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What Lies Between Order and Chaos?

James P. Crutchfield

What is a pattern? How do we come to recognize patterns that we’ve
never seen before? Formalizing and quantifying the notion of pattern and
the process of pattern discovery go right to the heart of scientific practice.
Over the last several decades science’s view of nature’s lack of structure—
its unpredictability—underwent a major renovation with the discovery of
deterministic chaos. Behind the veil of apparent randomness, many pro-
cesses are highly ordered, following simple rules. As the new millennium
begins, tools adapted from the theory of computation will bring empirical
science to the brink of automatically discovering patterns and quantifying
their structural complexity. For example, rather than interpreting a data
stream according to a given model, we look at a model stream. The reg-
ularities found in the way models improve with learning is the basis for
inferring universal laws on how complexity arises from the interaction of
order and chaos.

[A popular essay solicited to appear in The Sciences, New York Academy of Sciences,
New York (1994). Sadly, NYAS no longer publishes The Sciences. February 2002: This
version is somewhat updated from the original, written in 1992: citations have been

added and dated comments edited to read less obviously a decade old.]

1 INTRODUCTION

During the Summer of 1927 Balthasar van der Pol, a Dutch engineer, listened to
the tones produced by a neon glow lamp coupled to an oscillating electrical circuit.
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Lacking modern electronic test equipment, he monitored the circuit’s behavior by
listening through a telephone ear piece. In what is probably one of the earlier
experiments on electronic music, he discovered that, by tuning the circuit as if it
were a musical instrument, fractions or subharmonics of a fundamental tone could
be produced [27]. This is markedly unlike common musical instruments—such as
the flute which is known for its purity of harmonics, or multiples of a fundamental
tone. As van der Pol and a colleague reported in the September 10th issue of the
British journal Nature that year “the turning of the condenser in the region of the
third to the sixth subharmonic strongly reminds one of the tunes of a bag pipe.”

There is a curious aside in the report, however. The experimenters noted that
when tuning the circuit “often an irregular noise is heard in the telephone receivers
before the frequency jumps to the next lower value.” We now know that van der
Pol had listened to deterministic chaos: the noise was produced in an entirely
lawful, ordered way by the circuit itself. The Nature report stands as one of its
first experimental discoveries. Other concerns were on the experimenters minds, for
the report immediately continues “However, this is a subsidiary phenomenon. . ..”
With this remark their primary interest in the design of stable radio oscillators
led them away from discovering the order in the chaos.

Much of our appreciation of nature depends on whether our minds or, more
typically these days, our computers are prepared to discern its intricacies. When
confronted by a phenomenon for which we are ill-prepared, we often simply fail to
see it, though we may be looking directly at it.

Indeed, what is a “pattern” in nature? More to the point, how do we come
to notice a “pattern” we’ve never seen before? How can we ever see past our own
assumptions? Formalizing and quantifying the notion of pattern goes right to the
heart of scientific practice. Over the last several decades our view of nature’s lack of
structure—its unpredictability—underwent a major renovation with the discovery
of deterministic chaos. As the new millennium begins, ideas adapted from the
theory of computation will bring empirical science to the brink of automatically
discovering patterns and quantifying their structural complexity. One guide to this
will be universal laws on how complexity arises from the interaction of order and
chaos.

2 BACKGROUND

Van der Pol and his colleague J. van der Mark apparently were unaware that
the deterministic mechanisms underlying the noises they’d heard had been rather
keenly analyzed three decades earlier by the French mathematician Jules Henri
Poincaré in his efforts to establish the orderliness of planetary motion. The motion
of the planets about the sun is one of the hallmarks of regularity and predictability.
But when mathematicians and physicists attempted to finally prove this, trouble
arose. At the very close of the nineteenth century Poincaré in his treatise Nou-
velles Méthodes des Mécanique Céleste focused on the collective motion of the sun,
a planet, and a moon—the famous “three-body problem” [23]. After nearly 1500
pages of detailed successful analysis and simplification, he ran into deep compli-
cations in solving for their motions:
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If one seeks to visualize the pattern formed by these two [solution]
curves. . .[their| intersections form a kind of lattice-work, a weave, a chain-
link network of infinitely fine mesh; ... One will be struck by the com-
plexity of this figure, which I am not even attempting to draw. Nothing
can give us a better idea of the intricacy of the three-body problem, and
of all the problems of dynamics in general. . ..

It is impossible to know his state of mind when, at the end of a Herculean effort to
establish mathematically the observed fact of the solar system’s stability, Poincaré
realized the daunting complexity of the task. He dryly notes that it was “a point
which gave me a great deal of trouble.”

The puzzle of deterministic chaos is just one example from twentieth-century
science that shows how the limitations of human understanding make nature ap-
pear “noisy,” complicated, and unpredictable. One immediately thinks of quantum
mechanics, another legacy from the early part of the twentieth century, as putting
severe limits on purely objective measurements of nature [15]. But even in the rar-
efied world of the foundations of mathematics similar roadblocks appeared. Kurt
Godel demonstrated that logical consistency had to be traded-off against one’s
ability to prove the possible “truths” within a formal system—even a system as
simple as arithmetic [21]. Alan Turing then showed, more concretely, that well-
formulated questions in a formal system may have no constructive answers [26].
More recently, Gregory Chaitin has argued that there is an irreducible element of
randomness in mathematics that limits its effectiveness [3].

Psychology and philosophy in the twentieth century were punctuated by a
series of similar disappointments. Limitations and the complication they engen-
der permeate much more than just mathematics and physics. Freud, to take one
example, called into question the Western concept of a whole and knowable self
controlling the mind. He viewed all apparently spontaneous arbitrary actions as
being at the beck and call of the unconscious, of which one could have no knowl-
edge [12, 13]. Derrida then deconstructed the remaining notion of a self, which
was based, he thought, on erroneous notion of a metaphysical presence. Derrida,
it seems, would have us believe that there is chaos in our own houses [11].

These limitations suggest that humans are strongly predisposed to make many
unjustified, often unspoken, simplifying assumptions about nature and experience.
At first, these assumptions are frustrated and the world appears complicated,
structureless, and random. Once they are finally acknowledged and become an
object of study, a “new” limitation on our knowledge is discovered.

This list of limitations, which could be easily extended, paints a rather pes-
simistic picture of the progress of human knowledge. But it also raises a construc-
tive question: If things are so complicated, how do we ever discover patterns and
regularity? Is a hurricane’s path really unpredictable or is there some hidden order
that we do not yet appreciate? How can the lawfulness producing deterministic
chaos ever be extracted, if its outward appearance is random?

These questions highlight the very activity by which scientists penetrate the
veil of complication and distill new laws from experiments. How do scientists bal-
ance the need for order against nature’s seeming chaos? As certainly as we have
come to appreciate our limitations, this century has fostered an unparalleled in-
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crease in our knowledge of nature. Somewhat ironically, the realization of each
limit, rather than being only a disappointment, often showed nature to be much
richer than before, when seen through the dark sunglasses of simplifying assump-
tions. The rapid increase in knowledge suggests there may be some driving force
behind this progress. Can we be scientific about the practice of science? Is there
a dynamic of discovery?

Certainly, whatever this dynamic is, it is not unfamiliar to us. The struc-
tural anthropologist Claude Levi-Strauss describes the process as he experienced
it during his first treks in the 1930s into the Amazon [18]:

Seen from the outside, the Amazonian forest seems like a mass of con-
gealed bubbles, a vertical accumulation of green swellings; it is as if some
pathological disorder had attacked the riverscape over its whole extent.
But once you break through the surface-skin and go inside, everything
changes: seen from within, the chaotic mass becomes a monumental uni-
verse. The forest ceases to be a terrestrial distemper; it could be taken for
a new planetary world, as rich as our world, and replacing it.

As soon as the eye becomes accustomed to recognizing the forest’s vari-
ous closely adjacent planes, and the mind has overcome its first impression
of being overwhelmed, a complex system can be perceived.

Despite confronting what initially appears to be structurelessness, we seem to be
able eventually to discover the hidden order.

One of the most fascinating spontaneous pattern discovery and learning pro-
cesses is a child’s acquisition of language. Imagine the trade-offs that an infant faces
in balancing the initial apparent structurelessness of what it hears and its need to
find order. Allison Gopnik, a child psychologist at UC Berkeley, has suggested that
infants in their developmental succession of world views are like scientists, forming
and testing hypotheses and rejecting those that are unhelpful, inconsistent, or too
complicated [14].

Natural language itself shows a balance between order and randomness [5].
On the one hand, there is a need for static structures, such as a vocabulary and
a grammar, so that two people can communicate. Without a prior agreement on
these there is no basis for understanding; each and every utterance would be un-
intelligible to the listener—a common experience for the world traveler. On the
other hand, there would be no need to communicate if spoken utterances were
completely predictable by the listener. In this case the language would be a rigidly
fixed structure with all possible sentences uniquely identified and identifiable. But
humans use language (typically) to communicate new information—facts, ideas,
feelings, and other states of mind. And so, there must be an unknown or unex-
pected element in communication as far as the listener is concerned, if they are to
stay engaged. Then again the “new” element cannot be so dominant that the result
is a jumble of phonemes, words, and sentences. Natural language as a changeable
and dynamic system must be a balance of new information unpredictable by the
listener and of order so that communication is understandable.

Is there a general principle that guides the dynamic balance of order and
chaos? And what is the result of this balance? In his Process and Reality [28], the



Santa Fe Institute. March 11, 2002 1:33 p.m. Crutchfield-new page 35

What Lies Between Order and Chaos? 35

British philosopher Alfred North Whitehead comments on the interplay of order
and chaos in art:

The same principle is exhibited by the tedium arising from the un-
relieved dominance of fashion in art. Europe, having covered itself with
treasures of Gothic architecture, entered upon generations of satiation.
These jaded epochs seem to have lost all sense of that particular form of
loveliness. It seems as though the last delicacies of feeling require some
element of novelty to relieve their massive inheritance from bygone sys-
tem. Order is not sufficient. What is required, is something much more
complex. It is order entering upon novelty; so that the massiveness of or-
der does not degenerate into mere repetition; and so that the novelty is
always reflected upon a background of system.

So is it complexity that is the result of the balance of order and chaos? But what
is complexity? Are there any general principles that govern the interplay of order
and chaos, that aid in detecting structure and pattern? How does genuinely new
information arise from a structureless universe? Finally, why do humans presume
that there is order to be found in a chaotic, uncharted nature? Recent work has
begun to elucidate this drive toward finding regularity in nature and, in particular,
the trade-offs between order and chaos that occur in the process of acquiring new
knowledge.

3 COMPLEXITY

The weather is often considered a prime example of unpredictable behavior. The
simple truth, though, is that it is quite predictable. Over the period of one minute
(say), one can surely predict it. With a glance out the nearest window to note the
sky’s disposition, one can immediately report back a forecast. To predict over one
hour, one would search to the horizon, noting much more of the sky’s prevailing
condition. Only then, and not without pause to consider how that might change
during the hour, would one offer up a tentative prediction. If asked to forecast
two weeks in advance one would probably not even attempt the task. Why even
look out the window? The necessary amount of information and the time to as-
similate it for a two-week forecast would be overwhelming. Despite the long-term
unpredictability, a meteorologist can write down the equations of motion for the
forces controlling the weather dynamics in each case. In this sense, the weather’s
behavior is symbolically specified in its entirety. How does unpredictability arise
in such a situation?

One meteorologist, Edward Lorenz of MIT, did analyze the equations gov-
erning weather dynamics with this question in mind [19]. Focusing on particularly
simple deterministic equations, in 1963 Lorenz proposed a mechanism—the butter-
fly effect—that actively amplifies even the most microscopic, and uncontrollable,
events to macroscopic proportions; this is the mechanism underlying deterministic
chaos. Imagine that a meteorologist is allowed to use as much historical weather
data and as much computer time as needed for a moderately accurate four-day
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forecast. What Lorenz found was that if the meteorologist tries to extend the fore-
cast for one additional day, while maintaining the same degree of accuracy, twice
as much historical data and computer time are required. The result is that, if de-
terministic chaos is present, there is an irreducible error in long-term predictions,
since the required resources grow so quickly: If the resources required for predicting
double with each additional day, extending the forecast by only ten days requires
a thousand-fold increase, rapidly overwhelming any effort to forecast.

We now measure this degree of long-term unpredictability using the entropy
rate, a quantity introduced by Claude Shannon in his theory of communication
that measures the degree of surprise when receiving messages produced by some
source [25]. The Russian mathematician Andrei Kolmogorov adapted this to view a
deterministic chaotic system—such as the three-body problem—as an information
source [16]: As observers, we are surprised when our predictions of its behavior
fail. If we measure the state of a system to an accuracy of one part in a thousand
and if the system doubles that measurement uncertainty every second, then after
one second we know the system state to only one part in five hundred. In terms
of Shannon’s entropy rate, the system has produced one bit of information, since
we can resolve only half as many distinct states. At that rate of information
production, the system is completely unpredictable after only ten seconds.

Lorenz’s work suggested that unpredictability was inherent in very large sys-
tems, such as the weather, not only in systems with a few components, such as
the three-body problem analyzed by Poincaré. Their work left open the question
of how a chaotic system is structured to support a given degree of unpredictabil-
ity. In 1982 Norman Packard and I proposed that the structural complexity of
a process, such as the weather, could be measured by the decay in one’s ability
to predict its behavior as one accumulates additional information [8]. We called
this complexity the ezcess entropy, since it captured the initial apparent disorder
above the long-term unpredictability.

To see how this works we envisioned a meteorologist making a succession of
observations. Initially, before any measurements are made, the weather could be
anything; the meteorologist is ignorant of the prevailing conditions and forecasts
have nothing to do with the actual weather. It is highly unpredictable; the entropy
rate apparent to the meteorologist is very large. After a few observations, though,
the meteorologist knows the current condition and has the possibility of notic-
ing regularities: Are the conditions changing? By how much and in what way?
The additional information allows much better forecasts, certainly, than before
observations were begun. As more information is accumulated through succeed-
ing observations, the accuracy of forecasts continues to improve until the ceiling
imposed by the weather’s inherent unpredictability is reached.

The excess entropy was invented to monitor just how this increase to optimal
forecasting comes about. To see how it differs from the entropy rate, which sets the
ceiling on long-term unpredictability, consider three different types of weather. The
first is a sunny day, with clear and calm skies. This weather behavior is very easy
to predict: once we know the current wind velocity, temperature, and humidity,
we forecast that they will continue. If we make further observations, there are no
surprises; the entropy rate is zero, the system is not chaotic. We also come to
notice the regularity very quickly. Just one observation of the temperature, wind
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velocity, and so on, is all that is required to set up the forecast. In this case,
the excess entropy is low, since only a few observations are required to know the
prevailing (exactly predictable) conditions.

The second example comes from the other extreme. Imagine we are in the
crush of a horrendous storm, wild winds and sudden downpours pelt the land,
with no chance of letting up. This weather behavior—the change in wind direction,
the variation in local temperature and humidity—is very difficult to predict. We
are maximally uncertain about the weather: we keep looking out the window for
an update and are constantly surprised; the entropy rate is high. We come to
appreciate this high unpredictability very quickly, after only a few observations.
We also immediately realize that it’s not really worth the effort to accumulate
detailed observations and have our computers (say) develop a forecast, since the
conditions are so changeable. In this case, as for the calm weather, the excess
entropy is low. Independent of the weather’s predictability, only a few observations
are required to learn its condition (highly unpredictable). In other words, highly
predictable and highly unpredictable behaviors are simple, since the method of
forecasting is so straightforward. For the calm weather we simply report that our
first observations will continue. For the stormy whether, we make our forecasts by
flipping a coin. In both cases, after a while we don’t even bother to look out the
window.

The genuinely interesting cases fall between these two extremes. Instead of
our forecasts being either exactly right or almost always wrong, imagine weather
that regularly alternates between clear skies and cloud bursts. When it is clear,
we certainly want to know this, since for that period our forecasts will be correct.
It is also useful to know when the weather switches to being stormy. Since our
forecasts, then, will be wrong on average, we can reduce our effort to predict and
go back to simply guessing. To make optimal forecasts in this situation, we must
monitor the weather closely: Is it clear or stormy? Since half our forecasts are
wrong, the entropy rate is somewhere between zero and the maximal value: there
are some elements that are predictable. But it takes a long time to appreciate just
what those elements are and the amount of effort used to take advantage of them
for optimal forecasts is quite high. The result is that the excess entropy is large,
unlike that found at the extremes of predictability. This intermediate behavior is
more “complex” than either extreme. One needs more observations to know the
prevailing conditions, our models need to be more sophisticated, and the effort to
forecast is larger. In short, more information is required for optimal prediction in
this intermediate case.

These examples serve to illustrate a general principle that as one moves across
the spectrum of predictability—from ordered to random behavior—the “complex-
ity” is maximized in the middle. The excess entropy is one measure of how pro-
cesses are structured and it is a necessary tool for our understanding how nature
comes to appear more or less predictable to an observer. Since it was introduced,
a number of similar proposals to measure “physical complexity” have appeared
[29]. Like the excess entropy, each alternative attempts to capture the amount
of information processing that a system employs to produce its unpredictability.
Their main failing, however, is that they do not tell us how that information is
processed.
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As a first step to address this, in 1987 Bruce McNamara and I showed how
one could extract from experimental data the underlying equations of motion, a
compact representation of the governing forces [7]. Although our approach ad-
dressed certain issues of automated modeling, its main problem was that there
appeared to be no way estimate from the symbolic equations of motion how much
information processing was being performed by the system.

To remedy this, in 1989 Karl Young and I introduced a method to reconstruct
from observations the hidden computational mechanisms underlying unpredictable
behavior [9]. We adapted several ideas from the earliest days of computers, in par-
ticular those introduced by Noam Chomsky, the MIT linguist [4]. To Chomsky, the
activity of building a grammar for a language was analogous to the construction of
a scientific theory from experimental data. He proposed a range of distinct gram-
mar types in order to capture different classes of linguistic capability. Though the
essential aspects of human language still elude this approach, Chomsky’s classifi-
cation scheme was a boon for the study of computer languages and various types
of computational device. What Young and I did was turn Chomsky’s analogy be-
tween linguistic- and scientific-theory building inside out. We viewed the goal of a
scientist as extracting from experimental data the linguistic structure of natural
processes. This differs from pattern recognition in which data is compared against
a pre-existing palette of patterns. Moreover, ours is not a qualitative approach but
a quantitative one.

We developed a procedure—e-machine reconstruction—to automate the dis-
covery of grammatical rules hidden in experimental data. The rules were the “sig-
nificant” patterns or regularities that govern the process which produced the data
and that could be used to develop optimal predictions. The collection of the rules
so discovered forms a “theory” of the process, in the sense that they model its
mechanisms and allow us to make predictions about behavior that has yet to be
observed.

In several ways, e-machine reconstruction is analogous to a procedure, intro-
duced by Norman Packard, Doyne Farmer, Rob Shaw, and myself, in 1980 for
transforming experimental data into a geometric view of the “strange attractors”
underlying deterministic chaos. In this light, the work with McNamara showed
how this geometric approach could be extended to produce compact symbolic
equations that governed the behavior on the attractors.

One fallout of e-machine reconstruction was a much more refined notion—
the statistical complexity—of information processing structures found in nature.
Just as the excess entropy is complementary to the entropy rate, the statistical
complexity as a measure of computation is complementary to the algorithmic
notions of randomness introduced by Andrei Kolmogorov and Gregory Chaitin [2,
17]. Roughly speaking, the statistical complexity measures the amount of memory
in a process; while Kolmogorov and Chaitin’s algorithmic entropy rate measures
how random a process is, when viewed as a computer. Thus, there can be a range
of (structurally distinct) processes that each appears to be equally unpredictable,
but that use different amounts of memory to produce that apparent randomness.

Young and I also introduced a useful graphical device—the complexity-entropy
diagram—that reveals the range of information processing that natural systems
can exhibit [9]. The complexity-entropy diagram is analogous to the thermody-
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namic phase diagrams introduced in the nineteenth century to map out the states
of matter—solid, liquid, gas—at different conditions of temperature, pressure, and
volume. It’s different, though, in that it is based not on varying physical parame-
ters, but on information processing coordinates: the rate at which information is
produced (entropy rate) and how much memory is used to produce it (statistical
complexity).

When we analyzed the boundaries between chaotic and predictable systems,
we realized that the analogy with nineteenth-century thermodynamics was deeper
than we had first thought. Just as water changes state in going from ice to lig-
uid with increasing temperature, certain classes of information processing systems
show phase transitions between order and chaos. The ordered regime is analo-
gous to a crystalline solid; it literally corresponds to fixed crystalline patterns in
time (periodic behaviors). The chaotic regime is analogous to a gas, in which the
molecular motion is much more disordered. We demonstrated that at a order-
chaos phase transition a new and qualitatively more powerful type of computation
appears [10].

While different classes of natural process have their own computational-phase
diagrams, our work suggested there are universal laws governing the interplay of
the entropy rate and statistical complexity. It also indicated that there is organiza-
tion at a higher level of understanding than the accounting of energy flows typically
done in physics: the level of how natural systems store and process information
and perform computations. Curiously, this view of the increase of complexity at
the onset of chaos says, in a self-reflexive way, something more about the process
of building scientific theories [5, 6].

4 THEORY THEORY

A key modeling dichotomy that runs throughout all of science is that between
order and randomness. Imagine a scientist in the laboratory confronted after days
of hard work with the results of a recent experiment—summarized prosaically as
a simple numerical recording of instrument responses. The question arises, What
fraction of the particular numerical value of each datum confirms or denies the
hypothesis being tested and how much is essentially irrelevant information, merely
“noise” or “error”?

This dichotomy is probably clearest within science, but it is not restricted to
it, being a constant presence in the creation of artworks or in the engineering of ar-
tificial systems: What part of what we see or design is meaningful or functional? In
many ways, this caricature of scientific investigation— “artificial science” 7—gives
a framework for understanding the necessary balance between order and random-
ness that appears whenever there is an “observer” trying to detect structure or
pattern in its environment. The general puzzle of discovery then is: Which part of
a measurement series does an observer ascribe to “randomness” and which part to
“order” and “predictability?” Aren’t we all in our daily activities to one extent or
another “scientists” trying to ferret out the usable from the unusable information
in our lives?



Santa Fe Institute. March 11, 2002 1:33 p.m. Crutchfield-new page 40

40 James P, Crutchfield

Given this basic dichotomy one can then ask: How does an observer actually
make the distinction? The answer requires understanding how an observer models
data—that is, the method by which elements in a representation, a “model,” are
justified in terms of given data.

A fundamental point is that any act of modeling makes a distinction between
data that is accounted for—the ordered part—and data that is not described—
the apparently random part. However, where to draw the line between theory and
error is not so clear. The problem of building too complicated a model to fit all
those things you want to explain is a familiar one in science. Jorge Luis Borges,
the Argentine writer, illustrates the pitfall of “overfitting” in a faux critique of a
nonexistent Celestial Emporium of Benevolent Knowledge [1], thusly:

On those remote pages it is written that animals are divided into
(a) those that belong to the Emperor, (b) embalmed ones, (¢) those that
are trained, (d) suckling pigs, (e) mermaids, (f) fabulous ones, (g) stray
dogs, (h) those that are included in this classification, (i) those that trem-
ble as if they were mad, (j) innumerable ones, (k) those drawn with a
very fine camel’s brush hair, (1) others, (m) those that have just broken a
flower vase, (n) those that resemble flies from a distance.

As a general theory of “animal” the Celestial Emporium strikes us as being, at
some points, too general and, at others, far too specialized, including too much
“noise.” Even without being a trained zoologist, one suspects that when presented
with a candidate “animal” previously unknown to us, the Celestial Emporium may
very well not help us in deciding whether or not it is an animal. As a scheme it
does not generalize very well.

In principle, a balance between order and randomness can be reached and
used to define a “best” model for a given data set. A balance can be found by
minimizing the model’s size while simultaneously minimizing the amount of ap-
parent randomness or error. The first part is a version of Ockham’s dictum [22]:
causes should not be multiplied beyond necessity. The second part is a basic tenet
of science: obtain the best prediction of nature. Neither component of this balance
can be minimized alone, otherwise absurd “best” models would be selected. Min-
imizing the model size alone leads to huge error, since the smallest (null) model
captures no regularities—all of the data appears to be noise; minimizing the error
alone produces a huge model, which is simply the data itself and manifestly not
a useful encapsulation of what happened in the laboratory. So both model size
and the induced error must be minimized together in selecting a “best” model.
Typically, the sum of the model size and the total error are minimized [24].

;From the viewpoint of scientific methodology the key element missing in this
view of modeling is how to measure structure or regularity. Just how structure is
measured determines where the order-randomness border is set. This particular
problem can be solved in principle: we take the size of the candidate model as the
measure of structure. Then the size of the “best” model is a measure of the data’s
intrinsic structure. If we believe the data is a faithful representation of the raw
behavior of the underlying process, this then translates into a measure of structure
in the natural phenomenon originally studied.
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After a little reflection one realizes, though, that this does not really solve the
problem of quantifying structure. In fact, it simply elevates it to a higher level
of abstraction. Measuring structure as the length of the description of the “best”
model assumes one has chosen a language in which to describe models. The catch
is that this representation choice builds in its own biases. In a given language some
regularities can be compactly described, in other languages the same regularities
can be quite baroquely expressed. For example, on the one hand, it is well known
that, sentence for sentence, the German language expression of a thought is longer
than the English equivalent. On the other, the sentiment captured in the single
German word “freudenschade” has no equivalent in English and is translated to
the longer phrase “happiness at other’s distress”. Change the language and the
same regularities can require more or less description. And so, given that there is
no prior God-given knowledge of the appropriate language for nature, a measure
of structure in terms of the description length is, at root, arbitrary.

And so we are left with a deep puzzle, one that precedes measuring structure:
How is structure discovered in the first place? If the scientist knows beforehand
the appropriate representation for an experiment’s possible behaviors, then the
amount of that kind of structure can be extracted from the data as outlined
above. In this case, the prior knowledge about the structure is verified by the data
if a compact, predictive model results. But what if it is not verified? What if the
hypothesized structure is simply not appropriate? Perhaps we’ve started out our
data analysis with the wrong assumptions, the wrong representation. The “best”
model could be huge or, worse, appear upon closer and closer analysis to diverge
in size. The standard example of this is the Fourier—or frequency or sinusoidal or
periodic—representation of the on-off “square wave”. The Fourier representation
describes the square wave as consisting of an infinite number of active frequencies;
when, in fact, the square wave is described quite compactly (and exactly) as a
“half on, half off” signal. The situation of an infinitely large model is clearly not
tolerable. For one thing, it is impractical to manipulate. These situations indicate
that the behavior is so new as to not fit (finitely) into current understanding. Then
what do we do?

This is the problem of innovation. How can an observer ever break out of
inadequate model classes and discover appropriate ones? How can incorrect as-
sumptions be changed? How is anything new ever discovered, if it must always
be expressed in the current language? If the problem of innovation can be solved,
then, as all of the preceding development indicated, there is a framework which
specifies how to be quantitative in detecting and measuring structure. One ap-
proach to this problem is hierarchical e-machine reconstruction [5]. In this, one
starts with the simplest assumptions about the world and then builds a succession
of more sophisticated languages as the assumptions prove inadequate. e-Machine
reconstruction plays a central role in this because we use it to discover regular-
ities, not in the raw data, but in a series of increasingly accurate models. Thus,
we replace the data stream with a “model stream” and the regularities discov-
ered form the basis of a new language that describes how less-accurate models are
transformed into more-accurate ones.
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5 CONCLUSION: THE MIDDLE GROUND

Copernicus said that the earth is not the center of the universe; Freud believed that
our conscious self is the tip of an unknowable psychological iceberg. Godel proved
that there are limits to logical analysis; Turing, that answers can be beyond our
reach; Poincaré that determinism leads to unpredictability; and Heisenberg that
physical determinism fails on short temporal and small spatial scales.

The beautiful irony is that the result of each one of these concessions is an
appreciation that the natural world is richer; that it is more structurally complex
than we had previously thought. As individuals and as a culture we seem to be
continually in a self-generated illusory state: saddled with implicit and naive as-
sumptions about our ability to understand and control nature. These assumptions
are only effective by dint of coincidence—in the sense that they are not nature,
only feeble reflections of it. One might be tempted to view intellectual history as
unkind, a continuing stripping away of these illusions. On retrospect, though, with
each new fall, new knowledge and new understanding emerges.

Stepping back a bit, we now know that complexity arises in the middle ground,
at the onset of chaos—the order-disorder border. Natural systems that evolve with
and learn from interaction with their immediate environment exhibit both struc-
tural order and dynamical chaos. Order is the foundation of communication be-
tween elements at any level of organization, whether that refers to a population of
neurons, bees, or humans. For an organism order is the distillation of regularities
abstracted from observations. An organism’s very form is a functional manifesta-
tion of its ancestor’s evolutionary and its own developmental memory.

A completely ordered universe, however, would be dead. Chaos is necessary
for life. Behavioral diversity, to take an example, is fundamental to an organism’s
survival. No organism can model the environment in its entirety. Approximation
becomes essential to any system with finite resources. Chaos, as we now understand
it, is the dynamical mechanism by which nature develops constrained and useful
randomness. And from it follow diversity and the ability to anticipate the uncertain
future.

There is a tendency, whose laws we dimly comprehend, for natural systems
to balance order and chaos, to move to the interface between predictability and
uncertainty. The result is increased complexity. This often appears as a change
in a system’s computational capability. The present state of evolutionary progress
suggests that one need go even further and postulate a force that drives in time to-
ward successively more sophisticated and qualitatively different computation. We
can look back to times in which there were no systems that attempted to model
themselves, as we do now. This is certainly one of the outstanding puzzles: How
can lifeless and disorganized matter exhibit such a drive? And the question goes
to the heart of many disciplines, ranging from philosophy and cognitive science to
evolutionary and developmental biology and particle astrophysics. The dynamics
of chaos, the appearance of pattern and organization, and the complexity quanti-
fied by computation will be inseparable components in its resolution.

Are these considerations too abstract to apply to contemporary social issues?
I think not. At the very minimum, in a mathematical setting, understanding the
interaction of order and chaos and the resulting complexity gives us a powerful
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set of metaphors for understanding more complicated (possibly complex) systems,
such as human culture. In his Process and Reality [28], Whitehead saw a rather
similar dynamic at work:

The social history of mankind exhibits great organizations in their
alternating functions of conditions for progress, and of contrivances for
stunting humanity. The history of the Mediterranean lands, and of west-
ern Europe, is the history of the blessing and the curse of political organi-
zations, of religious organizations, of schemes of thought, of social agencies
for large purposes. The moment of dominance, prayed for, worked for, sac-
rificed for, by generations of the noblest spirits, marks the turning point
where the blessing passes into the curse. Some new principle of refresh-
ment is required. The art of progress is to preserve order amid change,
and to preserve change amid order. Life refuses to be embalmed alive. The
more prolonged the halt in some unrelieved system of order, the greater
the crash of the dead society.

Can we as individuals come to appreciate the dynamic balance of order and chaos?
Will our societies self-organize into a dynamic that moves beyond the least com-
mon denominator results characteristic of human groupings, toward an organiza-
tion that is appreciative of diversity, understands the role of regularity, and that
is truly and constructively complex? Economies, the scientific community, inter-
national relations, and other societal groupings are extremely large, complicated
systems. Nonetheless, in the more limited and abstract realm of mathematics and
physics we are beginning to see some glimmers of order amid the chaos, to appreci-
ate the constructive role of randomness, and to understand the dynamic interplay
of order and chaos. What lies between order and chaos? The answer now seems
remarkably simple: Human innovation. The novelist and lepidopterist Vladimir
Nabokov appreciated more deeply, than many, the origins of creativity in this
middle, human ground [20]:

There is, it would seem, in the dimensional scale of the world a kind
of delicate meeting place between imagination and knowledge, a point,
arrived at by diminishing large things and enlarging small ones, that is
intrinsically artistic.
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