frac{1}{2} [H(C) - H(C|C^*) + H(C^*) - H(C^*|C)]
\]

Normalization

\[
Z(H(C), H(C^*)) = \max(H(C), H(C^*))
\]

\[
Z(H(C), H(C^*)) = \frac{1}{2}(H(C) + H(C^*))
\]

Mutual information

https://en.wikipedia.org/wiki/Mutual_information

Danon et al. 2005
McDaid et al. 2011
Cluster similarity measures

- Cluster matching (F1 score, etc…)
- Information theory (NMI, VI)
- Pair counting (Rand index, Jaccard, etc…)

See Fortunato et Hric 2016 for an overview
Overlapping communities: distance between vectors

<table>
<thead>
<tr>
<th>(U_i)</th>
<th>(U^*_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0.0790622 0</td>
<td>0 0 0.00483982 0.00224297 0</td>
</tr>
<tr>
<td>3 0 0.0533999 0 0.139296 0</td>
<td>3 0 0.01271 0.00688526 0</td>
</tr>
<tr>
<td>76 0 0 0.0805629 0.10241</td>
<td>76 0 0.00115951 0.0137771 0.00347393</td>
</tr>
<tr>
<td>127 0 0 0 0.207446</td>
<td>127 0 0.00605217 0.0168567 0</td>
</tr>
<tr>
<td>177 0 0.0738358 0.158358 0.024311</td>
<td>177 0.00267315 0 0.00549152 0.0149187</td>
</tr>
<tr>
<td>1 0 0 0.185704 0.0796013</td>
<td>1 0 0.017335 0.00262135 0.0033609</td>
</tr>
<tr>
<td>6 0.0270201 0 0 0.0864358</td>
<td>6 0.00186055 0 0 0.00820299</td>
</tr>
<tr>
<td>17 0 0 0.192816 0.0215193</td>
<td>17 0 0.0184664 0 0</td>
</tr>
<tr>
<td>34 0 0 0.211593 0.0223843</td>
<td>34 0 0.0183341 0 0.00153079</td>
</tr>
</tbody>
</table>
Overlapping communities: cosine-similarity, L1, etc...

\[\text{sim}(A, B) = \cos(\Theta) = \frac{A \cdot B}{||A|| \cdot ||B||} \]
Testing the model: compare structural and functional communities.

Structural: set of nodes with a particular connectivity structure (edge density, average degree, etc..)

Functional: set of nodes with common function (e.g. common role, attribute, etc..).

Idea: different functional communities have different structures.

Testing the model: compare structural and functional communities.

Structural: set of nodes with a particular connectivity structure (edge density, average degree, etc..)

Functional: set of nodes with common function (e.g. common role, attribute, etc..).

Idea: different functional communities have different structures

1. Detect communities based on structure.
2. See if these correspond to ground truth functional communities.

Need to define a ‘proper’ scoring function.

Yang and Leskovec, Defining and evaluating network communities based on ground-truth, 2015
Community detection: testing the model.

How do you evaluate if the model is ‘good’?

Unsupervised: no ground truth to compare with
Community detection: \textit{testing the model}.

How do you evaluate if the model is ‘good’?
Unsupervised: no ground truth to compare with

\textit{Don’t be fooled by the visualization!}
Testing the model: *predictive performance*

Idea: a model is ‘good’ if it’s able to predict the existence of links

Compare the observed A_{ij} with the inferred $E[A_{ij}]$

$$A_{ij}^\alpha \sim Poi(M_{ij}^\alpha)$$

$$M_{ij}^\alpha = \sum_{k,q} u_{ik} u_{jk} w_{kq}^\alpha$$
Testing the model: *predictive performance*

Need a metric for comparing the observed A_{ij} with the inferred $E[A_{ij}]$

AUC (Area under the curve):
the probability that a randomly chosen missing connection (a true positive) is given a higher score than a randomly chosen pair of unconnected vertices (a true negative)

Cross-validation

- Hide 20% of the A_{ij}
- Fit the parameters on the 80%
- Calculate M_{ij} on the 20%

$$M_{ij}^{\alpha} = \sum_{k,q} u_{ik} v_{jk} w_{kq}^{\alpha}$$
Testing the model: *predictive performance*

Need a metric for comparing the observed A_{ij} with the inferred $E[A_{ij}]$

AUC (Area under the curve):
the probability that a randomly chosen missing connection (a true positive) is given a higher score than a randomly chosen pair of unconnected vertices (a true negative)

Cross-validation
- Hide 20% of the A_{ij}
- Fit the parameters on the 80%
- Calculate M_{ij} on the 20%

$$M_{i,j}^\alpha = \sum_{k,q} u_{ik} v_{jk} w_{kq}^\alpha$$
Testing the model: *predictive performance*

Idea: a model is ‘good’ if it’s able to predict the existence of links

AUC (Area under the curve):
the probability that a randomly chosen missing connection (a true positive) is given a higher score than a randomly chosen pair of unconnected vertices (a true negative)

<table>
<thead>
<tr>
<th>A_{ij}</th>
<th>M_{ij}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.98</td>
</tr>
<tr>
<td>1</td>
<td>1.03</td>
</tr>
<tr>
<td>1</td>
<td>0.75</td>
</tr>
<tr>
<td>0</td>
<td>0.67</td>
</tr>
<tr>
<td>0</td>
<td>0.42</td>
</tr>
<tr>
<td>1</td>
<td>0.21</td>
</tr>
<tr>
<td>0</td>
<td>0.12</td>
</tr>
<tr>
<td>0</td>
<td>0.01</td>
</tr>
<tr>
<td>0</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Testing the model: *predictive performance*

Idea: a model is ‘good’ if it’s able to predict the existence of links

AUC (Area under the curve):
the probability that a randomly chosen missing connection (a true positive) is given a higher score than a randomly chosen pair of unconnected vertices (a true negative)

<table>
<thead>
<tr>
<th>A_{ij}</th>
<th>M_{ij}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.98</td>
</tr>
<tr>
<td>1</td>
<td>1.03</td>
</tr>
<tr>
<td>1</td>
<td>0.75</td>
</tr>
<tr>
<td>0</td>
<td>0.67</td>
</tr>
<tr>
<td>0</td>
<td>0.42</td>
</tr>
<tr>
<td>1</td>
<td>0.21</td>
</tr>
<tr>
<td>0</td>
<td>0.12</td>
</tr>
<tr>
<td>0</td>
<td>0.01</td>
</tr>
<tr>
<td>0</td>
<td>0.00</td>
</tr>
</tbody>
</table>

2 non-edge have higher P_{ij} than a true edge: bad!
Testing the model: *predictive performance*

Idea: a model is ‘good’ if it’s able to predict the existence of links

AUC (Area under the curve):
the probability that a randomly chosen missing connection (a true positive) is given a higher score than a randomly chosen pair of unconnected vertices (a true negative)

<table>
<thead>
<tr>
<th>A_{ij}</th>
<th>M_{ij}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.98</td>
</tr>
<tr>
<td>1</td>
<td>1.03</td>
</tr>
<tr>
<td>1</td>
<td>0.75</td>
</tr>
<tr>
<td>0</td>
<td>0.67</td>
</tr>
<tr>
<td>0</td>
<td>0.42</td>
</tr>
<tr>
<td>1</td>
<td>0.21</td>
</tr>
<tr>
<td>0</td>
<td>0.12</td>
</tr>
<tr>
<td>0</td>
<td>0.01</td>
</tr>
<tr>
<td>0</td>
<td>0.00</td>
</tr>
</tbody>
</table>

\[
\text{AUC} = 1 - \frac{\text{#bad}}{\text{#edges} \times \text{# non-edges}} = 1 - \frac{1+1}{4 \times 5} = 0.9
\]
Testing the model: *predictive performance*

Idea: a model is ‘good’ if it’s able to predict the existence of links

AUC (Area under the curve):
the probability that a randomly chosen missing connection (a true positive) is given a higher score than a randomly chosen pair of unconnected vertices (a true negative)

- Does not depend on the details of the model (Poisson, Priors, etc..)
- Compares with random strategy 0.5
- Does not need to tune parameters
- Deals with overfitting
Testing the model: *predictive performance*

Idea: a model is ‘good’ if it’s able to predict the existence of links

AUC (Area under the curve):
the probability that a randomly chosen missing connection (a true positive) is given a higher score than a randomly chosen pair of unconnected vertices (a true negative)

- Does not depend on the details of the model (Poisson, Priors, etc..)
- Compares with random strategy 0.5
- Does not need to tune parameters
- Deals with overfitting

```python
>>> import numpy as np
>>> from sklearn.metrics import roc_auc_score
>>> y_true = np.array([0, 0, 1, 1])
>>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> roc_auc_score(y_true, y_scores)
0.75
```

Testing the model: *predictive performance*

Can also be used as model selection criteria

Other metrics can be used, as held-out log-likelihood, etc…
see Kawamoto et Kabashima 2017
Testing the model: *most plausible, highest probability given the data*

Idea: a model is ‘good’ if it *compresses* the data the most

MDL (Minimum description length):

Peter D. Grünwald 2007, Rosvall and Bergstrom 2007

\[P(A|\Theta)P(\Theta) = 2^{-\sum(A;\Theta)} \]

Posterior: Likelihood x Prior

The description length of a message is:

bits required to send the compressed message + # bits in encoding scheme.

See Vallès-Català et al. 2017 for comparison AUC vs MDL
Testing the model: *most plausible, highest probability given the data*

Idea: a model is ‘good’ if it *compresses* the data the most

MDL (Minimum description length):
Peter D. Grünwald 2007, Rosvall and Bergstrom 2007

\[P(A|\Theta)P(\Theta) = 2^{-\sum(A;\Theta)} \]

Posterior: Likelihood x Prior

See Vallès-Català et al. 2017 for comparison AUC vs MDL
Testing the model: *most plausible, highest probability given the data*

Idea: a model is ‘good’ if it **compresses** the data the most

MDL (Minimum description length):

Peter D. Grünwald 2007, Rosvall and Bergstrom 2007

\[
P(A|\Theta)P(\Theta) = 2^{-\sum(A;\Theta)}
\]

Posterior: Likelihood x Prior

• Higher likelihood —> lower MDL

See Vallès-Català et al. 2017 for comparison AUC vs MDL
Testing the model: *most plausible, highest probability given the data*

Idea: a model is ‘good’ if it compresses the data the most

MDL (Minimum description length):
Peter D. Grünwald 2007, Rosvall and Bergstrom 2007

\[
P(A|\Theta)P(\Theta) = 2^{-\Sigma(A;\Theta)}
\]

Posterior: Likelihood x Prior

See Vallès-Català et al. 2017 for comparison AUC vs MDL
Testing the model: *most plausible, highest probability given the data*

Idea: a model is ‘good’ if it **compresses** the data the most

MDL (Minimum description length):
Peter D. Grünwald 2007, Rosvall and Bergstrom 2007

\[P(A|\Theta)P(\Theta) = 2^{-\sum(A;\Theta)} \]

Posterior: Likelihood x Prior

- Higher likelihood \(\rightarrow\) lower MDL
- More parameters \(\rightarrow\) smaller prior
 \(\rightarrow\) bigger MDL

See Vallès-Català et al. 2017 for comparison AUC vs MDL
Testing the model: *most plausible, highest probability given the data*

Often used as model selection criteria

\[
B = 5, \quad \text{non-degree-corrected, overlapping, } \Lambda = 1
\]

\[
B = 4, \quad \text{non-degree-corrected, overlapping, } \Lambda \simeq 2 \times 10^{-4}
\]

TP Peixoto PRX 2015, PRX 2014
• **If you have ground truth:** several methods are available, metrics used in statistical learning theory (F1, NMI, etc...)
 • Always good to generate synthetic data and ‘plant’ ground truth
 • Metadata should used carefully
• **Otherwise:** predictive (AUC) vs MDL approaches
1. **Testing the model (20mins)**
 - Measuring correlation with ‘ground truth’: F1score, Mutual Information
 - No ground truth: AUC and MDL

2. Analysing the results (20 mins)
 - Normalize and extract max group
 - Visualize results
 - Statistical significance: many local optima

3. Advanced topics (10mins): Metadata
Analysing the results: *process parameters*
Analysing the results: *process parameters*

<table>
<thead>
<tr>
<th>(U_i)</th>
<th>(V_i)</th>
<th>(W^a)</th>
</tr>
</thead>
</table>
| 0 0 0 0.0790622 0 | 0 0 0 0.00483982 0.00224297 0 | a= 0
| 3 0.0533999 0 0.139296 0 | 3 0.01271 0.00688526 0.00115951 0.01271 | 0 0 0 2.66716 0 3.79189 0 0 0.0270201 0 0.0864358 0 0.31726 1.07808 0.0602251 0 0.271431 0.256695 1.07306 0 0.750644 0 0 0 |
| 76 0 0 0.0805629 0.10241 | 76 0 0.00115951 0.0137771 0.00347393 0.00605217 0.0168567 0 | 0 0 0 0.00267315 0 0.00549152 0.0149187 0.017335 0.00262135 0.0033609 0.00186055 0 0.00820299 0.0184664 0 0.0183341 0 0.00153079 |
| 127 0 0 0 0.207446 | 127 0 0 0 0.207446 | 0 0 0 3.99113 0.00549152 0 0.00115951 0.0137771 0.00347393 0.00605217 0.0168567 0.0033609 0.00186055 0 0.00820299 0.0184664 0 0.0183341 0 0.00153079 |
| 177 0 0.0738358 0.158358 0.024311 | 177 0 0.0738358 0.158358 0.024311 | a= 1
| 1 0 0 0.185704 0.0796013 | 1 0 0 0.185704 0.0796013 | 0 0 0 1.30754 0 0.31726 1.07808 0.0602251 0 0.271431 0.256695 1.07306 0 0.750644 0 0 0 |
| 6 0.0270201 0 0 0.0864358 | 6 0.0270201 0 0 0.0864358 | a= 2
| 17 0 0 0.192816 0.0215193 | 17 0 0 0.192816 0.0215193 | 0 0 0 1.98783 0 2.65475 0 0 0.00186055 0 0 0 0 0 0.184664 0 0 0.0183341 0 0.00153079 |
| 34 0 0 0.211593 0.0223843 | 34 0 0 0.211593 0.0223843 | a= 3
| 0 0 0 0.00483982 0.00224297 0 | 0 0 0 0.00483982 0.00224297 0 | 0 0 0 2.74153 0 1.96755 0.0878885 0 0 0 3.99113 0 0 0 0 0 0.184664 0 0 0.0183341 0 0.00153079 |
| 6 0.00186055 0 0 0.00820299 | 6 0.00186055 0 0 0.00820299 | 1.93712 0 0 2.74153 0 1.96755 0.0878885 0 0 0 3.99113 0 0 0 0 0 0.184664 0 0 0.0183341 0 0.00153079 |
| 17 0 0.0184664 0 0 | 17 0 0.0184664 0 0 | 1.93712 0 0 2.74153 0 1.96755 0.0878885 0 0 0 3.99113 0 0 0 0 0 0.184664 0 0 0.0183341 0 0.00153079 |
| 34 0 0.0183341 0 0.00153079 | 34 0 0.0183341 0 0.00153079 | 1.93712 0 0 2.74153 0 1.96755 0.0878885 0 0 0 3.99113 0 0 0 0 0 0.184664 0 0 0.0183341 0 0.00153079 |
Analysing the results: process parameters

\[U_i \]

\[
\begin{array}{cccc}
0 & 0 & 0 & 0.0790622 \\
3 & 0 & 0.0533999 & 0.139296 \\
76 & 0 & 0.0805629 & 0.10241 \\
127 & 0 & 0 & 0.207446 \\
177 & 0 & 0.0738358 & 0.158358 & 0.024311 \\
1 & 0 & 0.185704 & 0.0796013 \\
6 & 0.0270201 & 0 & 0.0864358 \\
17 & 0 & 0.192816 & 0.0215193 \\
34 & 0 & 0.211593 & 0.0223843 \\
\end{array}
\]

\[V_i \]

\[
\begin{array}{cccc}
0 & 0 & 0.00483982 & 0.00224297 \\
3 & 0 & 0.01271 & 0.00688526 \\
76 & 0 & 0.00115951 & 0.0137771 & 0.00347393 \\
127 & 0 & 0.00605217 & 0.0168567 \\
177 & 0 & 0.00267315 & 0.00549152 & 0.0149187 \\
1 & 0 & 0.017335 & 0.00262135 & 0.0033609 \\
6 & 0.00186055 & 0 & 0.00820299 \\
17 & 0 & 0.0184664 & 0 \\
34 & 0 & 0.0183341 & 0.00153079 \\
\end{array}
\]

\[W^a \]

\[
\begin{array}{cccc}
a= 0 \\
0 & 0 & 0 & 2.66716 \\
0 & 3.79189 & 0 & 0 \\
0 & 0 & 2.75449 & 0 \\
2.0515 & 0 & 0 & 0 \\
a= 1 \\
0 & 0 & 0 & 1.30754 \\
0.031726 & 1.07808 & 0.0602251 & 0 \\
0.271431 & 0.256695 & 1.07306 & 0 \\
0.750644 & 0 & 0 & 0 \\
a= 2 \\
0 & 0 & 0 & 1.98783 \\
0 & 2.65475 & 0 & 0 \\
0 & 0 & 1.82214 & 0 \\
1.27939 & 0 & 0 & 0 \\
a= 3 \\
0 & 0 & 0 & 2.74153 \\
0 & 1.96755 & 0.0878885 & 0 \\
0 & 0 & 3.99113 & 0 \\
1.93712 & 0 & 0 & 0 \\
\end{array}
\]
Analysing the results: *process parameters*

\[
\begin{array}{cccc}
U_i & \text{Parameters} & \text{Normalized}\n
0 & 0 & 0 & 1.0 & 0 \\
3 & 0.25 & 0 & 0.75 & 0 \\
76 & 0 & 0 & 0.4 & 0.6 \\
127 & 0 & 0 & 0 & 1.0 \\
177 & 0 & 0.4 & 0.55 & 0.05 \\
1 & 0 & 0 & 0.7 & 0.3 \\
6 & 0.2 & 0 & 0 & 0.8 \\
17 & 0 & 0 & 0.9 & 0.1 \\
34 & 0 & 0 & 0.95 & 0.05
\end{array}
\]

- Normalize vectors

\[
\begin{array}{cccc}
0 & 0 & 0 & 0.0790622 & 0 \\
3 & 0.0533999 & 0 & 0.139296 & 0 \\
76 & 0 & 0 & 0.0805629 & 0.10241 \\
127 & 0 & 0 & 0 & 0.207446 \\
177 & 0 & 0.0738358 & 0.158358 & 0.024311 \\
1 & 0 & 0.185704 & 0.0796013 & 0 \\
6 & 0.0270201 & 0 & 0 & 0.0864358 \\
17 & 0 & 0 & 0.192816 & 0.0215193 \\
34 & 0 & 0 & 0.211593 & 0.0223843
\end{array}
\]
Analysing the results: *process parameters*

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0.25</td>
<td>0</td>
<td>0.75</td>
<td>0</td>
</tr>
<tr>
<td>76</td>
<td>0</td>
<td>0</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>127</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.0</td>
</tr>
<tr>
<td>177</td>
<td>0</td>
<td>0.4</td>
<td>0.55</td>
<td>0.05</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.7</td>
<td>0.3</td>
</tr>
<tr>
<td>6</td>
<td>0.2</td>
<td>0</td>
<td>0</td>
<td>0.8</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0.9</td>
<td>0.1</td>
</tr>
<tr>
<td>34</td>
<td>0</td>
<td>0</td>
<td>0.95</td>
<td>0.05</td>
</tr>
</tbody>
</table>

- Normalize vectors
- Form communities

3 6 ...
177 ...
3 177 1 17 34...
76 127 177 1 6 17 34...
Analysing the results: *process parameters*

<table>
<thead>
<tr>
<th>U_i</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1.0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.25</td>
<td>0</td>
<td>0.75</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>0</td>
<td>0</td>
<td>0.4</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>177</td>
<td>0</td>
<td>0.4</td>
<td>0.55</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.7</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.2</td>
<td>0</td>
<td>0</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0.9</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>0</td>
<td>0</td>
<td>0.95</td>
<td>0.05</td>
<td></td>
</tr>
</tbody>
</table>

- Normalize vectors
- Form communities
 - Take the max only: hard partition

0 3 6 177 1 17 34...
76 127 6 ...
...

...
Analysing the results: *process parameters*

- Normalize vectors
- Form communities
 - Take the max only: hard partition
 - Threshold membership

<table>
<thead>
<tr>
<th>(U_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>76</td>
</tr>
<tr>
<td>127</td>
</tr>
<tr>
<td>177</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>34</td>
</tr>
</tbody>
</table>

0 3 76 177 1 17 34 ...
177 ...
76 127 1 6 ...
...

Analysing the results: *process parameters*

- Normalize vectors
- Form communities
 - Take the max only: hard partition
 - Threshold membership

Lose the info on how much does a node belong to each community
Visualization: *Hinton diagrams*

- Normalize vectors
- Form communities
 - Take the max only: hard partition
 - Threshold membership
- Visualize
 - Hinton diagram

```
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.26</td>
<td>0.75</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>0</td>
<td>0</td>
<td>0.4</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>177</td>
<td>0</td>
<td>0.4</td>
<td>0.55</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.7</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.2</td>
<td>0</td>
<td>0</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0.9</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>0</td>
<td>0</td>
<td>0.95</td>
<td>0.05</td>
<td></td>
</tr>
</tbody>
</table>
```
Analysing the results: \textit{visualization}

- Normalize vectors
- Form communities
 - Take the max only: hard partition
 - Threshold membership
- **Visualize**
 - Hinton diagram

\[
\begin{array}{cccc}
0 & 0 & 1.0 & 0 \\
3 & 0.250 & 0.75 & 0 \\
76 & 0 & 0.4 & 0.6 \\
127 & 0 & 0 & 1.0 \\
177 & 0 & 0.4 & 0.55 & 0.05 \\
1 & 0 & 0.7 & 0.3 \\
6 & 0.2 & 0 & 0.8 \\
17 & 0 & 0 & 0.9 & 0.1 \\
34 & 0 & 0 & 0.95 & 0.05 \\
\end{array}
\]
Analysing the results: visualization

- Normalize vectors
- Form communities
 - Take the max only: hard partition
 - Threshold membership

- Visualize
 - Hinton diagram
Analysing the results: visualization

- Normalize vectors
- Form communities
 - Take the max only: hard partition
 - Threshold membership
- Visualize
 - Hinton diagram
 - Per node

Airoldi et al. 2008
Analysing the results: *visualization*

- Normalize vectors
- Form communities
 - Take the max only: hard partition
 - Threshold membership
- **Visualize**
 - Hinton diagram
 - Per node

Airoldi et al. 2008
Analyzing the results: visualization

- Normalize vectors
- Form communities
 - Take the max only: hard partition
 - Threshold membership
- Visualize
 - Hinton diagram
 - Per node

Airoldi et al. 2008
Analysing the results: *visualization*

- Normalize vectors
- Form communities
 - Take the max only: hard partition
 - Threshold membership
- Visualize
 - Hinton diagram
 - Per node
 - Adjacency matrix
Rows have been reordered by the community membership: i.e. node$_1$-node$_{ck}$ are the nodes belonging to community 1 of dimension ck
Analysing the results: *statistical significance*
Analysing the results: statistical significance

Many local optima!

Peel et al. 2017
Statistical significance: \textit{Maximization vs Sampling}

\[
P(\text{Observable}|A) = \sum_{\Theta} P(\text{Observable}|A, \Theta)P(\Theta|A)
\]
Statistical significance: *Maximization vs Sampling*

\[
P(Observable|A) = \sum_{\Theta} P(Observable|A, \Theta) P(\Theta|A)
\]

Peel et al. 2017
Statistical significance: *Maximization vs Sampling*

\[
P(Observable|A) = \sum_{\Theta} P(Observable|A, \Theta) P(\Theta|A)
\]

Peel et al. 2017
• Is a good practice to **question** the significance of the inferred community

• And we haven’t even touched the ‘detectability’ issue …
Advanced topic: *metadata*

A lot of information that we haven’t used!

Age, gender, education, religion, etc...
Advanced topic: *metadata*

A lot of information that we haven’t used!

Age, gender, education, religion, etc…

Should we use it ?!??! How?
Advanced topic: metadata

A lot of information that we haven’t used!

Age, gender, education, religion, etc…

Should we use it ?!??! How?

Not as ground truth!!!!!
Advanced topic: *metadata*

A possible answer: use them *a posteriori*

\[y_i = \sum_{n} \alpha_n x_i^n \]

- Group membership of i
- Coefficient to be estimated
- Metadata of node i
Advanced topic: metadata

A possible answer: use them \textit{a posteriori}

\[
y_i = \sum_{n} \alpha_n x_i^n
\]

Group membership of i
Coefficient to be estimated
Metadata of node i

What about incorporating it \textit{a priori}?
Metadata: *questions* for an *a priori* incorporation

- Do metadata **explain** the network structure?
 “BESTest,neoSBM”, Peel et al. 2017

- Can we **use** them to guide community detection?
 Newman and Clauset 2016
 Yang et al. 2014
 Hric et al 2016 …
Metadata: questions for an a priori incorporation

Use age: strong correlation with the partition

Use gender: no correlation with the partition
Lecture 2: *implementing the model*

1. **Testing the model (20mins)**
 - Measuring correlation with ‘ground truth’: F1score, Mutual Information
 - No ground truth: AUC and MDL

2. **Analysing the results (20 mins)**
 - Normalize and extract max group
 - Visualize results
 - Statistical significance: many local optima

3. **Advanced topics (10mins): Metadata**
Positions opening coming soon

- Postdoc or PhD
- Max Planck Institute for Intelligent Systems, Tubingen, Germany
- Starting date flexible, from Jan 2019 onwards
- Contact me if you are interested in working on inference and optimization problems with statistical physics, probabilistic modeling and interdisciplinary applications
- Website with more details coming soon …

- Positions openings in other groups at https://cyber-valley.de/en

caterina.debacco@gmail.com https://github.com/cdebachco